コード例 #1
0
ファイル: train.py プロジェクト: katejung/CSE546MSD
def getSamples(basedir):
    X, Y = [], []
    feature_labels = [
        'segments_pitch', 'segments_timbre', 'segments_loudness_max', 'tempo'
    ]
    cnt = 0
    for root, dirs, files in os.walk(basedir):
        files = glob.glob(os.path.join(root, '*.h5'))
        print(root, cnt)
        # apply function to all files
        for f in files:
            #             try:
            h5 = GETTERS.open_h5_file_read(f)
            year = GETTERS.get_year(h5)
            if year == 0:
                continue
            bttimbre = get_bttimbre(h5)
            if bttimbre is None or year == 0:
                continue
            h5.close()
            X.append(bttimbre)
            Y.append(year)
            cnt += 1

            if cnt > 10000:
                break
    return X, Y, feature_labels
コード例 #2
0
def buildfeatures(basedir,cluster,ext='.h5'):
    
    global cap
    i = 0
    features = []
    decade = []
    decadecount = defaultdict(int)
    for root, dirs, files in os.walk(basedir):
        files = glob.glob(os.path.join(root,'*'+ext))
        for f in files:
            h5 = hdf5_getters.open_h5_file_read(f)
            year = hdf5_getters.get_year(h5)
            if year == 0:
                h5.close()
                continue
            bins = getbin(year)
#            dec = (year/10)*10
#            if dec < 1960:
#                h5.close()
#                continue
            if decadecount[bins] > cap:
                flag = checkforcompletion(decadecount)
                h5.close()
                if flag:
                    return features,decade
                continue
            i += 1
            print i 
            clustercount = {}
          
            for x in range(50):
                clustercount[x] = 0
               
            feature = []
           
            try:
                bttimbre = bt.get_bttimbre(h5)
                btT = bttimbre.T
                for x in btT:
                    label = kmeans.predict(x)
                    clustercount[label[0]] += 1
                for cl in clustercount.keys():
                    feature.append(clustercount[cl])

                features.append(feature)
                
                decade.append(bins)
                decadecount[bins] += 1
            
            except:
                h5.close()
                continue
            h5.close()
            
  
    return features,decade
コード例 #3
0
def getclusters(basedir,ext='.h5') :
    print 'inside clusters'
    features = []
    cfeatures = [] 
    decadecount = defaultdict(int)
    deccount = defaultdict(int)
    i=0
    for root, dirs, files in os.walk(basedir):
        files = glob.glob(os.path.join(root,'*'+ext))
        for f in files:
            h5 = hdf5_getters.open_h5_file_read(f)
            year = hdf5_getters.get_year(h5)
            if year == 0:
                h5.close()
                continue
            bins = getbin(year)
#            decade.append(bin)
#            dec = (year/10)*10
#            decadecount[dec] += 1
#            if dec < 1960:
#                h5.close()
#                continue
             
            deccount[bin] += 1
            if decadecount[bins] > cap:
                flag = checkforcompletion(decadecount)
                h5.close()
                if flag:
                    for dec in decadecount.keys():
                        print 'Dec : ' + str(dec) + ' Count : ' + str(decadecount[dec])
                    return features,cfeatures
                continue
            i += 1
            print i
            try:
                bttimbre = bt.get_bttimbre(h5)
                btT = bttimbre.T
                for x in btT:
                    features.append(x)
                decadecount[bins] += 1
                btchroma = bt.get_btchromas(h5)
                btc = btchroma.T
                for x in btc:
                    cfeatures.append(x)
                decadecount[bins] += 1
            except:
                h5.close()
                continue
            h5.close()
    for dec in deccount.keys():
        print 'Dec : ' + str(dec) + ' Count : ' + str(decadecount[dec])
    features = array(features)
    cfeatures = array(cfeatures)
    return features,cfeatures
コード例 #4
0
def beat_aligned_timbre(song_id, file_name) :
  bttimbre = beat_aligned_feats.get_bttimbre(file_name)
  if bttimbre is None :
    return []
  bttimbre = bttimbre.T
  rows = []
  for i in range(bttimbre.shape[0]) :
    vals = {'song_id': song_id, 'beat_number': i}
    for j in range(12) :
      vals[timbre_schema[j]] = bttimbre[i][j]
    rows.append(vals)
  return rows
コード例 #5
0
def process_filelist_test(filelist=None,
                          model=None,
                          tmpfilename=None,
                          npicks=None,
                          winsize=None,
                          finaldim=None,
                          K=1,
                          typecompress='picks'):
    """
    Main function, process all files in the list (as long as their artist
    is in testartist)
    INPUT
       filelist     - a list of song files
       model        - h5 file containing feats and year for all train songs
       tmpfilename  - where to save our processed features
       npicks       - number of segments to pick per song
       winsize      - size of each segment we pick
       finaldim     - how many values do we keep
       K            - param of KNN (default 1)
       typecompress - feature type, 'picks', 'corrcoeff' or 'cov'
                      must be the same as in training
    """
    # sanity check
    for arg in locals().values():
        assert not arg is None, 'process_filelist_test, missing an argument, something still None'
    if os.path.isfile(tmpfilename):
        print 'ERROR: file', tmpfilename, 'already exists.'
        return
    if not os.path.isfile(model):
        print 'ERROR: model', model, 'does not exist.'
        return
    # create kdtree
    h5model = tables.openFile(model, mode='r')
    assert h5model.root.data.feats.shape[
        1] == finaldim, 'inconsistency in final dim'
    kd = ANN.kdtree(h5model.root.data.feats)
    # create outputfile
    output = tables.openFile(tmpfilename, mode='a')
    group = output.createGroup("/", 'data', 'TMP FILE FOR YEAR RECOGNITION')
    output.createEArray(group,
                        'year_real',
                        tables.IntAtom(shape=()), (0, ),
                        '',
                        expectedrows=len(filelist))
    output.createEArray(group,
                        'year_pred',
                        tables.Float64Atom(shape=()), (0, ),
                        '',
                        expectedrows=len(filelist))
    # random projection
    ndim = 12  # fixed in this dataset
    if typecompress == 'picks':
        randproj = RANDPROJ.proj_point5(ndim * winsize, finaldim)
    elif typecompress == 'corrcoeff' or typecompress == 'cov':
        randproj = RANDPROJ.proj_point5(ndim * ndim, finaldim)
    elif typecompress == 'avgcov':
        randproj = RANDPROJ.proj_point5(90, finaldim)
    else:
        assert False, 'Unknown type of compression: ' + str(typecompress)
    # go through files
    cnt_f = 0
    for f in filelist:
        cnt_f += 1
        if cnt_f % 5000 == 0:
            print 'TESTING FILE #' + str(cnt_f)
        # check file
        h5 = GETTERS.open_h5_file_read(f)
        artist_id = GETTERS.get_artist_id(h5)
        year = GETTERS.get_year(h5)
        track_id = GETTERS.get_track_id(h5)
        h5.close()
        if year <= 0:  # probably useless but...
            continue
        if typecompress == 'picks':
            # we have a train artist with a song year, we're good
            bttimbre = get_bttimbre(f)
            if bttimbre is None:
                continue
            # we even have normal features, awesome!
            processed_feats = CBTF.extract_and_compress(bttimbre,
                                                        npicks,
                                                        winsize,
                                                        finaldim,
                                                        randproj=randproj)
        elif typecompress == 'corrcoeff':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.corr_and_compress(timbres,
                                                     finaldim,
                                                     randproj=randproj)
        elif typecompress == 'cov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.cov_and_compress(timbres,
                                                    finaldim,
                                                    randproj=randproj)
        elif typecompress == 'avgcov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.avgcov_and_compress(timbres,
                                                       finaldim,
                                                       randproj=randproj)
        else:
            assert False, 'Unknown type of compression: ' + str(typecompress)
        if processed_feats is None:
            continue
        if processed_feats.shape[0] == 0:
            continue
        # do prediction
        year_pred = do_prediction(processed_feats, kd, h5model, K)
        # add pred and ground truth to output
        if not year_pred is None:
            output.root.data.year_real.append([year])
            output.root.data.year_pred.append([year_pred])
    # close output and model
    del kd
    h5model.close()
    output.close()
    # done
    return
コード例 #6
0
def process_filelist_train(filelist=None,testartists=None,tmpfilename=None,
                           npicks=None,winsize=None,finaldim=None,typecompress='picks'):
    """
    Main function, process all files in the list (as long as their artist
    is not in testartist)
    INPUT
       filelist     - a list of song files
       testartists  - set of artist ID that we should not use
       tmpfilename  - where to save our processed features
       npicks       - number of segments to pick per song
       winsize      - size of each segment we pick
       finaldim     - how many values do we keep
       typecompress - one of 'picks' (win of btchroma), 'corrcoef' (correlation coefficients),
                      'cov' (covariance)
    """
    # sanity check
    for arg in locals().values():
        assert not arg is None,'process_filelist_train, missing an argument, something still None'
    if os.path.isfile(tmpfilename):
        print 'ERROR: file',tmpfilename,'already exists.'
        return
    # create outputfile
    output = tables.openFile(tmpfilename, mode='a')
    group = output.createGroup("/",'data','TMP FILE FOR YEAR RECOGNITION')
    output.createEArray(group,'feats',tables.Float64Atom(shape=()),(0,finaldim),'',
                        expectedrows=len(filelist))
    output.createEArray(group,'year',tables.IntAtom(shape=()),(0,),'',
                        expectedrows=len(filelist))
    output.createEArray(group,'track_id',tables.StringAtom(18,shape=()),(0,),'',
                        expectedrows=len(filelist))
    # random projection
    ndim = 12 # fixed in this dataset
    if typecompress == 'picks':
        randproj = RANDPROJ.proj_point5(ndim * winsize, finaldim)
    elif typecompress == 'corrcoeff' or typecompress == 'cov':
        randproj = RANDPROJ.proj_point5(ndim * ndim, finaldim)
    elif typecompress == 'avgcov':
        randproj = RANDPROJ.proj_point5(90, finaldim)
    else:
        assert False,'Unknown type of compression: '+str(typecompress)
    # iterate over files
    cnt_f = 0
    for f in filelist:
        cnt_f += 1
        # verbose
        if cnt_f % 50000 == 0:
            print 'training... checking file #',cnt_f
        # check file
        h5 = GETTERS.open_h5_file_read(f)
        artist_id = GETTERS.get_artist_id(h5)
        year = GETTERS.get_year(h5)
        track_id = GETTERS.get_track_id(h5)
        h5.close()
        if year <= 0 or artist_id in testartists:
            continue
        # we have a train artist with a song year, we're good
        bttimbre = get_bttimbre(f)
        if typecompress == 'picks':
            if bttimbre is None:
                continue
            # we even have normal features, awesome!
            processed_feats = CBTF.extract_and_compress(bttimbre,npicks,winsize,finaldim,
                                                        randproj=randproj)
        elif typecompress == 'corrcoeff':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.corr_and_compress(timbres,finaldim,randproj=randproj)
        elif typecompress == 'cov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.cov_and_compress(timbres,finaldim,randproj=randproj)
        elif typecompress == 'avgcov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.avgcov_and_compress(timbres,finaldim,randproj=randproj)
        else:
            assert False,'Unknown type of compression: '+str(typecompress)
        # save them to tmp file
        n_p_feats = processed_feats.shape[0]
        output.root.data.year.append( np.array( [year] * n_p_feats ) )
        output.root.data.track_id.append( np.array( [track_id] * n_p_feats ) )
        output.root.data.feats.append( processed_feats )
    # we're done, close output
    output.close()
    return
コード例 #7
0
def process_filelist_train(filelist=None,
                           testartists=None,
                           tmpfilename=None,
                           npicks=None,
                           winsize=None,
                           finaldim=None,
                           typecompress='picks'):
    """
    Main function, process all files in the list (as long as their artist
    is not in testartist)
    INPUT
       filelist     - a list of song files
       testartists  - set of artist ID that we should not use
       tmpfilename  - where to save our processed features
       npicks       - number of segments to pick per song
       winsize      - size of each segment we pick
       finaldim     - how many values do we keep
       typecompress - one of 'picks' (win of btchroma), 'corrcoef' (correlation coefficients),
                      'cov' (covariance)
    """
    # sanity check
    for arg in locals().values():
        assert not arg is None, 'process_filelist_train, missing an argument, something still None'
    if os.path.isfile(tmpfilename):
        print 'ERROR: file', tmpfilename, 'already exists.'
        return
    # create outputfile
    output = tables.openFile(tmpfilename, mode='a')
    group = output.createGroup("/", 'data', 'TMP FILE FOR YEAR RECOGNITION')
    output.createEArray(group,
                        'feats',
                        tables.Float64Atom(shape=()), (0, finaldim),
                        '',
                        expectedrows=len(filelist))
    output.createEArray(group,
                        'year',
                        tables.IntAtom(shape=()), (0, ),
                        '',
                        expectedrows=len(filelist))
    output.createEArray(group,
                        'track_id',
                        tables.StringAtom(18, shape=()), (0, ),
                        '',
                        expectedrows=len(filelist))
    # random projection
    ndim = 12  # fixed in this dataset
    if typecompress == 'picks':
        randproj = RANDPROJ.proj_point5(ndim * winsize, finaldim)
    elif typecompress == 'corrcoeff' or typecompress == 'cov':
        randproj = RANDPROJ.proj_point5(ndim * ndim, finaldim)
    elif typecompress == 'avgcov':
        randproj = RANDPROJ.proj_point5(90, finaldim)
    else:
        assert False, 'Unknown type of compression: ' + str(typecompress)
    # iterate over files
    cnt_f = 0
    for f in filelist:
        cnt_f += 1
        # verbose
        if cnt_f % 50000 == 0:
            print 'training... checking file #', cnt_f
        # check file
        h5 = GETTERS.open_h5_file_read(f)
        artist_id = GETTERS.get_artist_id(h5)
        year = GETTERS.get_year(h5)
        track_id = GETTERS.get_track_id(h5)
        h5.close()
        if year <= 0 or artist_id in testartists:
            continue
        # we have a train artist with a song year, we're good
        bttimbre = get_bttimbre(f)
        if typecompress == 'picks':
            if bttimbre is None:
                continue
            # we even have normal features, awesome!
            processed_feats = CBTF.extract_and_compress(bttimbre,
                                                        npicks,
                                                        winsize,
                                                        finaldim,
                                                        randproj=randproj)
        elif typecompress == 'corrcoeff':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.corr_and_compress(timbres,
                                                     finaldim,
                                                     randproj=randproj)
        elif typecompress == 'cov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.cov_and_compress(timbres,
                                                    finaldim,
                                                    randproj=randproj)
        elif typecompress == 'avgcov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.avgcov_and_compress(timbres,
                                                       finaldim,
                                                       randproj=randproj)
        else:
            assert False, 'Unknown type of compression: ' + str(typecompress)
        # save them to tmp file
        n_p_feats = processed_feats.shape[0]
        output.root.data.year.append(np.array([year] * n_p_feats))
        output.root.data.track_id.append(np.array([track_id] * n_p_feats))
        output.root.data.feats.append(processed_feats)
    # we're done, close output
    output.close()
    return
コード例 #8
0
def get_all_titles(basedir,ext='.h5') :
    
    global errorcount
    global count
    global cap
    global truecount
    
    features = []
    decade = []
    decadecount = defaultdict(int)
    timbre = None
    i = 0
    for root, dirs, files in os.walk(basedir):
        files = glob.glob(os.path.join(root,'*'+ext))
        for f in files:
            feature = []
            try:
                h5 = hdf5_getters.open_h5_file_read(f)
            except HDF5ExtError as e:
                errorcount += 1
                print "Unexpected error:", sys.exc_info()[0]
                print traceback.format_exc()
                continue
            year = hdf5_getters.get_year(h5)
            print i
            i+=1
            if year == 0:
                h5.close()
                continue
            label = getbin(year)
            #label = (year/10)*10
            truecount[label] += 1
            if decadecount[label] > cap:
                flag = checkforcompletion(decadecount)
                h5.close()
                if flag:
                    for dec in decadecount.keys():
                        print 'Decade : ' + str(dec) + ' Count : ' + str(decadecount[dec])
                    return features,decade
                continue
#            dec = (year/10)*10
#            if dec < 1960:
#                h5.close()
#                continue
            
#            try:
#                
#                bttimbre = bt.get_bttimbre(h5)
#                timbres = bttimbre.argmax(axis = 0) + 1   # Is a vector of timbre values sutiable for training an HMM
#                for timbre in timbres:
#                    timbredict[timbre] += 1
#                for i in range(1,13):
#                    feature.append(timbredict[i])
#            except:
#                h5.close()
#                continue
#            clustercount = {}
#            for x in range(12):
#                clustercount[x] = 0
   
            
#            try:
#                bttimbre = bt.get_bttimbre(h5)
#                btT = bttimbre.T
#                for x in btT:
#                    timbre = x.argmax(axis = 0)
#                    clustercount[timbre]+=1  
#            except:
#                h5.close()
#                continue
#            for y in range(12):
#                features.append(clustercount[y])

            try:
                btchromas = bt.get_btchromas(h5)
                for chroma in btchromas:
                    feature.append(mean(chroma))
                covmat = get_covariance(btchromas)
                feature.extend(covmat)
                bttimbre = bt.get_bttimbre(h5)
                for timbre in bttimbre:
                    feature.append(mean(timbre))
                covmat = get_covariance(bttimbre)
                feature.extend(covmat)
                
#                btT = bttimbre.T
#                for x in btT:
#                    timbre = x.argmax(axis = 0)
#                    clustercount[timbre]+=1 
#                for y in range(12):
#                    feature.append(clustercount[y])
            except:
                errorcount += 1
                h5.close()
                continue
            loudness = hdf5_getters.get_loudness(h5)
            feature.append(loudness)
            duration = hdf5_getters.get_duration(h5)
            feature.append(duration)
            features.append(feature)
            decade.append(label)
            decadecount[label] += 1
            count += 1
            h5.close()
#            title = hdf5_getters.get_title(h5)
#            segstarts = hdf5_getters.get_segments_start(h5)
#            segstarts = np.array(segstarts).flatten()
#            btstarts = hdf5_getters.get_beats_start(h5)
#            btstarts = np.array(btstarts).flatten()

    for dec in decadecount.keys():
        print 'Decade : ' + str(dec) + ' Count : ' + str(decadecount[dec])
    return features,decade
コード例 #9
0
    files, start_times, end_times = load_results(tsv_path)

    for filename, start_time, end_time in zip(files, start_times, end_times):
        # Load in MSD hdf5 file
        h5 = hdf5_getters.open_h5_file_read(to_h5_path(filename))
        # Load in beat times from MSD
        beats = hdf5_getters.get_beats_start(h5)
        # Some files have no EN analysis
        if beats.size == 0:
            continue
        # Get indices which fall within the range of correct alignment
        time_mask = np.logical_and(beats > start_time, beats < end_time)
        beats = beats[time_mask]
        # and beat-synchronous feature matrices, within the time range of correct alignment
        chroma = beat_aligned_feats.get_btchromas(h5)[:, time_mask]
        timbre = beat_aligned_feats.get_bttimbre(h5)[:, time_mask]
        loudness = beat_aligned_feats.get_btloudnessmax(h5)[:, time_mask]
        h5.close()
        # Stack it
        msd_features = np.vstack([chroma, timbre, loudness])
        if np.isnan(msd_features).any():
            print filename
            continue
        # Load in pretty midi object
        pm = pretty_midi.PrettyMIDI(midi.read_midifile(to_midi_path(filename)))
        # Construct piano roll, aligned to the msd beat times
        piano_roll = pm.get_piano_roll(times=beats)
        # Ignore notes below 36 and above 84
        piano_roll = piano_roll[36:84, :]
        # Write out
        np.save(os.path.join(output_path, filename.replace('.mp3', '-msd.npy')), msd_features)
コード例 #10
0
def process_filelist_test(filelist=None,model=None,tmpfilename=None,
                           npicks=None,winsize=None,finaldim=None,K=1,
                          typecompress='picks'):
    """
    Main function, process all files in the list (as long as their artist
    is in testartist)
    INPUT
       filelist     - a list of song files
       model        - h5 file containing feats and year for all train songs
       tmpfilename  - where to save our processed features
       npicks       - number of segments to pick per song
       winsize      - size of each segment we pick
       finaldim     - how many values do we keep
       K            - param of KNN (default 1)
       typecompress - feature type, 'picks', 'corrcoeff' or 'cov'
                      must be the same as in training
    """
    # sanity check
    for arg in locals().values():
        assert not arg is None,'process_filelist_test, missing an argument, something still None'
    if os.path.isfile(tmpfilename):
        print 'ERROR: file',tmpfilename,'already exists.'
        return
    if not os.path.isfile(model):
        print 'ERROR: model',model,'does not exist.'
        return
    # create kdtree
    h5model = tables.openFile(model, mode='r')
    assert h5model.root.data.feats.shape[1]==finaldim,'inconsistency in final dim'
    kd = ANN.kdtree(h5model.root.data.feats)
    # create outputfile
    output = tables.openFile(tmpfilename, mode='a')
    group = output.createGroup("/",'data','TMP FILE FOR YEAR RECOGNITION')
    output.createEArray(group,'year_real',tables.IntAtom(shape=()),(0,),'',
                        expectedrows=len(filelist))
    output.createEArray(group,'year_pred',tables.Float64Atom(shape=()),(0,),'',
                        expectedrows=len(filelist))
    # random projection
    ndim = 12 # fixed in this dataset
    if typecompress == 'picks':
        randproj = RANDPROJ.proj_point5(ndim * winsize, finaldim)
    elif typecompress == 'corrcoeff' or typecompress=='cov':
        randproj = RANDPROJ.proj_point5(ndim * ndim, finaldim)
    elif typecompress == 'avgcov':
        randproj = RANDPROJ.proj_point5(90, finaldim)
    else:
        assert False,'Unknown type of compression: '+str(typecompress)
    # go through files
    cnt_f = 0
    for f in filelist:
        cnt_f += 1
        if cnt_f % 5000 == 0:
            print 'TESTING FILE #'+str(cnt_f)
        # check file
        h5 = GETTERS.open_h5_file_read(f)
        artist_id = GETTERS.get_artist_id(h5)
        year = GETTERS.get_year(h5)
        track_id = GETTERS.get_track_id(h5)
        h5.close()
        if year <= 0: # probably useless but...
            continue
        if typecompress == 'picks':
            # we have a train artist with a song year, we're good
            bttimbre = get_bttimbre(f)
            if bttimbre is None:
                continue
            # we even have normal features, awesome!
            processed_feats = CBTF.extract_and_compress(bttimbre,npicks,winsize,finaldim,
                                                        randproj=randproj)
        elif typecompress == 'corrcoeff':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.corr_and_compress(timbres,finaldim,randproj=randproj)
        elif typecompress == 'cov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.cov_and_compress(timbres,finaldim,randproj=randproj)
        elif typecompress == 'avgcov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.avgcov_and_compress(timbres,finaldim,randproj=randproj)
        else:
            assert False,'Unknown type of compression: '+str(typecompress)
        if processed_feats is None:
            continue
        if processed_feats.shape[0] == 0:
            continue
        # do prediction
        year_pred = do_prediction(processed_feats,kd,h5model,K)
        # add pred and ground truth to output
        if not year_pred is None:
            output.root.data.year_real.append( [year] )
            output.root.data.year_pred.append( [year_pred] )
    # close output and model
    del kd
    h5model.close()
    output.close()
    # done
    return