コード例 #1
0
ファイル: gmm.py プロジェクト: yinyumeng/HyperParameterTuning
 def log_marginal_likelihood(params, data):
     cluster_lls = []
     for log_proportion, mean, chol in zip(*unpack_params(params)):
         cov = np.dot(chol.T, chol) + 0.000001 * np.eye(D)
         cluster_log_likelihood = log_proportion + mvn.logpdf(data, mean, cov)
         cluster_lls.append(np.expand_dims(cluster_log_likelihood, axis=0))
     cluster_lls = np.concatenate(cluster_lls, axis=0)
     return np.sum(logsumexp(cluster_lls, axis=0))
コード例 #2
0
 def predict(params, x, y, xstar):
     """Returns the predictive mean and covariance at locations xstar,
        of the latent function value f (without observation noise)."""
     mean, cov_params, noise_scale = unpack_params(params)
     cov_f_f = cov_func(cov_params, xstar, xstar)
     cov_y_f = cov_func(cov_params, x, xstar)
     cov_y_y = cov_func(cov_params, x, x) + noise_scale * np.eye(len(y))
     pred_mean = mean +   np.dot(solve(cov_y_y, cov_y_f).T, y - mean)
     pred_cov = cov_f_f - np.dot(solve(cov_y_y, cov_y_f).T, cov_y_f)
     return pred_mean, pred_cov
コード例 #3
0
 def log_marginal_likelihood(params, x, y):
     mean, cov_params, noise_scale = unpack_params(params)
     cov_y_y = cov_func(cov_params, x, x) + noise_scale * np.eye(len(y))
     prior_mean = mean * np.ones(len(y))
     return mvn.logpdf(y, prior_mean, cov_y_y)