Skip to content

wannaphong/dplython

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dplython: Dplyr for Python

Welcome to Dplython: Dplyr for Python.

Dplyr is a library for the language R designed to make data analysis fast and easy. The philosophy of Dplyr is to constrain data manipulation to a few simple functions that correspond to the most common tasks. This maps thinking closer to the process of writing code, helping you move closer to analyze data at the "speed of thought".

The goal of this project is to implement the functionality of the R package Dplyr on top of Python's pandas.

This is version 0.0.1. It's experimental and subject to change.

Installation

To install, use this command or clone the repository.

pip install git+https://github.com/dodger487/dplython.git

Example usage

from dplython import *

# The example `diamonds` DataFrame is included in this package, but you can 
# cast a DataFrame to a DplyFrame in this simple way:
# diamonds = DplyFrame(pandas.read_csv('./diamonds.csv'))

# Select specific columns of the DataFrame using select, and 
#   get the first few using head
diamonds >> select(X.carat, X.cut, X.price) >> head(5)
"""
Out:
   carat        cut  price
0   0.23      Ideal    326
1   0.21    Premium    326
2   0.23       Good    327
3   0.29    Premium    334
4   0.31       Good    335
"""

# Filter out rows using dfilter
diamonds >> dfilter(X.carat > 4) >> select(X.carat, X.cut, X.depth, X.price)
"""
Out:
       carat      cut  depth  price
25998   4.01  Premium   61.0  15223
25999   4.01  Premium   62.5  15223
27130   4.13     Fair   64.8  17329
27415   5.01     Fair   65.5  18018
27630   4.50     Fair   65.8  18531
"""

# Sample with sample_n or sample_frac, sort with arrange
(diamonds >> 
  sample_n(10) >> 
  arrange(X.carat) >> 
  select(X.carat, X.cut, X.depth, X.price))
"""
Out:
       carat        cut  depth  price
37277   0.23  Very Good   61.5    484
17728   0.30  Very Good   58.8    614
33255   0.32      Ideal   61.1    825
38911   0.33      Ideal   61.6   1052
31491   0.34    Premium   60.3    765
37227   0.40    Premium   61.9    975
2578    0.81    Premium   60.8   3213
15888   1.01       Fair   64.6   6353
26594   1.74      Ideal   62.9  16316
25727   2.38    Premium   62.4  14648
"""

# You can: 
#   add columns with mutate (referencing other columns!)
#   group rows into dplyr-style groups with group_by
#   collapse rows into single rows using sumarize
(diamonds >> 
  mutate(carat_bin=X.carat.round()) >> 
  group_by(X.cut, X.carat_bin) >> 
  summarize(avg_price=X.price.mean()))
"""
Out:
       avg_price  carat_bin        cut
0     863.908535          0      Ideal
1    4213.864948          1      Ideal
2   12838.984078          2      Ideal
...
27  13466.823529          3       Fair
28  15842.666667          4       Fair
29  18018.000000          5       Fair
"""

# If you have column names that don't work as attributes, you can use an 
# alternate "get item" notation with X.
diamonds["column w/ spaces"] = range(len(diamonds))
diamonds >> select(X["column w/ spaces"]) >> head()
"""
Out:
   column w/ spaces
0                 0
1                 1
2                 2
3                 3
4                 4
5                 5
6                 6
7                 7
8                 8
9                 9
"""

# It's possible to pass the entire dataframe using X._ 
diamonds >> sample_n(6) >> select(X.carat, X.price) >> X._.T
"""
Out:
         18966    19729   9445   49951    3087    33128
carat     1.16     1.52     0.9    0.3     0.74    0.31
price  7803.00  8299.00  4593.0  540.0  3315.00  816.00
"""

# To pass the DataFrame or columns into functions, apply @DelayFunction
@DelayFunction
def PairwiseGreater(series1, series2):
  index = series1.index
  newSeries = pandas.Series([max(s1, s2) for s1, s2 in zip(series1, series2)])
  newSeries.index = index
  return newSeries

diamonds >> PairwiseGreater(X.x, X.y)


# Passing entire dataframe and plotting with ggplot
from ggplot import *
ggplot = DelayFunction(ggplot)  # Simple installation
diamonds = DplyFrame(pandas.read_csv('./diamonds.csv'))  # Masked in ggplot pkg
(diamonds >> ggplot(aes(x="carat", y="price", color="cut"), data=X._) + 
  geom_point() + facet_wrap("color"))

Ggplot example 1

(diamonds >>
  dfilter((X.clarity == "I1") | (X.clarity == "IF")) >> 
  ggplot(aes(x="carat", y="price", color="color"), X._) + 
    geom_point() + 
    facet_wrap("clarity"))

Ggplot example 2

# Matplotlib works as well!
import pylab as pl
pl.scatter = DelayFunction(pl.scatter)
diamonds >> sample_frac(0.1) >> pl.scatter(X.carat, X.price)

MPL example 2

This is very new and I'm matching changes. I wrote this for Python 2.7 because I'm a bad person. Python 3 version coming soon. Let me know if you'd like to see a feature or think there's a better way I can do something.

Other approaches

Development of dplython began before I knew pandas-ply existed. After I found it, I chose "X" as the manager to be consistent. Pandas-ply is a great approach and worth taking a look. The main contrasts between the two are that:

  • dplython uses dplyr-style groups, as opposed to the SQL-style groups of pandas and pandas-ply
  • dplython maps a little more directly onto dplyr, for example having mutate instead of an expanded select.
  • Use of operators to connect operations instead of method-chaining

About

dplyr for python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published

Languages

  • Python 100.0%