コード例 #1
0
def show_flows(g, ngs, fgs):

    p0 = gd.getpos(g)

    ckw = dict([(k,
                 dict(facecolor='gray',
                      alpha=1,
                      linewidth=.5,
                      arrowstyle='-|>',
                      edgecolor='black',
                      color='gray',
                      shrinkA=0,
                      shrinkB=0)) for k in g.edges()])
    skw = dict(facecolor='none', edgecolor='black', s=20)

    gd.draw(g, p0, g.edges(), ckw=ckw, skw=skw, cktype='simple')

    colors = mycolors.getct(len(fgs))
    for i, fg in enumerate(fgs):
        edges = fg.edges()
        weights = [fg[e[0]][e[1]]['weight'] for e in edges]
        ckw = dict([(k, dict(color=colors[i], linewidth=weights[j] / 3))
                    for j, k in enumerate(edges)])

        gd.draw(fg, p0, edges, ckw=ckw, scatter_nodes=[], cktype='simple')
コード例 #2
0
ファイル: mincost.py プロジェクト: bh0085/projects
def show_brain_flows(g,ngs,fgs, communities):

    centers,volumes, voxels = aba.brain_regions(len(communities),
                                                return_voxels = True)
    p0 = {}
    n_communities = {}
    for i, c in enumerate(communities):
        nv = len(voxels[i])
        for j, n in enumerate(c):
            p0[n] = voxels[i][int(floor(random.rand()*nv))][:2] + random.rand()*.4
            n_communities[n] = i
        
    comm_ct = mycolors.getct(len(n_communities))
    nodelist = g.nodes()
    
    ckw = dict([(k,dict(facecolor = 'gray',
                        alpha = 1,
                        linewidth = .5,
                        arrowstyle = '-|>',
                        edgecolor = 'black',
                        color = comm_ct[n_communities[k[0]]],
                        shrinkA = 0,
                        shrinkB = 0))
                for k in g.edges() ])

    skw =dict(facecolor = 'none',
              edgecolor = [comm_ct[n_communities[n]] 
                           for n in nodelist],
              s = 1)

                      
    gd.draw(g,p0,g.edges()[::10], 
            scatter_nodes = nodelist,
            ckw = ckw,
            skw = skw,
            ckalpha = .8,
            cktype = 'simple')
    
    
    return
    

    colors = mycolors.getct(len(fgs))
    for i,fg in enumerate(fgs):
        edges = fg.edges()
        weights = [fg[e[0]][e[1]]['weight'] for e in edges]
        ckw = dict([(k, dict(color = colors[i],
                             linewidth = weights[j]/3))
                    for j, k in enumerate(edges)
                    ])
                            
        gd.draw(fg, 
                p0, 
                edges,
                ckw = ckw,
                scatter_nodes = [],
                cktype = 'simple',
                ckalpha = .25,
                )
コード例 #3
0
def show_brain_flows(g, ngs, fgs, communities):

    centers, volumes, voxels = aba.brain_regions(len(communities),
                                                 return_voxels=True)
    p0 = {}
    n_communities = {}
    for i, c in enumerate(communities):
        nv = len(voxels[i])
        for j, n in enumerate(c):
            p0[n] = voxels[i][int(floor(
                random.rand() * nv))][:2] + random.rand() * .4
            n_communities[n] = i

    comm_ct = mycolors.getct(len(n_communities))
    nodelist = g.nodes()

    ckw = dict([(k,
                 dict(facecolor='gray',
                      alpha=1,
                      linewidth=.5,
                      arrowstyle='-|>',
                      edgecolor='black',
                      color=comm_ct[n_communities[k[0]]],
                      shrinkA=0,
                      shrinkB=0)) for k in g.edges()])

    skw = dict(facecolor='none',
               edgecolor=[comm_ct[n_communities[n]] for n in nodelist],
               s=1)

    gd.draw(g,
            p0,
            g.edges()[::10],
            scatter_nodes=nodelist,
            ckw=ckw,
            skw=skw,
            ckalpha=.8,
            cktype='simple')

    return

    colors = mycolors.getct(len(fgs))
    for i, fg in enumerate(fgs):
        edges = fg.edges()
        weights = [fg[e[0]][e[1]]['weight'] for e in edges]
        ckw = dict([(k, dict(color=colors[i], linewidth=weights[j] / 3))
                    for j, k in enumerate(edges)])

        gd.draw(
            fg,
            p0,
            edges,
            ckw=ckw,
            scatter_nodes=[],
            cktype='simple',
            ckalpha=.25,
        )
コード例 #4
0
ファイル: mincost.py プロジェクト: bh0085/projects
def show_flows(g, ngs, fgs):

    p0 = gd.getpos(g)

    ckw = dict([(k,dict(facecolor = 'gray',
                        alpha = 1,
                        linewidth = .5,
                        arrowstyle = '-|>',
                        edgecolor = 'black',
                        color = 'gray',
                        shrinkA = 0,
                        shrinkB = 0))
                for k in g.edges() ])
    skw =dict(facecolor = 'none',
              edgecolor = 'black',
              s = 20)
                      
    gd.draw(g,p0,g.edges(), 
            ckw = ckw,
            skw = skw,
            cktype = 'simple')
    
    
    colors = mycolors.getct(len(fgs))
    for i,fg in enumerate(fgs):
        edges = fg.edges()
        weights = [fg[e[0]][e[1]]['weight'] for e in edges]
        ckw = dict([(k, dict(color = colors[i],
                             linewidth = weights[j]/3))
                    for j, k in enumerate(edges)
                    ])
                            
        gd.draw(fg, 
                p0, 
                edges,
                ckw = ckw,
                scatter_nodes = [],
                cktype = 'simple')
コード例 #5
0
def scatter_array(arr, params):
    geo = params['computed']['geometry']
    if geo['name'] == 'square': return False
    name = geo['name']
    
    sxs = True
    if name == 'star':
        f = plt.gcf()
        ax = f.add_subplot(111)
        star_k = geo['k']
        d = geo['dim']
        
        ofs = 0
        
        xs, ys, cs = [],[],[]
        all_vals = reshape(transpose(arr,(1,0,2)), (shape(arr)[0]*shape(arr)[1], 3))

        nl = star_k;
        nodes = {};
        
        
        for l in range(star_k):
            layer_count = pow(d,l)
            layer_ofs = 0
            if l == 0:
                nodes[(0,0)] = {'r':0.,
                                't':0.,
                                'x':0,
                                'y':0,
                                'c':all_vals[ofs]}
                ofs += 1
            else:
                parent_keys = [ key for key in nodes.keys() if key[0] == l -1];
                for key in parent_keys:
                    p = nodes[key]
                    pt = p['t']
                    pr = p['r']
                    
                    for i in range(d):
                        
                        rthis = 5/sqrt(l)

                        open_angle = pi * 2 
                        if l != 1 :
                            open_angle = open_angle *.5
                            x0 = cos(pt) * pr
                            y0 = sin(pt) * pr
                        else:
                            if divmod(i,2)[1] == 2:
                                rthis *= 2
                            x0 = 0
                            y0 = 0

                        
                        angle_0 = pt - open_angle /2
                        theta = angle_0 + open_angle * (float(i) / d)

                        x = x0 + cos(theta) * rthis
                        y = y0 + sin(theta) * rthis
                        t = angle(complex(x,y))
                        r = absolute(complex(x,y))

                        nodes[(l,layer_ofs)] ={'r':r,
                                               't':t, 
                                               'c':all_vals[ofs],
                                               'x':x,
                                               'y':y,
                                               'ps':[key]}
                        layer_ofs += 1;
                        ofs+= 1;
        
        
    
        nodes[(0,0)]['ps'] = [k for k in nodes.keys() if k[0] == star_k-1]

        cheap = False
        if cheap:
            xs,ys,cs = zip(*[[v['x'],v['y'],v['c']]
                             for v in nodes.values()])
            ax.scatter(xs, ys, 50,color = cs)
                       
        else:
           import networkx as nx
           import cb.utils.graphs.draw as gd
           g = nx.DiGraph()
           
           edges = [(k, p) 
                    for k,v in nodes.iteritems()
                    for p in v['ps']];
           g.add_edges_from(edges)
           
           pos = dict([(k, [v['x'] , 
                            v['y']])
                       for k,v in nodes.iteritems()])
           
           nl = g.nodes()
           
           ects = dict([(k,len(g[k]) )
                        for k in nl])
           
           arrows = False
           if arrows:
               ckw = dict([(k,dict(facecolor = 'gray' if ects[k[0]] == 1
                                       else 'gray',
                                       alpha = 1,
                                       linewidth = 3,
                                       arrowstyle = '-|>',
                                       edgecolor = 'black',
                                       shrinkA = 30,
                                       shrinkB = 30))
                           for k in g.edges() if ects[k[0]] == 1])
           else:
               ckw = {}

           gd.draw(g, pos, g.edges(),
                   skw = {'s':500,
                          'edgecolor':'black',
                          'facecolor':[nodes[k]['c'] 
                                       for k in nl],
                          'alpha':.5
                          },
                   scatter_nodes = nl,

                   ckw = ckw
                   )
           
           plt.gca().set_xticks([])
           plt.gca().set_yticks([])
           
           #raise Exception()
           #
           #xs = [v['r'] * cos(v['t']) for v in nodes.values()]
           #ys = [v['r'] * sin(v['t']) for v in nodes.values()]
           #cs = [v['c'] for v in nodes.values()]
           #


    
    return sxs
コード例 #6
0
ファイル: module_signs.py プロジェクト: bh0085/compbio
def view0(modules,
          data_src = 'bdtnp',
          net_src = 'fRN',
          max_rank = 4,
          module_type = 'doubles'):
    '''
    A routine to view the sign of interaction coefficients for 
    a given transcription factor split per-cluster and per-module
    size.

    Designed to be run on the output of view_output.modules()

'''
    #COMPUTE BULK STATISTICS FOR EACH TF
    bd_data = nio.getBDTNP()
    genes = bd_data.keys()

    tfs =sorted(set(it.chain(*[k for k in modules.keys()])))
    tf_net = nx.Graph()
    tf_net.add_nodes_from(tfs)
    tf_edges = it.chain(*[[(e0, e1)
                for e0 in term
                for e1 in term
                if e0 != e1]
                for term in modules.keys()])
    tf_net.add_edges_from(tf_edges)
 
    pos = nx.graphviz_layout(tf_net)
    fig = myplots.fignum(1, (8,8))


    tfnodes = tf_net.nodes()
    tfnames = tfnodes

    all_coefs = \
        list(it.chain(*[t['coefs'] for t in modules.values()]))
    cstd = std(all_coefs)
    def colorfun(coefs):
        coef = median(coefs)
        arr = array([1.,0.,0.]) if coef < 0\
            else array([0.,0.,1.])
        return arr*min([1, abs(coef/cstd*2)])

    def widthfun(coefs, maxwid):
        return max([1,5.* len(coefs) /maxwid])

        
  

    for tf in tfs:
        fig.clf()
        ax = fig.add_subplot(111)

        ecols,ewids, estyles, ealphas =\
            [{} for i in range(4)]
        edges = []
        tf_doublet_terms = [(k, v)
                            for k, v in modules.iteritems()
                            if tf in k and len(set(k)) == 2 ] 

        tf_triplet_terms = [(k, v)
                            for k, v in modules.iteritems()
                            if tf in k and len(set(k)) == 3 ] 
        
        isdub = dict([(k,0.) for k in tfnames])
        istrip =dict([(k,0.) for k in tfnames])

        coflens = [len(e[1]['coefs']) 
                   for e in  tf_triplet_terms + tf_doublet_terms]
        max_l = max(coflens)

        for tt,v in sorted(tf_triplet_terms,
                         key = lambda x: len(x[1]['genes']))[::-1][:max_rank]:
            partners =tuple( [t for t in set(tt) if not t==tf])
            for p in partners: istrip[p] = 1 #istrip[[tfnodes.index(p) for p in partners]] = 1
            edge = partners 
            ecols[edge] = colorfun(modules[tt]['coefs'])
            ewids[edge] = widthfun(modules[tt]['coefs'],max_l)
            ealphas[edge] = 1 if module_type in ['triples','all'] \
                else .1
            estyles[edge] = 'dotted'
            
            edges.append(edge)
            
                        
        for td,v in sorted(tf_doublet_terms,
                         key = lambda x: len(x[1]['genes']))[::-1][:max_rank]:
            partners = tuple([t for t in set(td) if not t==tf])
            for p in partners: isdub[p] = 1
            edge = (tuple([tf] + list(partners))) 
            ecols[edge] = colorfun(modules[td]['coefs'])
            ewids[edge] = widthfun(modules[td]['coefs'], max_l)
            ealphas[edge] = 1 if module_type in ['doubles','all'] \
                else .1

            estyles[edge] = 'solid'

            edges.append(edge)
        
        
        tf_graph = nx.DiGraph()
        tf_graph.add_nodes_from(tfnodes)
        tf_graph.add_edges_from(edges)
        
        ckw = dict([ (k, dict(color = ecols[k], #array([1,0,0])*isdub[k] +\
                                 # array([0,0,1])*istrip[k],
                              alpha = ealphas[k],
                              linestyle = estyles[k],
                              linewidth = ewids[k],
                              arrowstyle = '-'))
                       for k in tf_graph.edges()])        
        circlepoints = dict([ (k, dict(facecolor ='white', #array([1,0,0])*isdub[k] +\
                                       # array([0,0,1])*istrip[k],
                                       alpha = round(ealphas[k],2),
                                       edgecolor = ecols[k],
                                       linestyle = estyles[k],
                                       linewidth = 3,))
                       for k in tf_graph.edges()])


        ax.set_title('Top modules for TF: {0}'.format(tf))
        myplots.padded_limits(ax,  *zip(*pos.values()))
        nodes = tf_graph.nodes()
        gd.draw(tf_graph,pos,edges, 
                scatter_nodes =tf_graph.nodes(),
                skw = {'s':[200 if n == tf else 2
                            for n in nodes],
                       'facecolor':[colorfun(modules[tuple([n])]['coefs']) 
                                if n == tf
                                else 'black' 
                                for n in nodes],
                       'edgecolor':'black',
                       'linewidth':2,
                       'alpha':1},#[1 if n == tf else .1 for n in nodes]},
                ckw = {})
        colors,alphas,tripoints = [{} for i in range(3)]
        for e in edges:
            colors[e] = 'black'
            alphas[e] = .2
            tripoints[e] = array(pos[tf])
        
        plot_tri = False
        plot_circ = True
        if plot_tri:
            gd.overlay(tf_graph, pos, edges,
                       tripoints = tripoints,
                       colors = colors,
                       alphas = alphas)
        if plot_circ:
            gd.overlay(tf_graph, pos, edges,
                       circlepoints =circlepoints)

        ax2 = fig.add_axes([.05,.05,.2,.2])
        ax2.set_xticks([])
        ax2.set_yticks([])
        coefs = modules[tuple([tf])]['coefs']
        l = len(coefs)
        sx = sy = ceil(sqrt(l))
        xs = mod(arange(l), sx)
        ys = floor( arange(l) / sx)
        cs = [colorfun([c/2]) for c in sorted(coefs)]
        ss = 100

        ax2.scatter(xs, ys, s = ss, color = cs)

        fig.savefig(figtemplate.format('tf_{0}_net_rank{1}_{2}'.\
                                           format(tf,max_rank,module_type)))