コード例 #1
0
def all_data(datafiles, npre, npost, lon1, lon2, compdays, comp_attrs):
    # Read daily data fields aligned relative to onset day
    data = collections.OrderedDict()
    sectordata = collections.OrderedDict()
    comp = collections.OrderedDict()
    sectorcomp = collections.OrderedDict()
    sector_latmax = {}

    for varnm in datafiles:
        print('Reading daily data for ' + varnm)
        var, onset, retreat = utils.load_dailyrel(datafiles[varnm])
        var = atm.subset(var, {'dayrel' : (-npre, npost)})
        var = housekeeping(var)

        # Compute sector mean and composite averages
        sectorvar = atm.dim_mean(var, 'lon', lon1, lon2)
        compvar = get_composites(var, compdays, comp_attrs)
        sectorcompvar = get_composites(sectorvar, compdays, comp_attrs)

        # Latitude of maximum subcloud theta_e
        if varnm == 'THETA_E950' or varnm == 'THETA_E_LML':
            sector_latmax[varnm] = theta_e_latmax(sectorvar)

        # Compute regression or take the climatology
        if 'year' in var.dims:
            var = atm.dim_mean(var, 'year')
            sectorvar = atm.dim_mean(sectorvar, 'year')
            compvar = atm.dim_mean(compvar, 'year')
            sectorcompvar = atm.dim_mean(sectorcompvar, 'year')

        # Pack everything into dicts for output
        data[varnm], sectordata[varnm] = var, sectorvar
        comp[varnm], sectorcomp[varnm] = compvar, sectorcompvar

    return data, sectordata, sector_latmax, comp, sectorcomp
コード例 #2
0
def theta_e_latmax(var):
    lat = atm.get_coord(var, 'lat')
    coords={'year' : var['year'], 'dayrel': var['dayrel']}
    latdim = atm.get_coord(var, 'lat', 'dim')
    latmax = lat[np.nanargmax(var, axis=latdim)]
    latmax = xray.DataArray(latmax, dims=['year', 'dayrel'], coords=coords)
    latmax = atm.dim_mean(latmax, 'year')
    return latmax
コード例 #3
0
def sector_mean(var, lon1, lon2):
    """Return the sector mean of a variable."""
    name = var.name
    lonstr = atm.latlon_str(lon1, lon2, 'lon')
    if (lon2 - lon1) == 360:
        lon1, lon2 = None, None
        name_out = name + '_ZON'
    else:
        name_out = name + '_SEC'
    varbar = atm.dim_mean(var, 'lon', lon1, lon2)
    varbar.name = name_out
    varbar.attrs['varnm'] = name
    varbar.attrs['lonstr'] = lonstr
    varbar.attrs['filestr'] = '%s_sector_%s' % (name, lonstr)
    return varbar
コード例 #4
0
def get_data(varnm, datafiles, regdays, seasons, lon1, lon2, nroll=None):
    var, onset, retreat = utils.load_dailyrel(datafiles[varnm])
    if nroll is not None:
        var = atm.rolling_mean(var, nroll, axis=1, center=True)

    # Seasonal averages and daily lat-lon data
    data = xray.Dataset()
    for season in seasons:
        key = varnm + '_' + season
        data[key] = ssn_average(var, onset, retreat, season)
    # Daily data on regdays
    data[varnm + '_DAILY'] = var.sel(dayrel=regdays)

    # Sector mean data
    var_sector = atm.dim_mean(var, 'lon', lon1, lon2)

    alldata = {'data_latlon' : data, 'var_sector' : var_sector,
              'onset' : onset, 'retreat' : retreat}

    return alldata
コード例 #5
0
ps = ps / 100

figsize = (7, 9)
omitzero = False

for ssn in ['ANN', 'DJF', 'JJA', 'MAR']:
    for lonlims in [(0, 360), (60, 100)]:
        lon1, lon2 = lonlims
        lonstr = atm.latlon_str(lon1, lon2, 'lon')
        suptitle = ssn + ' ' + lonstr
        months = atm.season_months(ssn)
        v = data['V'].sel(month=months)
        if (lon2 - lon1) < 360:
            v = atm.subset(v, {'lon' : (lon1, lon2)})
            sector_scale = (lon2 - lon1) / 360.0
            psbar = atm.dim_mean(ps, 'lon', lon1, lon2)
            clev = 10
        else:
            sector_scale = None
            psbar = atm.dim_mean(ps, 'lon')
            clev = 20
        vssn = v.mean(dim='month')
        vssn_bar = atm.dim_mean(vssn, 'lon')
        psi1 = atm.streamfunction(vssn, sector_scale=sector_scale)
        psi1 = atm.dim_mean(psi1, 'lon')
        psi2 = atm.streamfunction(vssn_bar, sector_scale=sector_scale)
        plt.figure(figsize=figsize)
        plt.suptitle(suptitle)
        plt.subplot(2, 1, 1)
        atm.contour_latpres(psi1, clev=clev, omitzero=omitzero, topo=psbar)
        plt.title('v -> $\psi$ -> [$\psi$]')
コード例 #6
0
data = {'reg' : {}, 'clim' : {}, 'early' : {}, 'late' : {}}

# Load regression coefficients and climatology
for varnm in varnms:
    for key in ['latlon', 'sector']:
        for key2 in ['reg', 'clim']:
            filenm = datafiles[varnm][key + '_' + key2]
            print('Loading ' + filenm)
            with xray.open_dataset(filenm) as ds:
                data[key2][varnm + '_' + key] = ds.load()

# ----------------------------------------------------------------------
# Calculate strong/ weak composites for sector data
for varnm in varnms:
    key = varnm + '_sector'
    varbar = atm.dim_mean(data['clim'][key][varnm], 'lon', lon1, lon2)
    m = data['reg'][key]['m']
    data['late'][key] = varbar + m * nstd
    data['early'][key] = varbar - m * nstd

# ----------------------------------------------------------------------
def stipple_mask(p):
    return ((p >= 0.05) | np.isnan(p))

def sector_plot(var, p, stipple_kw={}, grp=None, ylim=None,
                yticks=None, clim=None):
    xname, yname = 'dayrel', 'lat'
    pts_mask = stipple_mask(p)
    lat = atm.get_coord(var, 'lat')
    days = atm.get_coord(var, 'dayrel')
    xsample = 3
コード例 #7
0
            data[nm] = ds[nm].load()

# Scale units and rename variables
data = data * scale
nms = data.data_vars.keys()
for nm in nms:
    data = data.rename({nm : nm.replace('FLX', '')})


# Take subset and smooth with rolling mean
daydim = atm.get_coord(data['VMSE'], 'dayrel', 'dim')
for nm in data.data_vars:
    data[nm] = atm.rolling_mean(data[nm], nroll, axis=daydim, center=True)

# Average over equatorial region
data_eq = atm.dim_mean(data, 'lat', eqlat1, eqlat2)

# Cross-equatorial flues integrated over sectors
a = atm.constants.radius_earth.values
eq_int = xray.Dataset()
eq_int.attrs['units'] = sector_units
lonranges = [(40, 60), (40, 100), (lon1, lon2)]
eq_int.attrs['lonranges'] = ['%dE-%dE' % lonrange for lonrange in lonranges]
for lonrange in lonranges:
    lon1, lon2 = lonrange
    dist = a * np.radians(lon2 - lon1)
    for nm in data_eq.data_vars:
        key = nm + '_%dE-%dE' % (lon1, lon2)
        eq_int[key] = atm.dim_mean(data_eq[nm], 'lon', lon1, lon2) * dist
# Convert to PW
eq_int = eq_int * 1e-15 / scale
コード例 #8
0
ps = ps / 100

figsize = (7, 9)
omitzero = False

for ssn in ['ANN', 'DJF', 'JJA', 'MAR']:
    for lonlims in [(0, 360), (60, 100)]:
        lon1, lon2 = lonlims
        lonstr = atm.latlon_str(lon1, lon2, 'lon')
        suptitle = ssn + ' ' + lonstr
        months = atm.season_months(ssn)
        v = data['V'].sel(month=months)
        if (lon2 - lon1) < 360:
            v = atm.subset(v, {'lon': (lon1, lon2)})
            sector_scale = (lon2 - lon1) / 360.0
            psbar = atm.dim_mean(ps, 'lon', lon1, lon2)
            clev = 10
        else:
            sector_scale = None
            psbar = atm.dim_mean(ps, 'lon')
            clev = 20
        vssn = v.mean(dim='month')
        vssn_bar = atm.dim_mean(vssn, 'lon')
        psi1 = atm.streamfunction(vssn, sector_scale=sector_scale)
        psi1 = atm.dim_mean(psi1, 'lon')
        psi2 = atm.streamfunction(vssn_bar, sector_scale=sector_scale)
        plt.figure(figsize=figsize)
        plt.suptitle(suptitle)
        plt.subplot(2, 1, 1)
        atm.contour_latpres(psi1, clev=clev, omitzero=omitzero, topo=psbar)
        plt.title('v -> $\psi$ -> [$\psi$]')
コード例 #9
0
data = {}
data['MFC'] = utils.daily_rel2onset(mfc, onset, npre, npost)
data[pcp_nm] = utils.daily_rel2onset(pcp, onset, npre, npost)
data['MFC_ACC'] = utils.daily_rel2onset(index['tseries'], onset, npre, npost)

for nm in varnms:
    print('Loading ' + relfiles[nm])
    with xray.open_dataset(relfiles[nm]) as ds:
        if nm == 'PSI':
            data[nm] = atm.streamfunction(ds['V'])
            psimid = atm.subset(data[nm], {'plev' : (pmid, pmid)},
                                squeeze=True)
            psimid.name = 'PSI%d' % pmid
            data['PSI%d' % pmid] = psimid
        elif nm == 'VFLXLQV':
            var = atm.dim_mean(ds['VFLXQV'], 'lon', lon1, lon2)
            data[nm] = var * atm.constants.Lv.values
        elif nm == theta_nm:
            theta = ds[nm]
            _, _, dtheta = atm.divergence_spherical_2d(theta, theta)
            data[nm] = atm.dim_mean(ds[nm], 'lon', lon1, lon2)
            data[dtheta_nm] = atm.dim_mean(dtheta, 'lon', lon1, lon2)
        elif nm == dtheta_nm:
            continue
        else:
            data[nm] = atm.dim_mean(ds[nm], 'lon', lon1, lon2)

databar = {}
for nm in data:
    if 'year' in data[nm].dims:
        databar[nm] = data[nm].mean(dim='year')
コード例 #10
0
ファイル: pub-figs-grl.py プロジェクト: jenfly/monsoon-onset
# ----------------------------------------------------------------------
# Daily timeseries

ts = xray.Dataset()
for nm in ['GPCP', 'PRECTOT']:
    ts[nm] = atm.mean_over_geobox(data[nm], lat1, lat2, lon1, lon2)
ts['MFC'] = utils.daily_rel2onset(index_all['CHP_MFC']['daily_ts'],
                                  index[ind_nm], npre, npost)
ts['CMFC'] = utils.daily_rel2onset(index_all['CHP_MFC']['tseries'],
                                   index[ind_nm], npre, npost)


# Extract variables at specified latitudes
for nm, lat0 in lat_extract.iteritems():
    var = atm.dim_mean(data[nm], 'lon', lon1, lon2)
    lat = atm.get_coord(var, 'lat')
    lat0_str = atm.latlon_labels(lat0, 'lat', deg_symbol=False)
    # key = nm + '_' + lat0_str
    key = nm
    lat_closest, _ = atm.find_closest(lat, lat0)
    print '%s %.2f %.2f' % (nm, lat0, lat_closest)
    ts[key] = atm.subset(var, {'lat' : (lat_closest, None)}, squeeze=True)

# Compute climatology and smooth with rolling mean
if 'year' in ts.dims:
    ts = ts.mean(dim='year')
if nroll is not None:
    for nm in ts.data_vars:
        ts[nm] = atm.rolling_mean(ts[nm], nroll, center=True)
tseries = atm.subset(ts, {'dayrel' : (-npre, npost)})