コード例 #1
0
ファイル: main.py プロジェクト: zoulily/credit
# bitformat for categoryData
preCategoryHeader, preCategoryData = bpModelDataPrcocessor.getPreProcessedFlattenCategoryData((categoryHeader, npCategoryData), mongoDataProcessor.getCategoryInfo())
np.savetxt('./Data/preCategoryData.csv',preCategoryData,header=','.join(preCategoryHeader).encode('utf-8'),delimiter=',', fmt='%d',comments='')

# PCA+KMeans for numericalData
PCAResultMap, transResultMap = bpModelDataPrcocessor.getAssociatedMapFromPCA((numericalHeader, zscoreNumericalData))
kmLists = bpModelDataPrcocessor.getKMeansListByCalculation((numericalHeader, zscoreNumericalData), (PCAResultMap, transResultMap), path='./Figures/')
bpModelDataPrcocessor.saveKMeansListToFile('./KMeansModel/', numericalHeader)
preNumericalHeader, preNumericalData = bpModelDataPrcocessor.getPreProcessedFlattenNumericalData((numericalHeader, zscoreNumericalData), dropTags=[])
np.savetxt('./Data/preNumericalData.csv',preNumericalData,header=','.join(preNumericalHeader).encode('utf-8'),delimiter=',', fmt='%d',comments='')

# ANN
bPModelTrainer = BPModelTrainer(
    flattenCategoryHeader=preCategoryHeader,
    flattenCategoryData=preCategoryData,
    flattenNumericalHeader=preNumericalHeader,
    flattenNumericalData=preNumericalData,
    flattenTargetHeader=targetHeader,
    flattenTargetData=targetData
)
# transport targetData to discrete value
bPModelTrainer.targetTransform()

# ANN train
bPModelTrainer.trainModel()
# validate
bPModelTrainer.validateModel()
# save
bPModelTrainer.saveModelToFile('Data/NNModel.xml')
コード例 #2
0
with open('Data/PreProcessedFlattenNumericalData.csv') as f:
    header = f.readline()
    preNumericalHeader = header.split(',')
preNumericalData = np.genfromtxt('Data/PreProcessedFlattenNumericalData.csv', delimiter=',', skip_header=1, dtype=np.int)

with open('Data/TargetData.csv') as f:
    header = f.readline()
    targetHeader = header.split(',')
targetData = np.genfromtxt('Data/TargetData.csv', delimiter=',', skip_header=1, dtype=np.int)


bPModelTrainer = BPModelTrainer(
    flattenCategoryHeader=preCategoryHeader,
    flattenCategoryData=preCategoryData,
    flattenNumericalHeader=preNumericalHeader,
    flattenNumericalData=preNumericalData,
    flattenTargetHeader=targetHeader,
    flattenTargetData=targetData
)

# Step14: transform the target data to needed one
bPModelTrainer.targetTransform()

#Step15: generate the result distribution accroding to the tags
distMap = bPModelTrainer.generateRiskDistributionByRiskTags()
with open('Data/ResultDistribution.txt', 'w') as f:
    outStr = ''
    for item in distMap.items():
        tagGroup, value = item
        outStr += tagGroup + '\n'
        for item in value.items():
コード例 #3
0
ファイル: main.py プロジェクト: zoulily/credit
    (numericalHeader, zscoreNumericalData))
kmLists = bpModelDataPrcocessor.getKMeansListByCalculation(
    (numericalHeader, zscoreNumericalData), (PCAResultMap, transResultMap),
    path='./Figures/')
bpModelDataPrcocessor.saveKMeansListToFile('./KMeansModel/', numericalHeader)
preNumericalHeader, preNumericalData = bpModelDataPrcocessor.getPreProcessedFlattenNumericalData(
    (numericalHeader, zscoreNumericalData), dropTags=[])
np.savetxt('./Data/preNumericalData.csv',
           preNumericalData,
           header=','.join(preNumericalHeader).encode('utf-8'),
           delimiter=',',
           fmt='%d',
           comments='')

# ANN
bPModelTrainer = BPModelTrainer(flattenCategoryHeader=preCategoryHeader,
                                flattenCategoryData=preCategoryData,
                                flattenNumericalHeader=preNumericalHeader,
                                flattenNumericalData=preNumericalData,
                                flattenTargetHeader=targetHeader,
                                flattenTargetData=targetData)
# transport targetData to discrete value
bPModelTrainer.targetTransform()

# ANN train
bPModelTrainer.trainModel()
# validate
bPModelTrainer.validateModel()
# save
bPModelTrainer.saveModelToFile('Data/NNModel.xml')