コード例 #1
0
    def _plot_bokeh(self, current_plot, show_legend=True):
        import bokeh.models as mdl
        import bokeh.plotting as bkh
        from bokeh.properties import value

        lst = []
        row_lst = []
        for plotter in self.plots:
            cur_plot = bkh.figure(title=plotter.title, plot_width=self.one_figsize[0] * self.BOKEH_RESIZE,
                                  plot_height=self.one_figsize[1] * self.BOKEH_RESIZE)
            if plotter.xlim is not None:
                cur_plot.x_range = mdl.Range1d(start=plotter.xlim[0], end=plotter.xlim[1])
            if plotter.ylim is not None:
                cur_plot.y_range = mdl.Range1d(start=plotter.ylim[0], end=plotter.ylim[1])
            cur_plot.title_text_font_size = value("{}pt".format(plotter.fontsize))
            cur_plot.xaxis.axis_label = plotter.xlabel
            cur_plot.yaxis.axis_label = plotter.ylabel
            cur_plot.legend.orientation = 'top_right'
            cur_plot = plotter._plot_bokeh(cur_plot, show_legend=show_legend)
            if len(row_lst) >= self.columns:
                lst.append(row_lst)
                row_lst = []
            row_lst.append(cur_plot)
        if len(row_lst) > 0:
            lst.append(row_lst)
        grid = mdl.GridPlot(children=lst)
        return grid
コード例 #2
0
    def plot_bokeh(self, xlim=None, ylim=None, title=None, figsize=None,
                   xlabel=None, ylabel=None, fontsize=None, show_legend=True):

        """
        Plot data using bokeh library. Use show() method for bokeh to see result.

        :param bool new_plot: create or not new figure
        :param xlim: x-axis range
        :param ylim: y-axis range
        :type xlim: None or tuple(x_min, x_max)
        :type ylim: None or tuple(y_min, y_max)
        :param title: title
        :type title: None or str
        :param figsize: figure size
        :type figsize: None or tuple(weight, height)
        :param xlabel: x-axis name
        :type xlabel: None or str
        :param ylabel: y-axis name
        :type ylabel: None or str
        :param fontsize: font size
        :type fontsize: None or int
        :param bool show_legend: show or not labels for plots
        """
        global _COLOR_CYCLE_BOKEH
        import bokeh.plotting as bkh
        from bokeh.models import Range1d
        from bokeh.properties import value

        figsize = self.figsize if figsize is None else figsize
        xlabel = self.xlabel if xlabel is None else xlabel
        ylabel = self.ylabel if ylabel is None else ylabel
        title = self.title if title is None else title
        xlim = self.xlim if xlim is None else xlim
        ylim = self.ylim if ylim is None else ylim
        fontsize = self.fontsize if fontsize is None else fontsize
        self.fontsize_ = fontsize
        self.show_legend_ = show_legend

        figsize = (figsize[0] * self.BOKEH_RESIZE, figsize[1] * self.BOKEH_RESIZE)

        bkh.output_notebook()

        current_plot = bkh.figure(title=title, plot_width=figsize[0], plot_height=figsize[1])
        _COLOR_CYCLE_BOKEH = itertools.cycle(COLOR_ARRAY_BOKEH)

        if xlim is not None:
            current_plot.x_range = Range1d(start=xlim[0], end=xlim[1])
        if ylim is not None:
            current_plot.y_range = Range1d(start=ylim[0], end=ylim[1])
        current_plot.title_text_font_size = value("{}pt".format(fontsize))
        current_plot.xaxis.axis_label = xlabel
        current_plot.yaxis.axis_label = ylabel
        current_plot.legend.orientation = 'top_right'

        current_plot = self._plot_bokeh(current_plot, show_legend)
        bkh.show(current_plot)
コード例 #3
0
                    plot_height=300,
                    min_border=0,
                    title="Hover and tap discontinuous patches.")

patches_dis_data = pd.DataFrame(
    {
        'xs': [[0, 49, 49, 0, NAN, 51, 89, 89, 51], [90, 100, 100, 90],
               [92, 98, 98, 92]],
        'ys': [[0, 0, 80, 80, NAN, 0, 0, 90, 90], [0, 0, 100, 100],
               [20, 20, 90, 90]],
        'value':
        ['I am one object split in two', 'I am wheat', 'I am steelblue'],
        'fill_color': ['firebrick', 'wheat', 'steelblue']
    }, )
plot_patches_dis = Plot(**PLOT_FORMATS)
plot_patches_dis.add_glyph(
    ColumnDataSource(patches_dis_data),
    Patches(
        xs='xs',
        ys='ys',
        fill_color='fill_color',
        line_color=value('wheat'),
    ))
plot_patches_dis.add_tools(HoverTool(tooltips='@value'))
plot_patches_dis.add_tools(TapTool())

filename = '2376_hover_on_discontinuous_patches.html'
output_file(filename, title='Discontinuous Patches', mode='relative-dev')
save(plot_patches_dis)
view(filename)
from bokeh.models import Plot, Range1d, ColumnDataSource, Patches, HoverTool, TapTool
from bokeh.properties import value
from bokeh.io import save, output_file

PLOT_FORMATS = dict(x_range=Range1d(0,100), y_range=Range1d(0,100), plot_width=500, plot_height=300, min_border=0, title="Hover and tap discontinuous patches.")

patches_dis_data = pd.DataFrame(
    {
        'xs': [[0, 49, 49, 0, NAN, 51, 89, 89, 51], [90, 100, 100, 90], [92, 98, 98, 92]],
        'ys': [[0, 0, 80, 80, NAN, 0, 0, 90, 90], [0, 0, 100, 100], [20, 20, 90, 90]],
        'value': ['I am one object split in two', 'I am wheat', 'I am steelblue'],
        'fill_color': ['firebrick', 'wheat', 'steelblue']
    },
)
plot_patches_dis = Plot(**PLOT_FORMATS)
plot_patches_dis.add_glyph(
    ColumnDataSource(patches_dis_data),
    Patches(
        xs='xs', ys='ys',
        fill_color='fill_color',
        line_color=value('wheat'),
    )
)
plot_patches_dis.add_tools(HoverTool(tooltips='@value'))
plot_patches_dis.add_tools(TapTool())

filename = '2376_hover_on_discontinuous_patches.html'
output_file(filename, title='Discontinuous Patches', mode='relative-dev')
save(plot_patches_dis)
view(filename)