コード例 #1
0
    def intrho(self, EFn, EFp):
        assert (len(self.dopants) == 1), "Should have one dopant"
        #d=self.dopants.values()[0]
        #        if d["type"]=="donor":
        #            intrho_maj=\
        #                -q*kT*(self.Nc*int_fermi_dirac_one_half((mu-self.Ec)/kT)
        #                    +d["conc"]*fermi_dirac_zero(-(mu-self.Ec+d["E"]+np.log(2)*kT)/kT))
        #        elif d["type"]=="acceptor":
        #            intrho_maj=\
        #                -q*kT*(self.Nv*int_fermi_dirac_one_half((self.Ev-mu)/kT)
        #                    +d["conc"]*fermi_dirac_zero(-(self.Ev+d["E"]-mu+np.log(4)*kT)/kT))
        #print 'sup: ',intrho_maj[-1], self._intrho_ref, self.Nc*int_fermi_dirac_one_half((mu-self.Ec)/kT)[-1]

        #        intrho=intrho_maj-self._intrho_ref+self._minorrho*(mu-self.mu_bulk)

        eterm = -q * kT * self.Nc * int_fermi_dirac_one_half(
            (EFn - self.Ec) / kT)
        hterm = -q * kT * self.Nv * int_fermi_dirac_one_half(
            (self.Ev - EFp) / kT)
        if (len(self.dopants) != 1): return
        d = self.dopants.values()[0]
        if d["type"] == "donor":
            dterm = -q * kT * d["conc"] * fermi_dirac_zero(
                -(EFn - self.Ec + d["E"] + np.log(2) * kT) / kT)
        elif d["type"] == "acceptor":
            dterm = -q * kT * d["conc"] * fermi_dirac_zero(
                -(self.Ev + d["E"] - EFp + np.log(4) * kT) / kT)
        intrho = eterm + hterm + dterm - self.intrho_ref

        return intrho
コード例 #2
0
ファイル: Material.py プロジェクト: samueljamesbader/BTBT
    def _recomputeMuBulk(self):
        
        # If undoped, EBulk=0 (ie intrinsic)
        if not len(self.dopants.values()):
            self.mu_bulk=0
        else:
            # Find the net doping
            netDope=sum([
                v["conc"]*(-1 if v["type"]=="donor" else 1)
                    for v in self.dopants.values()])
            # Use the net doping with complete ionization to get a starting guess (E0) for EBulk
            if(not netDope): mu_0=0
            else: mu_0=np.sign(-netDope)*kT*np.log(abs(netDope)/self.ni)
                
            # Find EBulk to minimize the net charge in the material
            res=sciopt.minimize_scalar(lambda mu:abs(self.rho(mu,mu)),sorted([0,mu_0]),method='Golden')
            self.mu_bulk=res.x
        


            eterm=-q*kT*self.Nc*int_fermi_dirac_one_half((self.mu_bulk-self.Ec)/kT)
            hterm=-q*kT*self.Nv*int_fermi_dirac_one_half((self.Ev-self.mu_bulk)/kT)
            if(len(self.dopants)!=1): return
            d=self.dopants.values()[0]
            if d["type"]=="donor":
                dterm=-q*kT*d["conc"]*fermi_dirac_zero(-(self.mu_bulk-self.Ec+d["E"]+np.log(2)*kT)/kT)
            elif d["type"]=="acceptor":
                dterm=-q*kT*d["conc"]*fermi_dirac_zero(-(self.Ev+d["E"]-self.mu_bulk+np.log(4)*kT)/kT)
            self.intrho_ref=eterm+hterm+dterm
コード例 #3
0
    def _recomputeMuBulk(self):

        # If undoped, EBulk=0 (ie intrinsic)
        if not len(self.dopants.values()):
            self.mu_bulk = 0
        else:
            # Find the net doping
            netDope = sum([
                v["conc"] * (-1 if v["type"] == "donor" else 1)
                for v in self.dopants.values()
            ])
            # Use the net doping with complete ionization to get a starting guess (E0) for EBulk
            if (not netDope): mu_0 = 0
            else:
                mu_0 = np.sign(-netDope) * kT * np.log(abs(netDope) / self.ni)

            # Find EBulk to minimize the net charge in the material
            res = sciopt.minimize_scalar(lambda mu: abs(self.rho(mu, mu)),
                                         sorted([0, mu_0]),
                                         method='Golden')
            self.mu_bulk = res.x

            eterm = -q * kT * self.Nc * int_fermi_dirac_one_half(
                (self.mu_bulk - self.Ec) / kT)
            hterm = -q * kT * self.Nv * int_fermi_dirac_one_half(
                (self.Ev - self.mu_bulk) / kT)
            if (len(self.dopants) != 1): return
            d = self.dopants.values()[0]
            if d["type"] == "donor":
                dterm = -q * kT * d["conc"] * fermi_dirac_zero(
                    -(self.mu_bulk - self.Ec + d["E"] + np.log(2) * kT) / kT)
            elif d["type"] == "acceptor":
                dterm = -q * kT * d["conc"] * fermi_dirac_zero(
                    -(self.Ev + d["E"] - self.mu_bulk + np.log(4) * kT) / kT)
            self.intrho_ref = eterm + hterm + dterm
コード例 #4
0
ファイル: Material.py プロジェクト: samueljamesbader/BTBT
    def intrho(self,EFn,EFp):   
        assert(len(self.dopants)==1),"Should have one dopant"
        #d=self.dopants.values()[0]
#        if d["type"]=="donor":
#            intrho_maj=\
#                -q*kT*(self.Nc*int_fermi_dirac_one_half((mu-self.Ec)/kT)
#                    +d["conc"]*fermi_dirac_zero(-(mu-self.Ec+d["E"]+np.log(2)*kT)/kT))
#        elif d["type"]=="acceptor":
#            intrho_maj=\
#                -q*kT*(self.Nv*int_fermi_dirac_one_half((self.Ev-mu)/kT)
#                    +d["conc"]*fermi_dirac_zero(-(self.Ev+d["E"]-mu+np.log(4)*kT)/kT))
            #print 'sup: ',intrho_maj[-1], self._intrho_ref, self.Nc*int_fermi_dirac_one_half((mu-self.Ec)/kT)[-1]



#        intrho=intrho_maj-self._intrho_ref+self._minorrho*(mu-self.mu_bulk)

        eterm=-q*kT*self.Nc*int_fermi_dirac_one_half((EFn-self.Ec)/kT)
        hterm=-q*kT*self.Nv*int_fermi_dirac_one_half((self.Ev-EFp)/kT)
        if(len(self.dopants)!=1): return
        d=self.dopants.values()[0]
        if d["type"]=="donor":
            dterm=-q*kT*d["conc"]*fermi_dirac_zero(-(EFn-self.Ec+d["E"]+np.log(2)*kT)/kT)
        elif d["type"]=="acceptor":
            dterm=-q*kT*d["conc"]*fermi_dirac_zero(-(self.Ev+d["E"]-EFp+np.log(4)*kT)/kT)
        intrho=eterm+hterm+dterm - self.intrho_ref
        

        return intrho
#        if d["type"]=="acceptor":
#            self._intrho=\
#                q*(self.Nv*int_fermi_dirac_one_half((self.Ev-self.mu_bulk)/kT)
#                    -d["conc"]*fermi_dirac_zero(-(self.Ec-d["Ed"]-self.mu_bulk+log(2))/kT))
    
#if __name__ == "__main__":
#    
#    uno=Material("GaN",{"Mg":8e19})
#    print uno.mu_bulk
#    dos=Material("GaN",{"Si":2e19})
#    print dos.mu_bulk
#    print "phib: ",uno.mu_bulk-dos.mu_bulk
#    
#    print "N"
#    tmat=Material("GaN",{"Si":2e19})
#    #print tmat.Ec-tmat.mu_bulk
#    defi=np.linspace(0,1.5,1000000)
#    rhos=tmat.rho(tmat.mu_bulk-defi,tmat.mu_bulk-defi)
#    #print rhos[-1]/q
#    print (np.cumsum(rhos)*(defi[1]-defi[0]))[-1]/q
#    print -tmat.intrho(tmat.mu_bulk-defi,tmat.mu_bulk-defi)[-1]/q
#    
#    print "P"
#    tmat=Material("GaN",{"Mg":8e19})
#    print tmat.Ev-tmat.mu_bulk
#    defi=-np.linspace(0,1.5,1000000)
#    rhos=tmat.rho(tmat.mu_bulk-defi,tmat.mu_bulk-defi)
#    print rhos[-1]/q
#    print (np.cumsum(rhos)*(defi[1]-defi[0]))[-1]/q
#    print -tmat.intrho(tmat.mu_bulk-defi,tmat.mu_bulk-defi)[-1]/q    
#    
#    print "SPACING"
#    nds=tmat.Nd_ionized(tmat.mu_bulk-defi)
#    print (np.cumsum(nds)*(defi[1]-defi[0]))[-1]
#    print 2e19*kT*fermi_dirac_zero(-(tmat.mu_bulk-defi[-1]-tmat.Ec+.015+np.log(2)*kT)/kT)-2e19*kT*fermi_dirac_zero(-(tmat.mu_bulk-tmat.Ec+.015+np.log(2)*kT)/kT)
#    
#    print "MORE SPACING"
#    ns=tmat.n(tmat.mu_bulk-defi)
#    ns2=tmat.Nc*fermi_dirac_one_half((tmat.mu_bulk-defi-tmat.Ec)/kT)
#    print (np.cumsum(ns)*(defi[1]-defi[0]))[-1]
#    print tmat.Nc*kT*(int_fermi_dirac_one_half((tmat.mu_bulk-defi[-1]-tmat.Ec)/kT)-int_fermi_dirac_one_half((tmat.mu_bulk-tmat.Ec)/kT))
#