def __init__(self, adaptor=None, tokenNames=None, typeMap=None): if adaptor is None: self.adaptor = CommonTreeAdaptor() else: self.adaptor = adaptor if typeMap is None: self.tokenNameToTypeMap = computeTokenTypes(tokenNames) else: if tokenNames is not None: raise ValueError("Can't have both tokenNames and typeMap") self.tokenNameToTypeMap = typeMap
def testTreeVisitor(self): tree = "(PRINT (MULT ID[x] (VEC (MULT INT[9] INT[1]) INT[2] INT[3])))" adaptor = CommonTreeAdaptor() wiz = TreeWizard(adaptor, self.tokenNames) t = wiz.create(tree) found = [] def pre(t): found.append("pre({})".format(t)) return t def post(t): found.append("post({})".format(t)) return t visitor = TreeVisitor(adaptor) visitor.visit(t, pre, post) expecting = [ "pre(PRINT)", "pre(MULT)", "pre(x)", "post(x)", "pre(VEC)", "pre(MULT)", "pre(9)", "post(9)", "pre(1)", "post(1)", "post(MULT)", "pre(2)", "post(2)", "pre(3)", "post(3)", "post(VEC)", "post(MULT)", "post(PRINT)" ] self.assertEqual(expecting, found)
def testComplex(self): adaptor = CommonTreeAdaptor() wiz = TreeWizard(adaptor, self.tokens) t = wiz.create("(A (B (C D E) F) G)") it = TreeIterator(t) expecting = "A DOWN B DOWN C DOWN D E UP F UP G UP EOF" found = self.toString(it) self.assertEqual(expecting, found)
def testVerticalList(self): adaptor = CommonTreeAdaptor() wiz = TreeWizard(adaptor, self.tokens) t = wiz.create("(A (B C))") it = TreeIterator(t) expecting = "A DOWN B DOWN C UP UP EOF" found = self.toString(it) self.assertEqual(expecting, found)
def testFlatAB(self): adaptor = CommonTreeAdaptor() wiz = TreeWizard(adaptor, self.tokens) t = wiz.create("(nil A B)") it = TreeIterator(t) expecting = "nil DOWN A B UP EOF" found = self.toString(it) self.assertEqual(expecting, found)
def testNode(self): adaptor = CommonTreeAdaptor() wiz = TreeWizard(adaptor, self.tokens) t = wiz.create("A") it = TreeIterator(t) expecting = "A EOF" found = self.toString(it) self.assertEqual(expecting, found)
def testABC(self): adaptor = CommonTreeAdaptor() wiz = TreeWizard(adaptor, self.tokens) t = wiz.create("(A B C)") it = TreeIterator(t) expecting = "A DOWN B C UP EOF" found = self.toString(it) self.assertEquals(expecting, found)
def parse(self, filename): input = antlr3.FileStream (filename) lexer = MonitorLexer (input) tokens = antlr3.CommonTokenStream (lexer) parser = MonitorParser (tokens) adaptor = CommonTreeAdaptor() parser.setTreeAdaptor(adaptor) res = parser.description () return res
def setUp(self): """Setup text fixure We need a tree adaptor, use CommonTreeAdaptor. And a constant list of token names. """ self.adaptor = CommonTreeAdaptor() self.tokens = [ "", "", "", "", "", "A", "B", "C", "D", "E", "ID", "VAR" ]
def toDOT(self, tree, adaptor=None, treeST=_treeST, edgeST=_edgeST): if adaptor is None: adaptor = CommonTreeAdaptor() treeST = treeST.getInstanceOf() self.nodeNumber = 0 self.toDOTDefineNodes(tree, adaptor, treeST) self.nodeNumber = 0 self.toDOTDefineEdges(tree, adaptor, treeST, edgeST) return treeST
def testNoParent(self): tree = "(PRINT (MULT ID[x] (VEC INT[1] INT[2] INT[3])))" adaptor = CommonTreeAdaptor() wiz = TreeWizard(adaptor, self.tokenNames) t = wiz.create(tree) labels = {} valid = wiz.parse(t, "(%x:PRINT (MULT ID (VEC INT INT INT)))", labels) self.assertTrue(valid) node = labels.get("x") expecting = False found = TreeParser._inContext(adaptor, self.tokenNames, node, "VEC") self.assertEqual(expecting, found)
def testDotDot(self): tree = "(PRINT (MULT ID[x] (VEC (MULT INT[9] INT[1]) INT[2] INT[3])))" adaptor = CommonTreeAdaptor() wiz = TreeWizard(adaptor, self.tokenNames) t = wiz.create(tree) labels = {} valid = wiz.parse(t, "(PRINT (MULT ID (VEC (MULT INT %x:INT) INT INT)))", labels) self.assertTrue(valid) node = labels.get("x") self.assertRaisesRegex(ValueError, r'invalid syntax: \.\.', TreeParser._inContext, adaptor, self.tokenNames, node, "PRINT .. VEC")
def testWildcardAtStartIgnored(self): tree = "(nil (ASSIGN ID[x] INT[3]) (PRINT (MULT ID[x] (VEC INT[1] INT[2] INT[3]))))" adaptor = CommonTreeAdaptor() wiz = TreeWizard(adaptor, self.tokenNames) t = wiz.create(tree) labels = {} valid = wiz.parse( t, "(nil (ASSIGN ID[x] INT[3]) (PRINT (MULT ID (VEC INT %x:INT INT))))", labels) self.assertTrue(valid) node = labels.get("x") expecting = True found = TreeParser._inContext(adaptor, self.tokenNames, node, "...VEC") self.assertEqual(expecting, found)
def testDeepAndFindRoot(self): tree = "(PRINT (MULT ID[x] (VEC (MULT INT[9] INT[1]) INT[2] INT[3])))" adaptor = CommonTreeAdaptor() wiz = TreeWizard(adaptor, self.tokenNames) t = wiz.create(tree) labels = {} valid = wiz.parse(t, "(PRINT (MULT ID (VEC (MULT INT %x:INT) INT INT)))", labels) self.assertTrue(valid) node = labels.get("x") expecting = True found = TreeParser._inContext(adaptor, self.tokenNames, node, "PRINT ...") self.assertEqual(expecting, found)
def testMismatch(self): tree = "(PRINT (MULT ID[x] (VEC (MULT INT[9] INT[1]) INT[2] INT[3])))" adaptor = CommonTreeAdaptor() wiz = TreeWizard(adaptor, self.tokenNames) t = wiz.create(tree) labels = {} valid = wiz.parse(t, "(PRINT (MULT ID (VEC (MULT INT %x:INT) INT INT)))", labels) self.assertTrue(valid) node = labels.get("x") expecting = False ## missing MULT found = TreeParser._inContext(adaptor, self.tokenNames, node, "PRINT VEC MULT") self.assertEquals(expecting, found)
def testDotDot(self): tree = "(PRINT (MULT ID[x] (VEC (MULT INT[9] INT[1]) INT[2] INT[3])))" adaptor = CommonTreeAdaptor() wiz = TreeWizard(adaptor, self.tokenNames) t = wiz.create(tree) labels = {} valid = wiz.parse(t, "(PRINT (MULT ID (VEC (MULT INT %x:INT) INT INT)))", labels) self.assertTrue(valid) node = labels.get("x") try: TreeParser._inContext(adaptor, self.tokenNames, node, "PRINT .. VEC") self.fail() except ValueError, exc: expecting = "invalid syntax: .." found = str(exc) self.assertEquals(expecting, found)
class TreeWizard(object): """ Build and navigate trees with this object. Must know about the names of tokens so you have to pass in a map or array of token names (from which this class can build the map). I.e., Token DECL means nothing unless the class can translate it to a token type. In order to create nodes and navigate, this class needs a TreeAdaptor. This class can build a token type -> node index for repeated use or for iterating over the various nodes with a particular type. This class works in conjunction with the TreeAdaptor rather than moving all this functionality into the adaptor. An adaptor helps build and navigate trees using methods. This class helps you do it with string patterns like "(A B C)". You can create a tree from that pattern or match subtrees against it. """ def __init__(self, adaptor=None, tokenNames=None, typeMap=None): if adaptor is None: self.adaptor = CommonTreeAdaptor() else: self.adaptor = adaptor if typeMap is None: self.tokenNameToTypeMap = computeTokenTypes(tokenNames) else: if tokenNames is not None: raise ValueError("Can't have both tokenNames and typeMap") self.tokenNameToTypeMap = typeMap def getTokenType(self, tokenName): """Using the map of token names to token types, return the type.""" try: return self.tokenNameToTypeMap[tokenName] except KeyError: return INVALID_TOKEN_TYPE def create(self, pattern): """ Create a tree or node from the indicated tree pattern that closely follows ANTLR tree grammar tree element syntax: (root child1 ... child2). You can also just pass in a node: ID Any node can have a text argument: ID[foo] (notice there are no quotes around foo--it's clear it's a string). nil is a special name meaning "give me a nil node". Useful for making lists: (nil A B C) is a list of A B C. """ tokenizer = TreePatternLexer(pattern) parser = TreePatternParser(tokenizer, self, self.adaptor) return parser.pattern() def index(self, tree): """Walk the entire tree and make a node name to nodes mapping. For now, use recursion but later nonrecursive version may be more efficient. Returns a dict int -> list where the list is of your AST node type. The int is the token type of the node. """ m = {} self._index(tree, m) return m def _index(self, t, m): """Do the work for index""" if t is None: return ttype = self.adaptor.getType(t) elements = m.get(ttype) if elements is None: m[ttype] = elements = [] elements.append(t) for i in range(self.adaptor.getChildCount(t)): child = self.adaptor.getChild(t, i) self._index(child, m) def find(self, tree, what): """Return a list of matching token. what may either be an integer specifzing the token type to find or a string with a pattern that must be matched. """ if isinstance(what, (int, long)): return self._findTokenType(tree, what) elif isinstance(what, basestring): return self._findPattern(tree, what) else: raise TypeError("'what' must be string or integer") def _findTokenType(self, t, ttype): """Return a List of tree nodes with token type ttype""" nodes = [] def visitor(tree, parent, childIndex, labels): nodes.append(tree) self.visit(t, ttype, visitor) return nodes def _findPattern(self, t, pattern): """Return a List of subtrees matching pattern.""" subtrees = [] # Create a TreePattern from the pattern tokenizer = TreePatternLexer(pattern) parser = TreePatternParser(tokenizer, self, TreePatternTreeAdaptor()) tpattern = parser.pattern() # don't allow invalid patterns if (tpattern is None or tpattern.isNil() or isinstance(tpattern, WildcardTreePattern)): return None rootTokenType = tpattern.getType() def visitor(tree, parent, childIndex, label): if self._parse(tree, tpattern, None): subtrees.append(tree) self.visit(t, rootTokenType, visitor) return subtrees def visit(self, tree, what, visitor): """Visit every node in tree matching what, invoking the visitor. If what is a string, it is parsed as a pattern and only matching subtrees will be visited. The implementation uses the root node of the pattern in combination with visit(t, ttype, visitor) so nil-rooted patterns are not allowed. Patterns with wildcard roots are also not allowed. If what is an integer, it is used as a token type and visit will match all nodes of that type (this is faster than the pattern match). The labels arg of the visitor action method is never set (it's None) since using a token type rather than a pattern doesn't let us set a label. """ if isinstance(what, (int, long)): self._visitType(tree, None, 0, what, visitor) elif isinstance(what, basestring): self._visitPattern(tree, what, visitor) else: raise TypeError("'what' must be string or integer") def _visitType(self, t, parent, childIndex, ttype, visitor): """Do the recursive work for visit""" if t is None: return if self.adaptor.getType(t) == ttype: visitor(t, parent, childIndex, None) for i in range(self.adaptor.getChildCount(t)): child = self.adaptor.getChild(t, i) self._visitType(child, t, i, ttype, visitor) def _visitPattern(self, tree, pattern, visitor): """ For all subtrees that match the pattern, execute the visit action. """ # Create a TreePattern from the pattern tokenizer = TreePatternLexer(pattern) parser = TreePatternParser(tokenizer, self, TreePatternTreeAdaptor()) tpattern = parser.pattern() # don't allow invalid patterns if (tpattern is None or tpattern.isNil() or isinstance(tpattern, WildcardTreePattern)): return rootTokenType = tpattern.getType() def rootvisitor(tree, parent, childIndex, labels): labels = {} if self._parse(tree, tpattern, labels): visitor(tree, parent, childIndex, labels) self.visit(tree, rootTokenType, rootvisitor) def parse(self, t, pattern, labels=None): """ Given a pattern like (ASSIGN %lhs:ID %rhs:.) with optional labels on the various nodes and '.' (dot) as the node/subtree wildcard, return true if the pattern matches and fill the labels Map with the labels pointing at the appropriate nodes. Return false if the pattern is malformed or the tree does not match. If a node specifies a text arg in pattern, then that must match for that node in t. """ tokenizer = TreePatternLexer(pattern) parser = TreePatternParser(tokenizer, self, TreePatternTreeAdaptor()) tpattern = parser.pattern() return self._parse(t, tpattern, labels) def _parse(self, t1, tpattern, labels): """ Do the work for parse. Check to see if the tpattern fits the structure and token types in t1. Check text if the pattern has text arguments on nodes. Fill labels map with pointers to nodes in tree matched against nodes in pattern with labels. """ # make sure both are non-null if t1 is None or tpattern is None: return False # check roots (wildcard matches anything) if not isinstance(tpattern, WildcardTreePattern): if self.adaptor.getType(t1) != tpattern.getType(): return False # if pattern has text, check node text if (tpattern.hasTextArg and self.adaptor.getText(t1) != tpattern.getText()): return False if tpattern.label is not None and labels is not None: # map label in pattern to node in t1 labels[tpattern.label] = t1 # check children n1 = self.adaptor.getChildCount(t1) n2 = tpattern.getChildCount() if n1 != n2: return False for i in range(n1): child1 = self.adaptor.getChild(t1, i) child2 = tpattern.getChild(i) if not self._parse(child1, child2, labels): return False return True def equals(self, t1, t2, adaptor=None): """ Compare t1 and t2; return true if token types/text, structure match exactly. The trees are examined in their entirety so that (A B) does not match (A B C) nor (A (B C)). """ if adaptor is None: adaptor = self.adaptor return self._equals(t1, t2, adaptor) def _equals(self, t1, t2, adaptor): # make sure both are non-null if t1 is None or t2 is None: return False # check roots if adaptor.getType(t1) != adaptor.getType(t2): return False if adaptor.getText(t1) != adaptor.getText(t2): return False # check children n1 = adaptor.getChildCount(t1) n2 = adaptor.getChildCount(t2) if n1 != n2: return False for i in range(n1): child1 = adaptor.getChild(t1, i) child2 = adaptor.getChild(t2, i) if not self._equals(child1, child2, adaptor): return False return True
def setUp(self): """Setup test fixure""" self.adaptor = CommonTreeAdaptor()
class TestCommonTree(unittest.TestCase): """Test case for the CommonTree class.""" def setUp(self): """Setup test fixure""" self.adaptor = CommonTreeAdaptor() def testSingleNode(self): t = CommonTree(CommonToken(101)) self.failUnless(t.parent is None) self.failUnlessEqual(-1, t.childIndex) def test4Nodes(self): # ^(101 ^(102 103) 104) r0 = CommonTree(CommonToken(101)) r0.addChild(CommonTree(CommonToken(102))) r0.getChild(0).addChild(CommonTree(CommonToken(103))) r0.addChild(CommonTree(CommonToken(104))) self.failUnless(r0.parent is None) self.failUnlessEqual(-1, r0.childIndex) def testList(self): # ^(nil 101 102 103) r0 = CommonTree(None) c0 = CommonTree(CommonToken(101)) r0.addChild(c0) c1 = CommonTree(CommonToken(102)) r0.addChild(c1) c2 = CommonTree(CommonToken(103)) r0.addChild(c2) self.failUnless(r0.parent is None) self.failUnlessEqual(-1, r0.childIndex) self.failUnlessEqual(r0, c0.parent) self.failUnlessEqual(0, c0.childIndex) self.failUnlessEqual(r0, c1.parent) self.failUnlessEqual(1, c1.childIndex) self.failUnlessEqual(r0, c2.parent) self.failUnlessEqual(2, c2.childIndex) def testList2(self): # Add child ^(nil 101 102 103) to root 5 # should pull 101 102 103 directly to become 5's child list root = CommonTree(CommonToken(5)) # child tree r0 = CommonTree(None) c0 = CommonTree(CommonToken(101)) r0.addChild(c0) c1 = CommonTree(CommonToken(102)) r0.addChild(c1) c2 = CommonTree(CommonToken(103)) r0.addChild(c2) root.addChild(r0) self.failUnless(root.parent is None) self.failUnlessEqual(-1, root.childIndex) # check children of root all point at root self.failUnlessEqual(root, c0.parent) self.failUnlessEqual(0, c0.childIndex) self.failUnlessEqual(root, c0.parent) self.failUnlessEqual(1, c1.childIndex) self.failUnlessEqual(root, c0.parent) self.failUnlessEqual(2, c2.childIndex) def testAddListToExistChildren(self): # Add child ^(nil 101 102 103) to root ^(5 6) # should add 101 102 103 to end of 5's child list root = CommonTree(CommonToken(5)) root.addChild(CommonTree(CommonToken(6))) # child tree r0 = CommonTree(None) c0 = CommonTree(CommonToken(101)) r0.addChild(c0) c1 = CommonTree(CommonToken(102)) r0.addChild(c1) c2 = CommonTree(CommonToken(103)) r0.addChild(c2) root.addChild(r0) self.failUnless(root.parent is None) self.failUnlessEqual(-1, root.childIndex) # check children of root all point at root self.failUnlessEqual(root, c0.parent) self.failUnlessEqual(1, c0.childIndex) self.failUnlessEqual(root, c0.parent) self.failUnlessEqual(2, c1.childIndex) self.failUnlessEqual(root, c0.parent) self.failUnlessEqual(3, c2.childIndex) def testDupTree(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) dup = self.adaptor.dupTree(r0) self.failUnless(dup.parent is None) self.failUnlessEqual(-1, dup.childIndex) dup.sanityCheckParentAndChildIndexes() def testBecomeRoot(self): # 5 becomes root of ^(nil 101 102 103) newRoot = CommonTree(CommonToken(5)) oldRoot = CommonTree(None) oldRoot.addChild(CommonTree(CommonToken(101))) oldRoot.addChild(CommonTree(CommonToken(102))) oldRoot.addChild(CommonTree(CommonToken(103))) self.adaptor.becomeRoot(newRoot, oldRoot) newRoot.sanityCheckParentAndChildIndexes() def testBecomeRoot2(self): # 5 becomes root of ^(101 102 103) newRoot = CommonTree(CommonToken(5)) oldRoot = CommonTree(CommonToken(101)) oldRoot.addChild(CommonTree(CommonToken(102))) oldRoot.addChild(CommonTree(CommonToken(103))) self.adaptor.becomeRoot(newRoot, oldRoot) newRoot.sanityCheckParentAndChildIndexes() def testBecomeRoot3(self): # ^(nil 5) becomes root of ^(nil 101 102 103) newRoot = CommonTree(None) newRoot.addChild(CommonTree(CommonToken(5))) oldRoot = CommonTree(None) oldRoot.addChild(CommonTree(CommonToken(101))) oldRoot.addChild(CommonTree(CommonToken(102))) oldRoot.addChild(CommonTree(CommonToken(103))) self.adaptor.becomeRoot(newRoot, oldRoot) newRoot.sanityCheckParentAndChildIndexes() def testBecomeRoot5(self): # ^(nil 5) becomes root of ^(101 102 103) newRoot = CommonTree(None) newRoot.addChild(CommonTree(CommonToken(5))) oldRoot = CommonTree(CommonToken(101)) oldRoot.addChild(CommonTree(CommonToken(102))) oldRoot.addChild(CommonTree(CommonToken(103))) self.adaptor.becomeRoot(newRoot, oldRoot) newRoot.sanityCheckParentAndChildIndexes() def testBecomeRoot6(self): # emulates construction of ^(5 6) root_0 = self.adaptor.nil() root_1 = self.adaptor.nil() root_1 = self.adaptor.becomeRoot(CommonTree(CommonToken(5)), root_1) self.adaptor.addChild(root_1, CommonTree(CommonToken(6))) self.adaptor.addChild(root_0, root_1) root_0.sanityCheckParentAndChildIndexes() # Test replaceChildren def testReplaceWithNoChildren(self): t = CommonTree(CommonToken(101)) newChild = CommonTree(CommonToken(5)) error = False try: t.replaceChildren(0, 0, newChild) except IndexError: error = True self.failUnless(error) def testReplaceWithOneChildren(self): # assume token type 99 and use text t = CommonTree(CommonToken(99, text="a")) c0 = CommonTree(CommonToken(99, text="b")) t.addChild(c0) newChild = CommonTree(CommonToken(99, text="c")) t.replaceChildren(0, 0, newChild) expecting = "(a c)" self.failUnlessEqual(expecting, t.toStringTree()) t.sanityCheckParentAndChildIndexes() def testReplaceInMiddle(self): t = CommonTree(CommonToken(99, text="a")) t.addChild(CommonTree(CommonToken(99, text="b"))) t.addChild(CommonTree(CommonToken(99, text="c"))) # index 1 t.addChild(CommonTree(CommonToken(99, text="d"))) newChild = CommonTree(CommonToken(99, text="x")) t.replaceChildren(1, 1, newChild) expecting = "(a b x d)" self.failUnlessEqual(expecting, t.toStringTree()) t.sanityCheckParentAndChildIndexes() def testReplaceAtLeft(self): t = CommonTree(CommonToken(99, text="a")) t.addChild(CommonTree(CommonToken(99, text="b"))) # index 0 t.addChild(CommonTree(CommonToken(99, text="c"))) t.addChild(CommonTree(CommonToken(99, text="d"))) newChild = CommonTree(CommonToken(99, text="x")) t.replaceChildren(0, 0, newChild) expecting = "(a x c d)" self.failUnlessEqual(expecting, t.toStringTree()) t.sanityCheckParentAndChildIndexes() def testReplaceAtRight(self): t = CommonTree(CommonToken(99, text="a")) t.addChild(CommonTree(CommonToken(99, text="b"))) t.addChild(CommonTree(CommonToken(99, text="c"))) t.addChild(CommonTree(CommonToken(99, text="d"))) # index 2 newChild = CommonTree(CommonToken(99, text="x")) t.replaceChildren(2, 2, newChild) expecting = "(a b c x)" self.failUnlessEqual(expecting, t.toStringTree()) t.sanityCheckParentAndChildIndexes() def testReplaceOneWithTwoAtLeft(self): t = CommonTree(CommonToken(99, text="a")) t.addChild(CommonTree(CommonToken(99, text="b"))) t.addChild(CommonTree(CommonToken(99, text="c"))) t.addChild(CommonTree(CommonToken(99, text="d"))) newChildren = self.adaptor.nil() newChildren.addChild(CommonTree(CommonToken(99, text="x"))) newChildren.addChild(CommonTree(CommonToken(99, text="y"))) t.replaceChildren(0, 0, newChildren) expecting = "(a x y c d)" self.failUnlessEqual(expecting, t.toStringTree()) t.sanityCheckParentAndChildIndexes() def testReplaceOneWithTwoAtRight(self): t = CommonTree(CommonToken(99, text="a")) t.addChild(CommonTree(CommonToken(99, text="b"))) t.addChild(CommonTree(CommonToken(99, text="c"))) t.addChild(CommonTree(CommonToken(99, text="d"))) newChildren = self.adaptor.nil() newChildren.addChild(CommonTree(CommonToken(99, text="x"))) newChildren.addChild(CommonTree(CommonToken(99, text="y"))) t.replaceChildren(2, 2, newChildren) expecting = "(a b c x y)" self.failUnlessEqual(expecting, t.toStringTree()) t.sanityCheckParentAndChildIndexes() def testReplaceOneWithTwoInMiddle(self): t = CommonTree(CommonToken(99, text="a")) t.addChild(CommonTree(CommonToken(99, text="b"))) t.addChild(CommonTree(CommonToken(99, text="c"))) t.addChild(CommonTree(CommonToken(99, text="d"))) newChildren = self.adaptor.nil() newChildren.addChild(CommonTree(CommonToken(99, text="x"))) newChildren.addChild(CommonTree(CommonToken(99, text="y"))) t.replaceChildren(1, 1, newChildren) expecting = "(a b x y d)" self.failUnlessEqual(expecting, t.toStringTree()) t.sanityCheckParentAndChildIndexes() def testReplaceTwoWithOneAtLeft(self): t = CommonTree(CommonToken(99, text="a")) t.addChild(CommonTree(CommonToken(99, text="b"))) t.addChild(CommonTree(CommonToken(99, text="c"))) t.addChild(CommonTree(CommonToken(99, text="d"))) newChild = CommonTree(CommonToken(99, text="x")) t.replaceChildren(0, 1, newChild) expecting = "(a x d)" self.failUnlessEqual(expecting, t.toStringTree()) t.sanityCheckParentAndChildIndexes() def testReplaceTwoWithOneAtRight(self): t = CommonTree(CommonToken(99, text="a")) t.addChild(CommonTree(CommonToken(99, text="b"))) t.addChild(CommonTree(CommonToken(99, text="c"))) t.addChild(CommonTree(CommonToken(99, text="d"))) newChild = CommonTree(CommonToken(99, text="x")) t.replaceChildren(1, 2, newChild) expecting = "(a b x)" self.failUnlessEqual(expecting, t.toStringTree()) t.sanityCheckParentAndChildIndexes() def testReplaceAllWithOne(self): t = CommonTree(CommonToken(99, text="a")) t.addChild(CommonTree(CommonToken(99, text="b"))) t.addChild(CommonTree(CommonToken(99, text="c"))) t.addChild(CommonTree(CommonToken(99, text="d"))) newChild = CommonTree(CommonToken(99, text="x")) t.replaceChildren(0, 2, newChild) expecting = "(a x)" self.failUnlessEqual(expecting, t.toStringTree()) t.sanityCheckParentAndChildIndexes() def testReplaceAllWithTwo(self): t = CommonTree(CommonToken(99, text="a")) t.addChild(CommonTree(CommonToken(99, text="b"))) t.addChild(CommonTree(CommonToken(99, text="c"))) t.addChild(CommonTree(CommonToken(99, text="d"))) newChildren = self.adaptor.nil() newChildren.addChild(CommonTree(CommonToken(99, text="x"))) newChildren.addChild(CommonTree(CommonToken(99, text="y"))) t.replaceChildren(0, 2, newChildren) expecting = "(a x y)" self.failUnlessEqual(expecting, t.toStringTree()) t.sanityCheckParentAndChildIndexes()
def setUp(self): self.adaptor = CommonTreeAdaptor()
class TestTreeNodeStream(unittest.TestCase): """Test case for the TreeNodeStream class.""" def setUp(self): self.adaptor = CommonTreeAdaptor() def newStream(self, t): """Build new stream; let's us override to test other streams.""" return CommonTreeNodeStream(t) def testSingleNode(self): t = CommonTree(CommonToken(101)) stream = self.newStream(t) expecting = "101" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101" found = str(stream) self.failUnlessEqual(expecting, found) def testTwoChildrenOfNilRoot(self): class V(CommonTree): def __init__(self, token=None, ttype=None, x=None): if x is not None: self.x = x if ttype is not None and token is None: self.token = CommonToken(type=ttype) if token is not None: self.token = token def __str__(self): if self.token is not None: txt = self.token.text else: txt = "" txt += "<V>" return txt root_0 = self.adaptor.nil() t = V(ttype=101, x=2) u = V(token=CommonToken(type=102, text="102")) self.adaptor.addChild(root_0, t) self.adaptor.addChild(root_0, u) self.assert_(root_0.parent is None) self.assertEquals(-1, root_0.childIndex) self.assertEquals(0, t.childIndex) self.assertEquals(1, u.childIndex) def test4Nodes(self): # ^(101 ^(102 103) 104) t = CommonTree(CommonToken(101)) t.addChild(CommonTree(CommonToken(102))) t.getChild(0).addChild(CommonTree(CommonToken(103))) t.addChild(CommonTree(CommonToken(104))) stream = self.newStream(t) expecting = "101 102 103 104" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101 2 102 2 103 3 104 3" found = str(stream) self.failUnlessEqual(expecting, found) def testList(self): root = CommonTree(None) t = CommonTree(CommonToken(101)) t.addChild(CommonTree(CommonToken(102))) t.getChild(0).addChild(CommonTree(CommonToken(103))) t.addChild(CommonTree(CommonToken(104))) u = CommonTree(CommonToken(105)) root.addChild(t) root.addChild(u) stream = CommonTreeNodeStream(root) expecting = "101 102 103 104 105" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101 2 102 2 103 3 104 3 105" found = str(stream) self.failUnlessEqual(expecting, found) def testFlatList(self): root = CommonTree(None) root.addChild(CommonTree(CommonToken(101))) root.addChild(CommonTree(CommonToken(102))) root.addChild(CommonTree(CommonToken(103))) stream = CommonTreeNodeStream(root) expecting = "101 102 103" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101 102 103" found = str(stream) self.failUnlessEqual(expecting, found) def testListWithOneNode(self): root = CommonTree(None) root.addChild(CommonTree(CommonToken(101))) stream = CommonTreeNodeStream(root) expecting = "101" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101" found = str(stream) self.failUnlessEqual(expecting, found) def testAoverB(self): t = CommonTree(CommonToken(101)) t.addChild(CommonTree(CommonToken(102))) stream = self.newStream(t) expecting = "101 102" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101 2 102 3" found = str(stream) self.failUnlessEqual(expecting, found) def testLT(self): # ^(101 ^(102 103) 104) t = CommonTree(CommonToken(101)) t.addChild(CommonTree(CommonToken(102))) t.getChild(0).addChild(CommonTree(CommonToken(103))) t.addChild(CommonTree(CommonToken(104))) stream = self.newStream(t) self.failUnlessEqual(101, stream.LT(1).getType()) self.failUnlessEqual(DOWN, stream.LT(2).getType()) self.failUnlessEqual(102, stream.LT(3).getType()) self.failUnlessEqual(DOWN, stream.LT(4).getType()) self.failUnlessEqual(103, stream.LT(5).getType()) self.failUnlessEqual(UP, stream.LT(6).getType()) self.failUnlessEqual(104, stream.LT(7).getType()) self.failUnlessEqual(UP, stream.LT(8).getType()) self.failUnlessEqual(EOF, stream.LT(9).getType()) # check way ahead self.failUnlessEqual(EOF, stream.LT(100).getType()) def testMarkRewindEntire(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) m = stream.mark() # MARK for _ in range(13): # consume til end stream.LT(1) stream.consume() self.failUnlessEqual(EOF, stream.LT(1).getType()) self.failUnlessEqual(UP, stream.LT(-1).getType()) stream.rewind(m) # REWIND # consume til end again :) for _ in range(13): # consume til end stream.LT(1) stream.consume() self.failUnlessEqual(EOF, stream.LT(1).getType()) self.failUnlessEqual(UP, stream.LT(-1).getType()) def testMarkRewindInMiddle(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) for _ in range(7): # consume til middle # System.out.println(tream.LT(1).getType()) stream.consume() self.failUnlessEqual(107, stream.LT(1).getType()) m = stream.mark() # MARK stream.consume() # consume 107 stream.consume() # consume UP stream.consume() # consume UP stream.consume() # consume 104 stream.rewind(m) # REWIND self.failUnlessEqual(107, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(UP, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(UP, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(104, stream.LT(1).getType()) stream.consume() # now we're past rewind position self.failUnlessEqual(105, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(UP, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(EOF, stream.LT(1).getType()) self.failUnlessEqual(UP, stream.LT(-1).getType()) def testMarkRewindNested(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) m = stream.mark() # MARK at start stream.consume() # consume 101 stream.consume() # consume DN m2 = stream.mark() # MARK on 102 stream.consume() # consume 102 stream.consume() # consume DN stream.consume() # consume 103 stream.consume() # consume 106 stream.rewind(m2) # REWIND to 102 self.failUnlessEqual(102, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(DOWN, stream.LT(1).getType()) stream.consume() # stop at 103 and rewind to start stream.rewind(m) # REWIND to 101 self.failUnlessEqual(101, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(DOWN, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(102, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(DOWN, stream.LT(1).getType()) def testSeek(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) stream.consume() # consume 101 stream.consume() # consume DN stream.consume() # consume 102 stream.seek(7) # seek to 107 self.failUnlessEqual(107, stream.LT(1).getType()) stream.consume() # consume 107 stream.consume() # consume UP stream.consume() # consume UP self.failUnlessEqual(104, stream.LT(1).getType()) def testSeekFromStart(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) stream.seek(7) # seek to 107 self.failUnlessEqual(107, stream.LT(1).getType()) stream.consume() # consume 107 stream.consume() # consume UP stream.consume() # consume UP self.failUnlessEqual(104, stream.LT(1).getType()) def toNodesOnlyString(self, nodes): buf = [] for i in range(nodes.size()): t = nodes.LT(i + 1) type = nodes.getTreeAdaptor().getType(t) if not (type == DOWN or type == UP): buf.append(str(type)) return " ".join(buf)
def __init__(self, adaptor=None): super(TraceDebugEventListener, self).__init__() if adaptor is None: adaptor = CommonTreeAdaptor() self.adaptor = adaptor
def rulePostProcessing(self, root): root = CommonTreeAdaptor.rulePostProcessing(self, root) if root is not None: if root.token and root.token.type == BakefileParser.LIST_OR_CONCAT: root = self.filter_list_or_concat(root) return root
class TestTreeNodeStream(unittest.TestCase): """Test case for the TreeNodeStream class.""" def setUp(self): self.adaptor = CommonTreeAdaptor() def newStream(self, t): """Build new stream; let's us override to test other streams.""" return CommonTreeNodeStream(t) def testSingleNode(self): t = CommonTree(CommonToken(101)) stream = self.newStream(t) expecting = "101" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101" found = str(stream) self.failUnlessEqual(expecting, found) def testTwoChildrenOfNilRoot(self): class V(CommonTree): def __init__(self, token=None, ttype=None, x=None): if x is not None: self.x = x if ttype is not None and token is None: self.token = CommonToken(type=ttype) if token is not None: self.token = token def __str__(self): if self.token is not None: txt = self.token.text else: txt = "" txt += "<V>" return txt root_0 = self.adaptor.nil() t = V(ttype=101, x=2) u = V(token=CommonToken(type=102, text="102")) self.adaptor.addChild(root_0, t) self.adaptor.addChild(root_0, u) self.assert_(root_0.parent is None) self.assertEquals(-1, root_0.childIndex) self.assertEquals(0, t.childIndex) self.assertEquals(1, u.childIndex) def test4Nodes(self): # ^(101 ^(102 103) 104) t = CommonTree(CommonToken(101)) t.addChild(CommonTree(CommonToken(102))) t.getChild(0).addChild(CommonTree(CommonToken(103))) t.addChild(CommonTree(CommonToken(104))) stream = self.newStream(t) expecting = "101 102 103 104" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101 2 102 2 103 3 104 3" found = str(stream) self.failUnlessEqual(expecting, found) def testList(self): root = CommonTree(None) t = CommonTree(CommonToken(101)) t.addChild(CommonTree(CommonToken(102))) t.getChild(0).addChild(CommonTree(CommonToken(103))) t.addChild(CommonTree(CommonToken(104))) u = CommonTree(CommonToken(105)) root.addChild(t) root.addChild(u) stream = CommonTreeNodeStream(root) expecting = "101 102 103 104 105" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101 2 102 2 103 3 104 3 105" found = str(stream) self.failUnlessEqual(expecting, found) def testFlatList(self): root = CommonTree(None) root.addChild(CommonTree(CommonToken(101))) root.addChild(CommonTree(CommonToken(102))) root.addChild(CommonTree(CommonToken(103))) stream = CommonTreeNodeStream(root) expecting = "101 102 103" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101 102 103" found = str(stream) self.failUnlessEqual(expecting, found) def testListWithOneNode(self): root = CommonTree(None) root.addChild(CommonTree(CommonToken(101))) stream = CommonTreeNodeStream(root) expecting = "101" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101" found = str(stream) self.failUnlessEqual(expecting, found) def testAoverB(self): t = CommonTree(CommonToken(101)) t.addChild(CommonTree(CommonToken(102))) stream = self.newStream(t) expecting = "101 102" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101 2 102 3" found = str(stream) self.failUnlessEqual(expecting, found) def testLT(self): # ^(101 ^(102 103) 104) t = CommonTree(CommonToken(101)) t.addChild(CommonTree(CommonToken(102))) t.getChild(0).addChild(CommonTree(CommonToken(103))) t.addChild(CommonTree(CommonToken(104))) stream = self.newStream(t) self.failUnlessEqual(101, stream.LT(1).getType()) self.failUnlessEqual(DOWN, stream.LT(2).getType()) self.failUnlessEqual(102, stream.LT(3).getType()) self.failUnlessEqual(DOWN, stream.LT(4).getType()) self.failUnlessEqual(103, stream.LT(5).getType()) self.failUnlessEqual(UP, stream.LT(6).getType()) self.failUnlessEqual(104, stream.LT(7).getType()) self.failUnlessEqual(UP, stream.LT(8).getType()) self.failUnlessEqual(EOF, stream.LT(9).getType()) # check way ahead self.failUnlessEqual(EOF, stream.LT(100).getType()) def testMarkRewindEntire(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) m = stream.mark() # MARK for _ in range(13): # consume til end stream.LT(1) stream.consume() self.failUnlessEqual(EOF, stream.LT(1).getType()) self.failUnlessEqual(UP, stream.LT(-1).getType()) stream.rewind(m) # REWIND # consume til end again :) for _ in range(13): # consume til end stream.LT(1) stream.consume() self.failUnlessEqual(EOF, stream.LT(1).getType()) self.failUnlessEqual(UP, stream.LT(-1).getType()) def testMarkRewindInMiddle(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) for _ in range(7): # consume til middle #System.out.println(tream.LT(1).getType()) stream.consume() self.failUnlessEqual(107, stream.LT(1).getType()) m = stream.mark() # MARK stream.consume() # consume 107 stream.consume() # consume UP stream.consume() # consume UP stream.consume() # consume 104 stream.rewind(m) # REWIND self.failUnlessEqual(107, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(UP, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(UP, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(104, stream.LT(1).getType()) stream.consume() # now we're past rewind position self.failUnlessEqual(105, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(UP, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(EOF, stream.LT(1).getType()) self.failUnlessEqual(UP, stream.LT(-1).getType()) def testMarkRewindNested(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) m = stream.mark() # MARK at start stream.consume() # consume 101 stream.consume() # consume DN m2 = stream.mark() # MARK on 102 stream.consume() # consume 102 stream.consume() # consume DN stream.consume() # consume 103 stream.consume() # consume 106 stream.rewind(m2) # REWIND to 102 self.failUnlessEqual(102, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(DOWN, stream.LT(1).getType()) stream.consume() # stop at 103 and rewind to start stream.rewind(m) # REWIND to 101 self.failUnlessEqual(101, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(DOWN, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(102, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(DOWN, stream.LT(1).getType()) def testSeek(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) stream.consume() # consume 101 stream.consume() # consume DN stream.consume() # consume 102 stream.seek(7) # seek to 107 self.failUnlessEqual(107, stream.LT(1).getType()) stream.consume() # consume 107 stream.consume() # consume UP stream.consume() # consume UP self.failUnlessEqual(104, stream.LT(1).getType()) def testSeekFromStart(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) stream.seek(7) # seek to 107 self.failUnlessEqual(107, stream.LT(1).getType()) stream.consume() # consume 107 stream.consume() # consume UP stream.consume() # consume UP self.failUnlessEqual(104, stream.LT(1).getType()) def toNodesOnlyString(self, nodes): buf = [] for i in range(nodes.size()): t = nodes.LT(i + 1) type = nodes.getTreeAdaptor().getType(t) if not (type == DOWN or type == UP): buf.append(str(type)) return ' '.join(buf)
def setUp(self): self.adaptor = CommonTreeAdaptor() self.tokens = [ "", "", "", "", "", "A", "B", "C", "D", "E", "ID", "VAR" ] self.wiz = TreeWizard(self.adaptor, self.tokens)