コード例 #1
0
    def linear(self, signal_x, signal_y, Disper_cd):
        signal_x_fft = af.fft(signal_x) * af.exp(Disper_cd / 2)
        signal_x = af.ifft(signal_x_fft)

        signal_y_fft = af.fft(signal_y) * af.exp(Disper_cd / 2)
        signal_y = af.ifft(signal_y_fft)
        return signal_x, signal_y
コード例 #2
0
def linear_prop_arrayfire(xpol, ypol, length, D):
    xpol_fft = af.fft(xpol)
    ypol_fft = af.fft(ypol)
    xpol_fft = xpol_fft * af.exp(D * length)
    ypol_fft = ypol_fft * af.exp(D * length)
    xpol = af.ifft(xpol_fft)
    ypol = af.ifft(ypol_fft)
    return xpol, ypol
コード例 #3
0
def dct1(arr, norm=None):
    N = arr.dims()[0]
    out = 2 * af.real(
        af.exp(-0.5j * np.pi / N *
               af.range(*arr.dims(), dim=0, dtype=arr.dtype())) *
        af.fft(af.join(0, arr[0:N:2], af.flip(arr[1:N:2]))))
    if norm == 'ortho':
        out /= np.sqrt(2 * N)
        out[0] /= np.sqrt(2)
    return out
コード例 #4
0
ファイル: run_cases.py プロジェクト: mchandra/Bolt
def lowpass_filter(f):
    f_hat = af.fft(f)
    dp1 = (domain.p1_end[0] - domain.p1_start[0]) / domain.N_p1
    k_v = af.tile(af.to_array(np.fft.fftfreq(domain.N_p1, dp1)), 1, 1,
                  f.shape[2], f.shape[3])

    # Applying the filter:
    f_hat_filtered = 0.5 * (f_hat * (af.tanh(
        (k_v + 0.9 * af.max(k_v)) / 0.5) - af.tanh(
            (k_v + 0.9 * af.min(k_v)) / 0.5)))

    f_hat = af.select(af.abs(k_v) < 0.8 * af.max(k_v), f_hat, f_hat_filtered)
    f = af.real(af.ifft(f_hat))
    return (f)
コード例 #5
0
ファイル: fft.py プロジェクト: connectthefuture/afnumpy
def __fftn__(a, s, axes, direction='forward'):
    if len(s) != 3 and len(s) != 2 and len(s) != 1:
        raise NotImplementedError
    if axes is not None:
        raise NotImplementedError
    if(direction == 'forward'):
        if len(s) == 3:
            fa = arrayfire.fft3(a.d_array, s[2], s[1], s[0])
        elif len(s) == 2:
            fa = arrayfire.fft2(a.d_array, s[1], s[0])
        elif len(s) == 1:
            fa = arrayfire.fft(a.d_array, s[0])
    elif direction == 'inverse':
        if len(s) == 3:
            fa = arrayfire.ifft3(a.d_array, s[2], s[1], s[0])
        elif len(s) == 2:
            fa = arrayfire.ifft2(a.d_array, s[1], s[0])
        elif len(s) == 1:
            fa = arrayfire.ifft(a.d_array, s[0])
    else:
        raise ValueError('Wrong FFT direction')
    return ndarray(pu.af_shape(fa), dtype=pu.typemap(fa.dtype()), af_array=fa)
コード例 #6
0
ファイル: fft.py プロジェクト: daurer/afnumpy
def __fftn__(a, s, axes, direction='forward'):
    if len(s) != 3 and len(s) != 2 and len(s) != 1:
        raise NotImplementedError
    if axes is not None:
        raise NotImplementedError
    if(direction == 'forward'):
        if len(s) == 3:
            fa = arrayfire.fft3(a.d_array, s[2], s[1], s[0])
        elif len(s) == 2:
            fa = arrayfire.fft2(a.d_array, s[1], s[0])
        elif len(s) == 1:
            fa = arrayfire.fft(a.d_array, s[0])
    elif direction == 'inverse':
        if len(s) == 3:
            fa = arrayfire.ifft3(a.d_array, s[2], s[1], s[0])
        elif len(s) == 2:
            fa = arrayfire.ifft2(a.d_array, s[1], s[0])
        elif len(s) == 1:
            fa = arrayfire.ifft(a.d_array, s[0])
    else:
        raise ValueError('Wrong FFT direction')
    return ndarray(a.shape, dtype=pu.typemap(fa.dtype()), af_array=fa)
コード例 #7
0
import arrayfire as af

a = af.randu(10, 1)
pos0 = af.randu(10) * 10
af.display(af.approx1(a, pos0))

a = af.randu(3, 3)
pos0 = af.randu(3, 3) * 10
pos1 = af.randu(3, 3) * 10

af.display(af.approx2(a, pos0, pos1))

a = af.randu(8, 1)
af.display(a)

af.display(af.fft(a))
af.display(af.dft(a))
af.display(af.real(af.ifft(af.fft(a))))
af.display(af.real(af.idft(af.dft(a))))

a = af.randu(4, 4)
af.display(a)

af.display(af.fft2(a))
af.display(af.dft(a))
af.display(af.real(af.ifft2(af.fft2(a))))
af.display(af.real(af.idft(af.dft(a))))

a = af.randu(4, 4, 2)
af.display(a)
コード例 #8
0
ファイル: signal.py プロジェクト: syurkevi/arrayfire-python
def simple_signal(verbose=False):
    display_func = _util.display_func(verbose)
    print_func   = _util.print_func(verbose)

    a = af.randu(10, 1)
    pos0 = af.randu(10) * 10
    display_func(af.approx1(a, pos0))

    a = af.randu(3, 3)
    pos0 = af.randu(3, 3) * 10
    pos1 = af.randu(3, 3) * 10

    display_func(af.approx2(a, pos0, pos1))

    a = af.randu(8, 1)
    display_func(a)

    display_func(af.fft(a))
    display_func(af.dft(a))
    display_func(af.real(af.ifft(af.fft(a))))
    display_func(af.real(af.idft(af.dft(a))))

    a = af.randu(4, 4)
    display_func(a)

    display_func(af.fft2(a))
    display_func(af.dft(a))
    display_func(af.real(af.ifft2(af.fft2(a))))
    display_func(af.real(af.idft(af.dft(a))))

    a = af.randu(4, 4, 2)
    display_func(a)

    display_func(af.fft3(a))
    display_func(af.dft(a))
    display_func(af.real(af.ifft3(af.fft3(a))))
    display_func(af.real(af.idft(af.dft(a))))

    a = af.randu(10, 1)
    b = af.randu(3, 1)
    display_func(af.convolve1(a, b))
    display_func(af.fft_convolve1(a, b))
    display_func(af.convolve(a, b))
    display_func(af.fft_convolve(a, b))

    a = af.randu(5, 5)
    b = af.randu(3, 3)
    display_func(af.convolve2(a, b))
    display_func(af.fft_convolve2(a, b))
    display_func(af.convolve(a, b))
    display_func(af.fft_convolve(a, b))

    a = af.randu(5, 5, 3)
    b = af.randu(3, 3, 2)
    display_func(af.convolve3(a, b))
    display_func(af.fft_convolve3(a, b))
    display_func(af.convolve(a, b))
    display_func(af.fft_convolve(a, b))


    b = af.randu(3, 1)
    x = af.randu(10, 1)
    a = af.randu(2, 1)
    display_func(af.fir(b, x))
    display_func(af.iir(b, a, x))
コード例 #9
0
ファイル: signal.py プロジェクト: syurkevi/arrayfire-python
def simple_signal(verbose=False):
    display_func = _util.display_func(verbose)
    print_func = _util.print_func(verbose)

    a = af.randu(10, 1)
    pos0 = af.randu(10) * 10
    display_func(af.approx1(a, pos0))

    a = af.randu(3, 3)
    pos0 = af.randu(3, 3) * 10
    pos1 = af.randu(3, 3) * 10

    display_func(af.approx2(a, pos0, pos1))

    a = af.randu(8, 1)
    display_func(a)

    display_func(af.fft(a))
    display_func(af.dft(a))
    display_func(af.real(af.ifft(af.fft(a))))
    display_func(af.real(af.idft(af.dft(a))))

    a = af.randu(4, 4)
    display_func(a)

    display_func(af.fft2(a))
    display_func(af.dft(a))
    display_func(af.real(af.ifft2(af.fft2(a))))
    display_func(af.real(af.idft(af.dft(a))))

    a = af.randu(4, 4, 2)
    display_func(a)

    display_func(af.fft3(a))
    display_func(af.dft(a))
    display_func(af.real(af.ifft3(af.fft3(a))))
    display_func(af.real(af.idft(af.dft(a))))

    a = af.randu(10, 1)
    b = af.randu(3, 1)
    display_func(af.convolve1(a, b))
    display_func(af.fft_convolve1(a, b))
    display_func(af.convolve(a, b))
    display_func(af.fft_convolve(a, b))

    a = af.randu(5, 5)
    b = af.randu(3, 3)
    display_func(af.convolve2(a, b))
    display_func(af.fft_convolve2(a, b))
    display_func(af.convolve(a, b))
    display_func(af.fft_convolve(a, b))

    a = af.randu(5, 5, 3)
    b = af.randu(3, 3, 2)
    display_func(af.convolve3(a, b))
    display_func(af.fft_convolve3(a, b))
    display_func(af.convolve(a, b))
    display_func(af.fft_convolve(a, b))

    b = af.randu(3, 1)
    x = af.randu(10, 1)
    a = af.randu(2, 1)
    display_func(af.fir(b, x))
    display_func(af.iir(b, a, x))
コード例 #10
0
import arrayfire as af

a = af.randu(10, 1)
pos0 = af.randu(10) * 10
af.display(af.approx1(a, pos0))

a = af.randu(3, 3)
pos0 = af.randu(3, 3) * 10
pos1 = af.randu(3, 3) * 10

af.display(af.approx2(a, pos0, pos1))

a = af.randu(8, 1)
af.display(a)

af.display(af.fft(a))
af.display(af.dft(a))
af.display(af.real(af.ifft(af.fft(a))))
af.display(af.real(af.idft(af.dft(a))))

a = af.randu(4, 4)
af.display(a)

af.display(af.fft2(a))
af.display(af.dft(a))
af.display(af.real(af.ifft2(af.fft2(a))))
af.display(af.real(af.idft(af.dft(a))))

a = af.randu(4, 4, 2)
af.display(a)
コード例 #11
0
def simple_signal(verbose=False):
    display_func = _util.display_func(verbose)
    print_func   = _util.print_func(verbose)

    signal = af.randu(10)
    x_new  = af.randu(10)
    x_orig = af.randu(10)
    display_func(af.approx1(signal, x_new, xp = x_orig))

    signal = af.randu(3, 3)
    x_new  = af.randu(3, 3)
    x_orig = af.randu(3, 3)
    y_new  = af.randu(3, 3)
    y_orig = af.randu(3, 3)

    display_func(af.approx2(signal, x_new, y_new, xp = x_orig, yp = y_orig))

    a = af.randu(8, 1)
    display_func(a)

    display_func(af.fft(a))
    display_func(af.dft(a))
    display_func(af.real(af.ifft(af.fft(a))))
    display_func(af.real(af.idft(af.dft(a))))

    b = af.fft(a)
    af.ifft_inplace(b)
    display_func(b)
    af.fft_inplace(b)
    display_func(b)

    b = af.fft_r2c(a)
    c = af.fft_c2r(b)
    display_func(b)
    display_func(c)

    a = af.randu(4, 4)
    display_func(a)

    display_func(af.fft2(a))
    display_func(af.dft(a))
    display_func(af.real(af.ifft2(af.fft2(a))))
    display_func(af.real(af.idft(af.dft(a))))

    b = af.fft2(a)
    af.ifft2_inplace(b)
    display_func(b)
    af.fft2_inplace(b)
    display_func(b)

    b = af.fft2_r2c(a)
    c = af.fft2_c2r(b)
    display_func(b)
    display_func(c)

    a = af.randu(4, 4, 2)
    display_func(a)

    display_func(af.fft3(a))
    display_func(af.dft(a))
    display_func(af.real(af.ifft3(af.fft3(a))))
    display_func(af.real(af.idft(af.dft(a))))

    b = af.fft3(a)
    af.ifft3_inplace(b)
    display_func(b)
    af.fft3_inplace(b)
    display_func(b)

    b = af.fft3_r2c(a)
    c = af.fft3_c2r(b)
    display_func(b)
    display_func(c)

    a = af.randu(10, 1)
    b = af.randu(3, 1)
    display_func(af.convolve1(a, b))
    display_func(af.fft_convolve1(a, b))
    display_func(af.convolve(a, b))
    display_func(af.fft_convolve(a, b))

    a = af.randu(5, 5)
    b = af.randu(3, 3)
    display_func(af.convolve2(a, b))
    display_func(af.fft_convolve2(a, b))
    display_func(af.convolve(a, b))
    display_func(af.fft_convolve(a, b))

    a = af.randu(5, 5, 3)
    b = af.randu(3, 3, 2)
    display_func(af.convolve3(a, b))
    display_func(af.fft_convolve3(a, b))
    display_func(af.convolve(a, b))
    display_func(af.fft_convolve(a, b))


    b = af.randu(3, 1)
    x = af.randu(10, 1)
    a = af.randu(2, 1)
    display_func(af.fir(b, x))
    display_func(af.iir(b, a, x))

    display_func(af.medfilt1(a))
    display_func(af.medfilt2(a))
    display_func(af.medfilt(a))
コード例 #12
0
ファイル: aflib.py プロジェクト: bfrosik/pycdi
 def fft(arr):
     return af.fft(arr)
コード例 #13
0
ファイル: main.py プロジェクト: mchandra/Bolt
# Time parameters:
dt = 0.001
t_final = 0.5

time_array = np.arange(0, t_final + dt, dt)

# Initializing Array used in storing the data:
rho_data = np.zeros_like(time_array)
rho_hat_data = np.zeros_like(time_array)

for time_index, t0 in enumerate(time_array):
    print('Computing For Time =', t0)

    n = ls.compute_moments('density')
    rho_data[time_index] = af.max(n)
    rho_hat_data[time_index] = af.max(af.abs(af.fft(n - 1)))
    ls.RK2_timestep(dt)

f_hat = abs(np.fft.fft(rho_data - np.min(rho_data)))
omega = 2 * np.pi * np.fft.fftfreq(time_array.size, dt)

h5f = h5py.File('data.h5', 'w')
h5f.create_dataset('rho', data=rho_data)
h5f.create_dataset('rho_hat', data=rho_hat_data)
h5f.create_dataset('f_hat', data=f_hat)
h5f.create_dataset('time', data=time_array)
h5f.create_dataset('omega', data=omega)
h5f.close()

print('Omega:', omega[int(np.argmax(f_hat[:int(time_array.size / 2)]))])
コード例 #14
0
ファイル: signal.py プロジェクト: roaffix/arrayfire-python
def simple_signal(verbose=False):
    display_func = _util.display_func(verbose)

    signal = af.randu(10)
    x_new = af.randu(10)
    x_orig = af.randu(10)
    display_func(af.approx1(signal, x_new, xp=x_orig))

    signal = af.randu(3, 3)
    x_new = af.randu(3, 3)
    x_orig = af.randu(3, 3)
    y_new = af.randu(3, 3)
    y_orig = af.randu(3, 3)

    display_func(af.approx2(signal, x_new, y_new, xp=x_orig, yp=y_orig))

    a = af.randu(8, 1)
    display_func(a)

    display_func(af.fft(a))
    display_func(af.dft(a))
    display_func(af.real(af.ifft(af.fft(a))))
    display_func(af.real(af.idft(af.dft(a))))

    b = af.fft(a)
    af.ifft_inplace(b)
    display_func(b)
    af.fft_inplace(b)
    display_func(b)

    b = af.fft_r2c(a)
    c = af.fft_c2r(b)
    display_func(b)
    display_func(c)

    a = af.randu(4, 4)
    display_func(a)

    display_func(af.fft2(a))
    display_func(af.dft(a))
    display_func(af.real(af.ifft2(af.fft2(a))))
    display_func(af.real(af.idft(af.dft(a))))

    b = af.fft2(a)
    af.ifft2_inplace(b)
    display_func(b)
    af.fft2_inplace(b)
    display_func(b)

    b = af.fft2_r2c(a)
    c = af.fft2_c2r(b)
    display_func(b)
    display_func(c)

    a = af.randu(4, 4, 2)
    display_func(a)

    display_func(af.fft3(a))
    display_func(af.dft(a))
    display_func(af.real(af.ifft3(af.fft3(a))))
    display_func(af.real(af.idft(af.dft(a))))

    b = af.fft3(a)
    af.ifft3_inplace(b)
    display_func(b)
    af.fft3_inplace(b)
    display_func(b)

    b = af.fft3_r2c(a)
    c = af.fft3_c2r(b)
    display_func(b)
    display_func(c)

    a = af.randu(10, 1)
    b = af.randu(3, 1)
    display_func(af.convolve1(a, b))
    display_func(af.fft_convolve1(a, b))
    display_func(af.convolve(a, b))
    display_func(af.fft_convolve(a, b))

    a = af.randu(5, 5)
    b = af.randu(3, 3)
    display_func(af.convolve2(a, b))
    display_func(af.fft_convolve2(a, b))
    display_func(af.convolve(a, b))
    display_func(af.fft_convolve(a, b))

    c = af.convolve2NN(a, b)
    display_func(c)
    in_dims = c.dims()
    incoming_grad = af.constant(1, in_dims[0], in_dims[1])
    g = af.convolve2GradientNN(incoming_grad, a, b, c)
    display_func(g)

    a = af.randu(5, 5, 3)
    b = af.randu(3, 3, 2)
    display_func(af.convolve3(a, b))
    display_func(af.fft_convolve3(a, b))
    display_func(af.convolve(a, b))
    display_func(af.fft_convolve(a, b))

    b = af.randu(3, 1)
    x = af.randu(10, 1)
    a = af.randu(2, 1)
    display_func(af.fir(b, x))
    display_func(af.iir(b, a, x))

    display_func(af.medfilt1(a))
    display_func(af.medfilt2(a))
    display_func(af.medfilt(a))
コード例 #15
0
    af.info()

    print("Create a 5-by-3 matrix of random floats on the GPU\n")
    A = af.randu(5, 3, 1, 1, af.Dtype.f32)
    af.display(A)

    print("Element-wise arithmetic\n")
    B = af.sin(A) + 1.5
    af.display(B)

    print("Negate the first three elements of second column\n")
    B[0:3, 1] = B[0:3, 1] * -1
    af.display(B)

    print("Fourier transform the result\n");
    C = af.fft(B);
    af.display(C);

    print("Grab last row\n");
    c = C[-1,:];
    af.display(c);

    print("Scan Test\n");
    r = af.constant(2, 16, 4, 1, 1);
    af.display(r);

    print("Scan\n");
    S = af.scan(r, 0, af.BINARYOP.MUL);
    af.display(S);

    print("Create 2-by-3 matrix from host data\n");