def _isVar(self, elem):
     return any([
         z3.is_int_value(z3.simplify(elem)),
         z3.is_rational_value(z3.simplify(elem)),
         z3.is_algebraic_value(z3.simplify(elem)),
         is_const(z3.simplify(elem))
     ])
Esempio n. 2
0
 def pp_app(self, a, d, xs):
     if z3.is_int_value(a):
         return self.pp_int(a)
     elif z3.is_rational_value(a):
         return self.pp_rational(a)
     elif z3.is_algebraic_value(a):
         return self.pp_algebraic(a)
     elif z3.is_bv_value(a):
         return self.pp_bv(a)
     elif z3.is_finite_domain_value(a):
         return self.pp_fd(a)
     elif z3.is_fprm_value(a):
         return self.pp_fprm_value(a)
     elif z3.is_fp_value(a):
         return self.pp_fp_value(a)
     elif z3.is_fp(a):
         return self.pp_fp(a, d, xs)
     elif z3.is_string_value(a):
         return self.pp_string(a)
     elif z3.is_const(a):
         return self.pp_const(a)
     else:
         f = a.decl()
         k = f.kind()
         if k == Z3_OP_POWER:
             return self.pp_power(a, d, xs)
         elif k == Z3_OP_DISTINCT:
             return self.pp_distinct(a, d, xs)
         elif k == Z3_OP_SELECT:
             return self.pp_select(a, d, xs)
         elif k == Z3_OP_SIGN_EXT or k == Z3_OP_ZERO_EXT or k == Z3_OP_REPEAT:
             return self.pp_unary_param(a, d, xs)
         elif k == Z3_OP_EXTRACT:
             return self.pp_extract(a, d, xs)
         elif k == Z3_OP_RE_LOOP:
             return self.pp_loop(a, d, xs)
         elif k == Z3_OP_DT_IS:
             return self.pp_is(a, d, xs)
         elif k == Z3_OP_ARRAY_MAP:
             return self.pp_map(a, d, xs)
         elif k == Z3_OP_CONST_ARRAY:
             return self.pp_K(a, d, xs)
         elif k == Z3_OP_PB_AT_MOST:
             return self.pp_atmost(a, d, f, xs)
         elif k == Z3_OP_PB_LE:
             return self.pp_pbcmp(a, d, f, xs)
         elif k == Z3_OP_PB_GE:
             return self.pp_pbcmp(a, d, f, xs)
         elif k == Z3_OP_PB_EQ:
             return self.pp_pbcmp(a, d, f, xs)
         elif z3.is_pattern(a):
             return self.pp_pattern(a, d, xs)
         elif self.is_infix(k):
             return self.pp_infix(a, d, xs)
         elif self.is_unary(k):
             return self.pp_unary(a, d, xs)
         else:
             return self.pp_prefix(a, d, xs)
Esempio n. 3
0
 def pp_power_arg(self, arg, d, xs):
     r = self.pp_expr(arg, d + 1, xs)
     k = None
     if z3.is_app(arg):
         k = arg.decl().kind()
     if self.is_infix_unary(k) or (z3.is_rational_value(arg) and arg.denominator_as_long() != 1):
         return self.add_paren(r)
     else:
         return r
Esempio n. 4
0
 def pp_power_arg(self, arg, d, xs):
     r = self.pp_expr(arg, d+1, xs)
     k = None
     if z3.is_app(arg):
         k = arg.decl().kind()
     if self.is_infix_unary(k) or (z3.is_rational_value(arg) and arg.denominator_as_long() != 1):
         return self.add_paren(r)
     else:
         return r
Esempio n. 5
0
 def pp_app(self, a, d, xs):
     if z3.is_int_value(a):
         return self.pp_int(a)
     elif z3.is_rational_value(a):
         return self.pp_rational(a)
     elif z3.is_algebraic_value(a):
         return self.pp_algebraic(a)        
     elif z3.is_bv_value(a):
         return self.pp_bv(a)
     elif z3.is_finite_domain_value(a):
         return self.pp_fd(a)
     elif z3.is_fprm_value(a):
         return self.pp_fprm_value(a)
     elif z3.is_fp_value(a):
         return self.pp_fp_value(a)
     elif z3.is_fp(a):
         return self.pp_fp(a, d, xs)
     elif z3.is_string_value(a):
         return self.pp_string(a)
     elif z3.is_const(a):
         return self.pp_const(a)
     else:
         f = a.decl()
         k = f.kind()
         if k == Z3_OP_POWER:
             return self.pp_power(a, d, xs)
         elif k == Z3_OP_DISTINCT:
             return self.pp_distinct(a, d, xs)
         elif k == Z3_OP_SELECT:
             return self.pp_select(a, d, xs)
         elif k == Z3_OP_SIGN_EXT or k == Z3_OP_ZERO_EXT or k == Z3_OP_REPEAT:
             return self.pp_unary_param(a, d, xs)
         elif k == Z3_OP_EXTRACT:
             return self.pp_extract(a, d, xs)
         elif k == Z3_OP_DT_IS:
             return self.pp_is(a, d, xs)
         elif k == Z3_OP_ARRAY_MAP:
             return self.pp_map(a, d, xs)
         elif k == Z3_OP_CONST_ARRAY:
             return self.pp_K(a, d, xs)
         elif k == Z3_OP_PB_AT_MOST:
             return self.pp_atmost(a, d, f, xs)
         elif k == Z3_OP_PB_LE:
             return self.pp_pbcmp(a, d, f, xs)
         elif k == Z3_OP_PB_GE:
             return self.pp_pbcmp(a, d, f, xs)
         elif k == Z3_OP_PB_EQ:
             return self.pp_pbcmp(a, d, f, xs)
         elif z3.is_pattern(a):
             return self.pp_pattern(a, d, xs)
         elif self.is_infix(k):
             return self.pp_infix(a, d, xs)
         elif self.is_unary(k):
             return self.pp_unary(a, d, xs)
         else:
             return self.pp_prefix(a, d, xs)
def model_to_val(m, var):
    p = m[var]
    if is_int_value(p):
        return float(p.as_long())

    if is_algebraic_value(p):
        p = p.approx(5)  # Precise to 5 decimals
    if is_rational_value(p):
        x = float(p.numerator_as_long()) / \
            float(p.denominator_as_long())
    return x
Esempio n. 7
0
 def _extract_var(self, z3model, var):
     val = z3model[var]
     if val is None:
         return None
     if z3.is_rational_value(val):
         n = val.numerator_as_long()
         d = val.denominator_as_long()
         return float(n / d)
     if z3.is_true(val):
         return True
     if z3.is_false(val):
         return False
     raise RuntimeError("var not supported")
Esempio n. 8
0
    def rec(e):
        if isinstance(e, z3.QuantifierRef):
            for n in range(e.num_vars()):
                mkvar(e.var_name(n), e.var_sort(n))
        elif z3.is_algebraic_value(e) or \
             z3.is_bv_value(e) or \
             z3.is_int_value(e) or \
             z3.is_rational_value(e):
            pass
        elif z3.is_const(e):
            mkvar(str(e), e.sort())

        for sub in e.children():
            rec(sub)
Esempio n. 9
0
    def val(self, exp):
        '''Evaluate a z3 ref to a python value based on this solution.
         '''
        v = self.model.eval(exp)
        if z3.is_true(v):
            return True
        if z3.is_false(v):
            return False
        if z3.is_algebraic_value(v):
            v = v.approx(20)
        if z3.is_int_value(v):
            return v.as_long()
        if z3.is_rational_value(v):
            return v.numerator_as_long() / v.denominator_as_long()

        return z3.is_true(v)
Esempio n. 10
0
 def mk_const(self, c):
     if z3.is_int_value(c):
         return ii(c.as_long())
     if z3.is_rational_value(c):
         # TODO: what should we convert a rational to?
         return rr(Fraction(c.numerator_as_long(), \
                            c.denominator_as_long()))
     elif z3.is_true(c):
         return true
     elif z3.is_false(c):
         return false
     else:
         try:
             return self.context.decls[str(c)]
         except KeyError:
             #Constant is not found in the context
             typ = self.mk_sort(c.sort())
             return const(str(c), typ)
Esempio n. 11
0
 def mk_const(self, c):
     if z3.is_int_value(c):
         return ii(c.as_long())
     if z3.is_rational_value(c):
         # TODO: what should we convert a rational to?
         return rr(Fraction(c.numerator_as_long(), \
                            c.denominator_as_long()))
     elif z3.is_true(c):
         return true
     elif z3.is_false(c):
         return false
     else:
         try:
             return self.context.decls[str(c)]
         except KeyError:
             #Constant is not found in the context
             typ = self.mk_sort(c.sort())
             return const(str(c), typ)
def get_value(r):
    # https://stackoverflow.com/questions/12598408/z3-python-getting-python-values-from-model/12600208
    """
    Convert from Z3 to python values.
    """
    if z3.is_true(r):
        return z3.is_true(r)
    elif z3.is_false(r):
        return z3.is_false(r)
    elif z3.is_int_value(r):
        return r.as_long()
    elif z3.is_algebraic_value(r):
        return round(num(r.approx(15)), 10)
    elif z3.is_rational_value(r):
        return r.as_decimal(20)
    elif r is None:
        None
    else:
        return num(r)
Esempio n. 13
0
 def pp_app(self, a, d, xs):
     if z3.is_int_value(a):
         return self.pp_int(a)
     elif z3.is_rational_value(a):
         return self.pp_rational(a)
     elif z3.is_algebraic_value(a):
         return self.pp_algebraic(a)
     elif z3.is_bv_value(a):
         return self.pp_bv(a)
     elif z3.is_fprm_value(a):
         return self.pp_fprm_value(a)
     elif z3.is_fp_value(a):
         return self.pp_fp_value(a)
     elif z3.is_fp(a):
         return self.pp_fp(a, d, xs)
     elif z3.is_const(a):
         return self.pp_const(a)
     else:
         f = a.decl()
         k = f.kind()
         if k == Z3_OP_POWER:
             return self.pp_power(a, d, xs)
         elif k == Z3_OP_DISTINCT:
             return self.pp_distinct(a, d, xs)
         elif k == Z3_OP_SELECT:
             return self.pp_select(a, d, xs)
         elif k == Z3_OP_SIGN_EXT or k == Z3_OP_ZERO_EXT or k == Z3_OP_REPEAT:
             return self.pp_unary_param(a, d, xs)
         elif k == Z3_OP_EXTRACT:
             return self.pp_extract(a, d, xs)
         elif k == Z3_OP_ARRAY_MAP:
             return self.pp_map(a, d, xs)
         elif k == Z3_OP_CONST_ARRAY:
             return self.pp_K(a, d, xs)
         elif z3.is_pattern(a):
             return self.pp_pattern(a, d, xs)
         elif self.is_infix(k):
             return self.pp_infix(a, d, xs)
         elif self.is_unary(k):
             return self.pp_unary(a, d, xs)
         else:
             return self.pp_prefix(a, d, xs)
Esempio n. 14
0
def z3_to_val(z3_expr):
    """Send a z3 expression to it's value
    as a python expression, if it has one,
    otherwise return the expresson itself.
    
    Arguments:
    - `z3_expr`: a z3 AST
    """
    if z3.is_int_value(z3_expr):
        return z3_expr.as_long()
    if z3.is_rational_value(z3_expr):
        return Fraction(z3_expr.numerator_as_long(), \
                        z3_expr.denominator_as_long())
    elif z3.is_true(z3_expr):
        return True
    elif z3.is_false(z3_expr):
        return False
    elif isinstance(z3_expr, z3.FuncInterp):
        return z3_to_fun(z3_expr)
    else:
        return z3_expr
Esempio n. 15
0
def unique_leaves(exp, leaf_keys=None):
    def insert_and_yield(e):
        k = exp_key(e)
        if k not in leaf_keys:
            leaf_keys.append(k)
            yield e

    if leaf_keys is None: leaf_keys = []

    if z3.is_const(exp) and not (z3.is_int_value(exp)
                                 or z3.is_rational_value(exp)):
        for leaf in insert_and_yield(exp):
            yield leaf
    elif z3.is_app(exp):
        for i in range(exp.num_args()):
            for leaf in unique_leaves(exp.arg(i), leaf_keys):
                yield leaf
    else:
        assert z3.is_var(exp)
        for leaf in insert_and_yield(exp):
            yield leaf
Esempio n. 16
0
def z3_to_val(z3_expr):
    """Send a z3 expression to its value
    as a python expression, if it has one,
    otherwise return the expresson itself.
    
    Arguments:
    - `z3_expr`: a z3 AST
    """
    if z3.is_int_value(z3_expr):
        return z3_expr.as_long()
    if z3.is_rational_value(z3_expr):
        return Fraction(z3_expr.numerator_as_long(), \
                        z3_expr.denominator_as_long())
    elif z3.is_true(z3_expr):
        return True
    elif z3.is_false(z3_expr):
        return False
    elif isinstance(z3_expr, z3.FuncInterp):
        return z3_to_fun(z3_expr)
    else:
        return z3_expr
Esempio n. 17
0
 def pp_app(self, a, d, xs):
     if z3.is_int_value(a):
         return self.pp_int(a)
     elif z3.is_rational_value(a):
         rat = self.pp_rational(a)
         return rat
     elif z3.is_algebraic_value(a):
         return self.pp_algebraic(a)
     elif z3.is_bv_value(a):
         return self.pp_bv(a)
     elif z3.is_const(a):
         return self.pp_const(a)
     else:
         f = a.decl()
         k = f.kind()
         if k == Z3_OP_POWER:
             return self.pp_power(a, d, xs)
         elif k == Z3_OP_DISTINCT:
             return self.pp_distinct(a, d, xs)
         elif k == Z3_OP_SELECT:
             return self.pp_select(a, d, xs)
         elif k == Z3_OP_SIGN_EXT or k == Z3_OP_ZERO_EXT or k == Z3_OP_REPEAT:
             return self.pp_unary_param(a, d, xs)
         elif k == Z3_OP_EXTRACT:
             return self.pp_extract(a, d, xs)
         elif k == Z3_OP_ARRAY_MAP:
             return self.pp_map(a, d, xs)
         elif k == Z3_OP_CONST_ARRAY:
             return self.pp_K(a, d, xs)
         elif z3.is_pattern(a):
             return self.pp_pattern(a, d, xs)
         elif self.is_infix(k):
             return self.pp_infix(a, d, xs)
         elif self.is_unary(k):
             return self.pp_unary(a, d, xs)
         else:
             return self.pp_prefix(a, d, xs)
Esempio n. 18
0
 def _isNum(self, elem):
     return z3.is_rational_value(elem) or z3.is_int_value(elem)
Esempio n. 19
0
    def _back_single_term(self, expr, args, model=None):
        assert z3.is_expr(expr)

        if z3.is_quantifier(expr):
            raise NotImplementedError(
                "Quantified back conversion is currently not supported")

        assert not len(args) > 2 or \
            (z3.is_and(expr) or z3.is_or(expr) or
             z3.is_add(expr) or z3.is_mul(expr) or
             (len(args) == 3 and (z3.is_ite(expr) or z3.is_array_store(expr)))),\
            "Unexpected n-ary term: %s" % expr

        res = None
        try:
            decl = z3.Z3_get_app_decl(expr.ctx_ref(), expr.as_ast())
            kind = z3.Z3_get_decl_kind(expr.ctx.ref(), decl)
            # Try to get the back-conversion function for the given Kind
            fun = self._back_fun[kind]
            return fun(args, expr)
        except KeyError as ex:
            pass

        if z3.is_const(expr):
            # Const or Symbol
            if z3.is_rational_value(expr):
                n = expr.numerator_as_long()
                d = expr.denominator_as_long()
                f = Fraction(n, d)
                return self.mgr.Real(f)
            elif z3.is_int_value(expr):
                n = expr.as_long()
                return self.mgr.Int(n)
            elif z3.is_bv_value(expr):
                n = expr.as_long()
                w = expr.size()
                return self.mgr.BV(n, w)
            elif z3.is_as_array(expr):
                if model is None:
                    raise NotImplementedError("As-array expressions cannot be" \
                                              " handled as they are not " \
                                              "self-contained")
                else:
                    interp_decl = z3.get_as_array_func(expr)
                    interp = model[interp_decl]
                    default = self.back(interp.else_value(), model=model)
                    assign = {}
                    for i in xrange(interp.num_entries()):
                        e = interp.entry(i)
                        assert e.num_args() == 1
                        idx = self.back(e.arg_value(0), model=model)
                        val = self.back(e.value(), model=model)
                        assign[idx] = val
                    arr_type = self._z3_to_type(expr.sort())
                    return self.mgr.Array(arr_type.index_type, default, assign)
            elif z3.is_algebraic_value(expr):
                # Algebraic value
                return self.mgr._Algebraic(Numeral(expr))
            else:
                # it must be a symbol
                try:
                    return self.mgr.get_symbol(str(expr))
                except UndefinedSymbolError:
                    import warnings
                    symb_type = self._z3_to_type(expr.sort())
                    warnings.warn("Defining new symbol: %s" % str(expr))
                    return self.mgr.FreshSymbol(symb_type, template="__z3_%d")
        elif z3.is_function(expr):
            # This needs to be after we try to convert regular Symbols
            fsymbol = self.mgr.get_symbol(expr.decl().name())
            return self.mgr.Function(fsymbol, args)

        # If we reach this point, we did not manage to translate the expression
        raise ConvertExpressionError(message=("Unsupported expression: %s" %
                                              (str(expr))),
                                     expression=expr)
Esempio n. 20
0
File: z3.py Progetto: shadown/pysmt
    def back(self, expr):
        assert z3.is_expr(expr)

        if askey(expr) in self.backconversion:
            return self.backconversion[askey(expr)]

        if z3.is_quantifier(expr):
            raise NotImplementedError(
                "Quantified back conversion is currently not supported")

        args = [self.back(x) for x in expr.children()]
        res = None
        if z3.is_and(expr):
            res = self.mgr.And(args)

        elif z3.is_or(expr):
            res = self.mgr.Or(args)

        elif z3.is_add(expr):
            res = self.mgr.Plus(args)

        elif z3.is_div(expr):
            res = self.mgr.Div(args[0], args[1])

        elif z3.is_eq(expr):
            if self._get_type(args[0]) == types.BOOL:
                res = self.mgr.Iff(args[0], args[1])
            else:
                res = self.mgr.Equals(args[0], args[1])

        elif z3.is_false(expr):
            res = self.mgr.FALSE()

        elif z3.is_true(expr):
            res = self.mgr.TRUE()

        elif z3.is_gt(expr):
            res = self.mgr.GT(args[0], args[1])

        elif z3.is_ge(expr):
            res = self.mgr.GE(args[0], args[1])

        elif z3.is_lt(expr):
            res = self.mgr.LT(args[0], args[1])

        elif z3.is_le(expr):
            res = self.mgr.LE(args[0], args[1])

        elif z3.is_mul(expr):
            res = self.mgr.Times(args[0], args[1])

        elif z3.is_sub(expr):
            res = self.mgr.Minus(args[0], args[1])

        elif z3.is_not(expr):
            res = self.mgr.Not(args[0])

        elif z3.is_quantifier(expr):
            if expr.is_forall():
                pass
            else:
                pass
            raise NotImplementedError

        elif z3.is_const(expr):
            if z3.is_rational_value(expr):
                n = expr.numerator_as_long()
                d = expr.denominator_as_long()
                f = Fraction(n, d)
                res = self.mgr.Real(f)
            elif z3.is_int_value(expr):
                n = expr.as_long()
                res = self.mgr.Int(n)
            else:
                # it must be a symbol
                res = self.mgr.get_symbol(str(expr))

        elif z3.is_ite(expr):
            res = self.mgr.Ite(args[0], args[1], args[2])

        else:
            raise TypeError("Unsupported expression:", expr)

        if res is None:
            raise TypeError("Unsupported expression:", expr)

        self.backconversion[askey(expr)] = res

        return res
Esempio n. 21
0
File: z3.py Progetto: 0Chuzz/pysmt
    def _back_single_term(self, expr, args, model=None):
        assert z3.is_expr(expr)

        if z3.is_quantifier(expr):
            raise NotImplementedError(
                "Quantified back conversion is currently not supported")

        res = None
        if z3.is_and(expr):
            res = self.mgr.And(args)
        elif z3.is_or(expr):
            res = self.mgr.Or(args)
        elif z3.is_add(expr):
            res = self.mgr.Plus(args)
        elif z3.is_div(expr):
            res = self.mgr.Div(args[0], args[1])
        elif z3.is_eq(expr):
            if self._get_type(args[0]).is_bool_type():
                res = self.mgr.Iff(args[0], args[1])
            else:
                res = self.mgr.Equals(args[0], args[1])
        elif z3.is_iff(expr):
            res = self.mgr.Iff(args[0], args[1])
        elif z3.is_xor(expr):
            res = self.mgr.Xor(args[0], args[1])
        elif z3.is_false(expr):
            res = self.mgr.FALSE()
        elif z3.is_true(expr):
            res = self.mgr.TRUE()
        elif z3.is_gt(expr):
            res = self.mgr.GT(args[0], args[1])
        elif z3.is_ge(expr):
            res = self.mgr.GE(args[0], args[1])
        elif z3.is_lt(expr):
            res = self.mgr.LT(args[0], args[1])
        elif z3.is_le(expr):
            res = self.mgr.LE(args[0], args[1])
        elif z3.is_mul(expr):
            res = self.mgr.Times(args[0], args[1])
        elif z3.is_uminus(expr):
            tp = self._get_type(args[0])
            if tp.is_real_type():
                minus_one = self.mgr.Real(-1)
            else:
                assert tp.is_int_type()
                minus_one = self.mgr.Int(-1)
            res = self.mgr.Times(args[0], minus_one)
        elif z3.is_sub(expr):
            res = self.mgr.Minus(args[0], args[1])
        elif z3.is_not(expr):
            res = self.mgr.Not(args[0])
        elif z3.is_implies(expr):
            res = self.mgr.Implies(args[0], args[1])
        elif z3.is_quantifier(expr):
            raise NotImplementedError
        elif z3.is_const(expr):
            if z3.is_rational_value(expr):
                n = expr.numerator_as_long()
                d = expr.denominator_as_long()
                f = Fraction(n, d)
                res = self.mgr.Real(f)
            elif z3.is_int_value(expr):
                n = expr.as_long()
                res = self.mgr.Int(n)
            elif z3.is_bv_value(expr):
                n = expr.as_long()
                w = expr.size()
                res = self.mgr.BV(n, w)
            elif z3.is_as_array(expr):
                if model is None:
                    raise NotImplementedError("As-array expressions cannot be" \
                                              " handled as they are not " \
                                              "self-contained")
                else:
                    interp_decl = z3.get_as_array_func(expr)
                    interp = model[interp_decl]
                    default = self.back(interp.else_value(), model=model)
                    assign = {}
                    for i in xrange(interp.num_entries()):
                        e = interp.entry(i)
                        assert e.num_args() == 1
                        idx = self.back(e.arg_value(0), model=model)
                        val = self.back(e.value(), model=model)
                        assign[idx] = val
                    arr_type = self._z3_to_type(expr.sort())
                    res = self.mgr.Array(arr_type.index_type, default, assign)
            elif z3.is_algebraic_value(expr):
                # Algebraic value
                return self.mgr._Algebraic(Numeral(expr))
            else:
                # it must be a symbol
                res = self.mgr.get_symbol(str(expr))
        elif z3.is_ite(expr):
            res = self.mgr.Ite(args[0], args[1], args[2])
        elif z3.is_function(expr):
            res = self.mgr.Function(self.mgr.get_symbol(expr.decl().name()), args)
        elif z3.is_to_real(expr):
            res = self.mgr.ToReal(args[0])
        elif z3.is_bv_and(expr):
            res = self.mgr.BVAnd(args[0], args[1])
        elif z3.is_bv_or(expr):
            res = self.mgr.BVOr(args[0], args[1])
        elif z3.is_bv_xor(expr):
            res = self.mgr.BVXor(args[0], args[1])
        elif z3.is_bv_not(expr):
            res = self.mgr.BVNot(args[0])
        elif z3.is_bv_neg(expr):
            res = self.mgr.BVNeg(args[0])
        elif z3.is_bv_concat(expr):
            res = self.mgr.BVConcat(args[0], args[1])
        elif z3.is_bv_ult(expr):
            res = self.mgr.BVULT(args[0], args[1])
        elif z3.is_bv_uleq(expr):
            res = self.mgr.BVULE(args[0], args[1])
        elif z3.is_bv_slt(expr):
            res = self.mgr.BVSLT(args[0], args[1])
        elif z3.is_bv_sleq(expr):
            res = self.mgr.BVSLE(args[0], args[1])
        elif z3.is_bv_ugt(expr):
            res = self.mgr.BVUGT(args[0], args[1])
        elif z3.is_bv_ugeq(expr):
            res = self.mgr.BVUGE(args[0], args[1])
        elif z3.is_bv_sgt(expr):
            res = self.mgr.BVSGT(args[0], args[1])
        elif z3.is_bv_sgeq(expr):
            res = self.mgr.BVSGE(args[0], args[1])
        elif z3.is_bv_extract(expr):
            end = z3.get_payload(expr, 0)
            start = z3.get_payload(expr, 1)
            res = self.mgr.BVExtract(args[0], start, end)
        elif z3.is_bv_add(expr):
            res = self.mgr.BVAdd(args[0], args[1])
        elif z3.is_bv_mul(expr):
            res = self.mgr.BVMul(args[0], args[1])
        elif z3.is_bv_udiv(expr):
            res = self.mgr.BVUDiv(args[0], args[1])
        elif z3.is_bv_sdiv(expr):
            res = self.mgr.BVSDiv(args[0], args[1])
        elif z3.is_bv_urem(expr):
            res = self.mgr.BVURem(args[0], args[1])
        elif z3.is_bv_srem(expr):
            res = self.mgr.BVSRem(args[0], args[1])
        elif z3.is_bv_lshl(expr):
            res = self.mgr.BVLShl(args[0], args[1])
        elif z3.is_bv_lshr(expr):
            res = self.mgr.BVLShr(args[0], args[1])
        elif z3.is_bv_ashr(expr):
            res = self.mgr.BVAShr(args[0], args[1])
        elif z3.is_bv_sub(expr):
            res = self.mgr.BVSub(args[0], args[1])
        elif z3.is_bv_rol(expr):
            amount = z3.get_payload(expr, 0)
            res = self.mgr.BVRol(args[0], amount)
        elif z3.is_bv_ror(expr):
            amount = z3.get_payload(expr, 0)
            res = self.mgr.BVRor(args[0], amount)
        elif z3.is_bv_ext_rol(expr):
            amount = args[1].bv_unsigned_value()
            res = self.mgr.BVRol(args[0], amount)
        elif z3.is_bv_ext_ror(expr):
            amount = args[1].bv_unsigned_value()
            res = self.mgr.BVRor(args[0], amount)
        elif z3.is_bv_sext(expr):
            amount = z3.get_payload(expr, 0)
            res = self.mgr.BVSExt(args[0], amount)
        elif z3.is_bv_zext(expr):
            amount = z3.get_payload(expr, 0)
            res = self.mgr.BVZExt(args[0], amount)
        elif z3.is_array_select(expr):
            res = self.mgr.Select(args[0], args[1])
        elif z3.is_array_store(expr):
            res = self.mgr.Store(args[0], args[1], args[2])
        elif z3.is_const_array(expr):
            arr_ty = self._z3_to_type(expr.sort())
            k = args[0]
            res = self.mgr.Array(arr_ty.index_type, k)
        elif z3.is_power(expr):
            res = self.mgr.Pow(args[0], args[1])
        if res is None:
            raise ConvertExpressionError(message=("Unsupported expression: %s" %
                                                   str(expr)),
                                         expression=expr)
        return res
Esempio n. 22
0
 def _state_id_to_prism_variable_to_value(self, state_id):
     """
         Returns a dict from prism variables to z3 values representing the valuation of state_id.
     :param state_id:
     :return:
     """
     state_valuation = self.state_graph.get_state_valuation(state_id)
     return {input_variable.get_prism_variable(): z3.is_true(z3_value) for input_variable, z3_value in state_valuation.items() if not (z3.is_int_value(z3_value) or z3.is_rational_value(z3_value))}, {input_variable.get_prism_variable() : z3_value.as_long() for input_variable, z3_value in state_valuation.items() if (z3.is_int_value(z3_value) or z3.is_rational_value(z3_value))}
Esempio n. 23
0
File: z3.py Progetto: mpreiner/pysmt
    def _back_single_term(self, expr, args, model=None):
        assert z3.is_expr(expr)

        if z3.is_quantifier(expr):
            raise NotImplementedError(
                "Quantified back conversion is currently not supported")

        assert not len(args) > 2 or \
            (z3.is_and(expr) or z3.is_or(expr) or
             z3.is_add(expr) or z3.is_mul(expr) or
             (len(args) == 3 and (z3.is_ite(expr) or z3.is_array_store(expr)))),\
            "Unexpected n-ary term: %s" % expr

        res = None
        try:
            decl = z3.Z3_get_app_decl(expr.ctx_ref(), expr.as_ast())
            kind = z3.Z3_get_decl_kind(expr.ctx.ref(), decl)
            # Try to get the back-conversion function for the given Kind
            fun = self._back_fun[kind]
            return fun(args, expr)
        except KeyError as ex:
            pass

        if z3.is_const(expr):
            # Const or Symbol
            if z3.is_rational_value(expr):
                n = expr.numerator_as_long()
                d = expr.denominator_as_long()
                f = Fraction(n, d)
                return self.mgr.Real(f)
            elif z3.is_int_value(expr):
                n = expr.as_long()
                return self.mgr.Int(n)
            elif z3.is_bv_value(expr):
                n = expr.as_long()
                w = expr.size()
                return self.mgr.BV(n, w)
            elif z3.is_as_array(expr):
                if model is None:
                    raise NotImplementedError("As-array expressions cannot be" \
                                              " handled as they are not " \
                                              "self-contained")
                else:
                    interp_decl = z3.get_as_array_func(expr)
                    interp = model[interp_decl]
                    default = self.back(interp.else_value(), model=model)
                    assign = {}
                    for i in xrange(interp.num_entries()):
                        e = interp.entry(i)
                        assert e.num_args() == 1
                        idx = self.back(e.arg_value(0), model=model)
                        val = self.back(e.value(), model=model)
                        assign[idx] = val
                    arr_type = self._z3_to_type(expr.sort())
                    return self.mgr.Array(arr_type.index_type, default, assign)
            elif z3.is_algebraic_value(expr):
                # Algebraic value
                return self.mgr._Algebraic(Numeral(expr))
            else:
                # it must be a symbol
                try:
                    return self.mgr.get_symbol(str(expr))
                except UndefinedSymbolError:
                    import warnings
                    symb_type = self._z3_to_type(expr.sort())
                    warnings.warn("Defining new symbol: %s" % str(expr))
                    return self.mgr.FreshSymbol(symb_type,
                                                template="__z3_%d")
        elif z3.is_function(expr):
            # This needs to be after we try to convert regular Symbols
            fsymbol = self.mgr.get_symbol(expr.decl().name())
            return self.mgr.Function(fsymbol, args)

        # If we reach this point, we did not manage to translate the expression
        raise ConvertExpressionError(message=("Unsupported expression: %s" %
                                              (str(expr))),
                                     expression=expr)
Esempio n. 24
0
    def _back_single_term(self, expr, args):
        assert z3.is_expr(expr)

        if z3.is_quantifier(expr):
            raise NotImplementedError(
                "Quantified back conversion is currently not supported")

        res = None
        if z3.is_and(expr):
            res = self.mgr.And(args)
        elif z3.is_or(expr):
            res = self.mgr.Or(args)
        elif z3.is_add(expr):
            res = self.mgr.Plus(args)
        elif z3.is_div(expr):
            res = self.mgr.Div(args[0], args[1])
        elif z3.is_eq(expr):
            if self._get_type(args[0]).is_bool_type():
                res = self.mgr.Iff(args[0], args[1])
            else:
                res = self.mgr.Equals(args[0], args[1])
        elif z3.is_iff(expr):
            res = self.mgr.Iff(args[0], args[1])
        elif z3.is_xor(expr):
            res = self.mgr.Xor(args[0], args[1])
        elif z3.is_false(expr):
            res = self.mgr.FALSE()
        elif z3.is_true(expr):
            res = self.mgr.TRUE()
        elif z3.is_gt(expr):
            res = self.mgr.GT(args[0], args[1])
        elif z3.is_ge(expr):
            res = self.mgr.GE(args[0], args[1])
        elif z3.is_lt(expr):
            res = self.mgr.LT(args[0], args[1])
        elif z3.is_le(expr):
            res = self.mgr.LE(args[0], args[1])
        elif z3.is_mul(expr):
            res = self.mgr.Times(args[0], args[1])
        elif z3.is_uminus(expr):
            tp = self._get_type(args[0])
            if tp.is_real_type():
                minus_one = self.mgr.Real(-1)
            else:
                assert tp.is_int_type()
                minus_one = self.mgr.Int(-1)
            res = self.mgr.Times(args[0], minus_one)
        elif z3.is_sub(expr):
            res = self.mgr.Minus(args[0], args[1])
        elif z3.is_not(expr):
            res = self.mgr.Not(args[0])
        elif z3.is_implies(expr):
            res = self.mgr.Implies(args[0], args[1])
        elif z3.is_quantifier(expr):
            raise NotImplementedError
        elif z3.is_const(expr):
            if z3.is_rational_value(expr):
                n = expr.numerator_as_long()
                d = expr.denominator_as_long()
                f = Fraction(n, d)
                res = self.mgr.Real(f)
            elif z3.is_int_value(expr):
                n = expr.as_long()
                res = self.mgr.Int(n)
            elif z3.is_bv_value(expr):
                n = expr.as_long()
                w = expr.size()
                res = self.mgr.BV(n, w)
            else:
                # it must be a symbol
                res = self.mgr.get_symbol(str(expr))
        elif z3.is_ite(expr):
            res = self.mgr.Ite(args[0], args[1], args[2])
        elif z3.is_function(expr):
            res = self.mgr.Function(self.mgr.get_symbol(expr.decl().name()), args)
        elif z3.is_to_real(expr):
            res = self.mgr.ToReal(args[0])
        elif z3.is_bv_and(expr):
            res = self.mgr.BVAnd(args[0], args[1])
        elif z3.is_bv_or(expr):
            res = self.mgr.BVOr(args[0], args[1])
        elif z3.is_bv_xor(expr):
            res = self.mgr.BVXor(args[0], args[1])
        elif z3.is_bv_not(expr):
            res = self.mgr.BVNot(args[0])
        elif z3.is_bv_neg(expr):
            res = self.mgr.BVNeg(args[0])
        elif z3.is_bv_concat(expr):
            res = self.mgr.BVConcat(args[0], args[1])
        elif z3.is_bv_ult(expr):
            res = self.mgr.BVULT(args[0], args[1])
        elif z3.is_bv_uleq(expr):
            res = self.mgr.BVULE(args[0], args[1])
        elif z3.is_bv_slt(expr):
            res = self.mgr.BVSLT(args[0], args[1])
        elif z3.is_bv_sleq(expr):
            res = self.mgr.BVSLE(args[0], args[1])
        elif z3.is_bv_ugt(expr):
            res = self.mgr.BVUGT(args[0], args[1])
        elif z3.is_bv_ugeq(expr):
            res = self.mgr.BVUGE(args[0], args[1])
        elif z3.is_bv_sgt(expr):
            res = self.mgr.BVSGT(args[0], args[1])
        elif z3.is_bv_sgeq(expr):
            res = self.mgr.BVSGE(args[0], args[1])
        elif z3.is_bv_extract(expr):
            end = z3.get_payload(expr, 0)
            start = z3.get_payload(expr, 1)
            res = self.mgr.BVExtract(args[0], start, end)
        elif z3.is_bv_add(expr):
            res = self.mgr.BVAdd(args[0], args[1])
        elif z3.is_bv_mul(expr):
            res = self.mgr.BVMul(args[0], args[1])
        elif z3.is_bv_udiv(expr):
            res = self.mgr.BVUDiv(args[0], args[1])
        elif z3.is_bv_sdiv(expr):
            res = self.mgr.BVSDiv(args[0], args[1])
        elif z3.is_bv_urem(expr):
            res = self.mgr.BVURem(args[0], args[1])
        elif z3.is_bv_srem(expr):
            res = self.mgr.BVSRem(args[0], args[1])
        elif z3.is_bv_lshl(expr):
            res = self.mgr.BVLShl(args[0], args[1])
        elif z3.is_bv_lshr(expr):
            res = self.mgr.BVLShr(args[0], args[1])
        elif z3.is_bv_ashr(expr):
            res = self.mgr.BVAShr(args[0], args[1])
        elif z3.is_bv_sub(expr):
            res = self.mgr.BVSub(args[0], args[1])
        elif z3.is_bv_rol(expr):
            amount = z3.get_payload(expr, 0)
            res = self.mgr.BVRol(args[0], amount)
        elif z3.is_bv_ror(expr):
            amount = z3.get_payload(expr, 0)
            res = self.mgr.BVRor(args[0], amount)
        elif z3.is_bv_ext_rol(expr):
            amount = args[1].bv_unsigned_value()
            res = self.mgr.BVRol(args[0], amount)
        elif z3.is_bv_ext_ror(expr):
            amount = args[1].bv_unsigned_value()
            res = self.mgr.BVRor(args[0], amount)
        elif z3.is_bv_sext(expr):
            amount = z3.get_payload(expr, 0)
            res = self.mgr.BVSExt(args[0], amount)
        elif z3.is_bv_zext(expr):
            amount = z3.get_payload(expr, 0)
            res = self.mgr.BVZExt(args[0], amount)

        if res is None:
            raise ConvertExpressionError(message=("Unsupported expression: %s" %
                                                   str(expr)),
                                         expression=expr)
        return res