コード例 #1
0
def train(reader, model, max_epochs):
    # Input variables denoting the features and label data
    query       = Input(input_dim,  is_sparse=False)
    slot_labels = Input(num_labels, is_sparse=True)  # TODO: make sparse once it works

    # apply model to input
    z = model(query)

    # loss and metric
    ce = cross_entropy_with_softmax(z, slot_labels)
    pe = classification_error      (z, slot_labels)

    # training config
    epoch_size = 36000
    minibatch_size = 70
    num_mbs_to_show_result = 100
    momentum_time_constant = momentum_as_time_constant_schedule(minibatch_size / -math.log(0.9))  # TODO: Change to round number. This is 664.39. 700?

    lr_schedule = [0.003]*2+[0.0015]*12+[0.0003] # LR schedule over epochs (we don't run that many epochs, but if we did, these are good values)

    # trainer object
    lr_per_sample = learning_rate_schedule(lr_schedule, UnitType.sample, epoch_size)
    learner = adam_sgd(z.parameters,
                       lr=lr_per_sample, momentum=momentum_time_constant,
                       unit_gain=True,
                       low_memory=True,
                       gradient_clipping_threshold_per_sample=15, gradient_clipping_with_truncation=True)

    trainer = Trainer(z, (ce, pe), [learner])

    # define mapping from reader streams to network inputs
    input_map = {
        query       : reader.streams.query,
        slot_labels : reader.streams.slot_labels
    }

    # process minibatches and perform model training
    log_number_of_parameters(z) ; print()
    # more detailed logging
    progress_printer = ProgressPrinter(freq=100, first=10, tag='Training', tensorboard_log_dir='atis_log', model=z)
    #progress_printer = ProgressPrinter(tag='Training')

    t = 0
    for epoch in range(max_epochs):         # loop over epochs
        epoch_end = (epoch+1) * epoch_size
        while t < epoch_end:               # loop over minibatches on the epoch
            # BUGBUG? The change of minibatch_size parameter vv has no effect.
            data = reader.next_minibatch(min(minibatch_size, epoch_end-t), input_map=input_map) # fetch minibatch
            trainer.train_minibatch(data)                                   # update model with it
            t += trainer.previous_minibatch_sample_count                    # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True) # log progress
            #def trace_node(name):
            #    nl = [n for n in z.parameters if n.name() == name]
            #    if len(nl) > 0:
            #        print (name, np.asarray(nl[0].value))
            #trace_node('W')
            #trace_node('stabilizer_param')
        loss, metric, actual_samples = progress_printer.epoch_summary(with_metric=True)

    return loss, metric
コード例 #2
0
ファイル: learner_test.py プロジェクト: junaidnaseer/CNTK
def test_learner_logging():
    from cntk import Trainer
    from cntk.logging import ProgressPrinter
    from cntk import cross_entropy_with_softmax, classification_error

    features = C.input_variable(shape=(1,), needs_gradient=True, name='a')
    w_init = 1
    w = parameter(shape=(1,), init=w_init)
    z = features * w
    labels = C.input_variable(shape=(1,), name='b')
    ce = cross_entropy_with_softmax(z, labels)
    errs = classification_error(z, labels)

    writer = TestProgressWriter();
    lr_values = [0.3, 0.2, 0.1, 0]
    m_values = [0.6, 0.7, 0.8]
    learner = C.momentum_sgd(z.parameters,
                  learning_rate_schedule(lr_values, UnitType.sample, 1),
                  C.momentum_schedule(m_values, 1))
    trainer = Trainer(z, (ce, errs), [learner], writer)

    for i in range(10):
        trainer.train_minibatch({features: [[2.]], labels: [[1.]]})

    assert len(writer.log_output) == len(lr_values + m_values)

    values = [j for i in zip(lr_values,m_values) for j in i] + [0]

    for i in range(len(values)):
        assert (values[i] == writer.log_output[i])
コード例 #3
0
def train_model(reader, model, criterion, epoch_size=50000, max_epochs=80):
    minibatch_size = 64

    # learning parameters
    learner = momentum_sgd(model.parameters, 
                           lr       = learning_rate_schedule([0.0015625]*20+[0.00046875]*20+[0.00015625]*20+[0.000046875]*10+[0.000015625], unit=UnitType.sample, epoch_size=epoch_size),
                           momentum = momentum_as_time_constant_schedule([0]*20+[600]*20+[1200], epoch_size=epoch_size),
                           l2_regularization_weight = 0.002)
    
    # trainer object
    trainer = Trainer(None, criterion, learner)

    # perform model training
    log_number_of_parameters(model) ; print()
    progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs)

    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            mb = reader.next_minibatch(min(minibatch_size, epoch_size - sample_count)) # fetch minibatch.
            #trainer.train_minibatch(mb[reader.streams.features], mb[reader.streams.labels])
            trainer.train_minibatch({criterion.arguments[0]: mb[reader.streams.features], criterion.arguments[1]: mb[reader.streams.labels]})
            sample_count += mb[reader.streams.labels].num_samples                     # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True) # log progress

        loss, metric, actual_samples = progress_printer.epoch_summary(with_metric=True)
        model.save(os.path.join(model_path, "ConvNet_CIFAR10_DataAug_{}.dnn".format(epoch)))

    # return evaluation error.
    return loss, metric # return values from last epoch
コード例 #4
0
ファイル: CNTK_01.py プロジェクト: aflubenov/neuralnetworks
def entrenar(checkpoint, entrRuedas, entrOperaciones, input_dim, num_output_classes, testRuedas, testOperaciones):
    minibatch_size = 100;
    epocs=900;
    minibatchIteraciones = int(len(entrOperaciones) / minibatch_size);

    # Input variables denoting the features and label data
    feature = input((input_dim), np.float32)
    label = input((num_output_classes), np.float32)

    netout = crearRed(input_dim, num_output_classes, feature);

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    lr_per_minibatch=learning_rate_schedule(0.25, UnitType.minibatch)
    # Instantiate the trainer object to drive the model training
    learner = sgd(netout.parameters, lr=lr_per_minibatch)
    progress_printer = ProgressPrinter(log_to_file=checkpoint+".log", num_epochs=epocs);
    trainer = Trainer(netout, (ce, pe), learner, progress_printer)


    if os.path.isfile(checkpoint):
        trainer.restore_from_checkpoint(checkpoint);

    npentrRuedas = np.array(entrRuedas).astype(np.float32);
    npentrOperaciones = np.array(entrOperaciones).astype(np.float32);

    #iteramos una vez por cada "epoc"
    for i in range(0, epocs):
        p = np.random.permutation(len(entrRuedas));
        npentrOperaciones = npentrOperaciones[p];
        npentrRuedas = npentrRuedas[p];

        #ahora partimos los datos en "minibatches" y entrenamos
        for j in range(0, minibatchIteraciones):
            features = npentrRuedas[j*minibatch_size:(j+1)*minibatch_size];
            labels = npentrOperaciones[j*minibatch_size:(j+1)*minibatch_size];
            trainer.train_minibatch({feature: features, label: labels});
        trainer.summarize_training_progress()
        
    
    trainer.save_checkpoint(checkpoint);



    minibatchIteraciones = int(len(testOperaciones) / minibatch_size);
    avg_error = 0;
    for j in range(0, minibatchIteraciones):

        test_features = np.array(testRuedas[j*minibatch_size:(j+1)*minibatch_size]).astype(np.float32);
        test_labels = np.array(testOperaciones[j*minibatch_size:(j+1)*minibatch_size]).astype(np.float32);
        #test_features = np.array( entrRuedas[0:minibatch_size]).astype(np.float32);
        #test_labels = np.array(entrOperaciones[0:minibatch_size]).astype(np.float32);
        avg_error = avg_error + ( trainer.test_minibatch(
            {feature: test_features, label: test_labels}) / minibatchIteraciones)

    return avg_error
コード例 #5
0
ファイル: word_rnn.py プロジェクト: BorisJineman/CNTK
def train_lm():
    data = DataReader(token_to_id_path, segment_sepparator)

    # Create model nodes for the source and target inputs
    input_sequence, label_sequence = create_inputs(data.vocab_dim)

    # Create the model. It has three output nodes
    # z: the input to softmax that  provides the latent representation of the next token
    # cross_entropy: this is used training criterion
    # error: this a binary indicator if the model predicts the correct token
    z, cross_entropy, error = create_model(input_sequence, label_sequence, data.vocab_dim, hidden_dim)

    # For measurement we use the (build in) full softmax.
    full_ce = C.cross_entropy_with_softmax(z, label_sequence)

    # print out some useful training information
    log_number_of_parameters(z) ; print()
    
    # Run the training loop
    num_trained_samples = 0
    num_trained_samples_since_last_report = 0

    # Instantiate the trainer object to drive the model training
    lr_schedule = learning_rate_schedule(learning_rate, UnitType.sample)
    momentum_schedule = momentum_as_time_constant_schedule(momentum_as_time_constant)
    gradient_clipping_with_truncation = True
    learner = momentum_sgd(z.parameters, lr_schedule, momentum_schedule,
                            gradient_clipping_threshold_per_sample=clipping_threshold_per_sample,
                            gradient_clipping_with_truncation=gradient_clipping_with_truncation)
    trainer = Trainer(z, (cross_entropy, error), learner)
  
    for epoch_count in range(num_epochs):
        for features, labels, token_count in data.minibatch_generator(train_file_path, sequence_length, sequences_per_batch):
            arguments = ({input_sequence : features, label_sequence : labels})

            t_start = timeit.default_timer()
            trainer.train_minibatch(arguments)
            t_end =  timeit.default_timer()

            samples_per_second = token_count / (t_end - t_start)

            # Print progress report every num_samples_between_progress_report samples

            if num_trained_samples_since_last_report >= num_samples_between_progress_report or num_trained_samples == 0:
                av_ce = average_cross_entropy(full_ce, input_sequence, label_sequence, data)
                print_progress(samples_per_second, av_ce, num_trained_samples, t_start)
                num_trained_samples_since_last_report = 0

            num_trained_samples += token_count
            num_trained_samples_since_last_report += token_count

        # after each epoch save the model
        model_filename = "models/lm_epoch%d.dnn" % epoch_count
        z.save_model(model_filename)
        print("Saved model to '%s'" % model_filename)
コード例 #6
0
ファイル: char_rnn.py プロジェクト: AllanYiin/CNTK
def train_lm(training_file, epochs, max_num_minibatches):

    # load the data and vocab
    data, char_to_ix, ix_to_char, data_size, vocab_dim = load_data_and_vocab(training_file)

    # Model the source and target inputs to the model
    input_sequence, label_sequence = create_inputs(vocab_dim)

    # create the model
    model = create_model(vocab_dim)
    
    # and apply it to the input sequence    
    z = model(input_sequence)

    # setup the criterions (loss and metric)
    ce = cross_entropy_with_softmax(z, label_sequence)
    errs = classification_error(z, label_sequence)

    # Instantiate the trainer object to drive the model training
    lr_per_sample = learning_parameter_schedule_per_sample(0.001)
    momentum_schedule = momentum_schedule_per_sample(0.9990913221888589)
    clipping_threshold_per_sample = 5.0
    gradient_clipping_with_truncation = True
    learner = momentum_sgd(z.parameters, lr_per_sample, momentum_schedule,
                           gradient_clipping_threshold_per_sample=clipping_threshold_per_sample,
                           gradient_clipping_with_truncation=gradient_clipping_with_truncation)
    progress_printer = ProgressPrinter(freq=100, tag='Training')
    trainer = Trainer(z, (ce, errs), learner, progress_printer)

    sample_freq = 1000
    minibatches_per_epoch = min(data_size // minibatch_size, max_num_minibatches // epochs)

    # print out some useful training information
    log_number_of_parameters(z)
    print ("Running %d epochs with %d minibatches per epoch" % (epochs, minibatches_per_epoch))
    print()

    for e in range(0, epochs):
        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        # If it's the start of the data, we specify that we are looking at a new sequence (True)
        mask = [True]
        for b in range(0, minibatches_per_epoch):
            # get the data            
            features, labels = get_data(b, minibatch_size, data, char_to_ix, vocab_dim)
            arguments = ({input_sequence : features, label_sequence : labels}, mask)
            mask = [False] 
            trainer.train_minibatch(arguments)

            global_minibatch = e*minibatches_per_epoch + b
            if global_minibatch % sample_freq == 0:
                print(sample(z, ix_to_char, vocab_dim, char_to_ix))

        model_filename = "models/shakespeare_epoch%d.dnn" % (e+1)
        z.save(model_filename)
        print("Saved model to '%s'" % model_filename)
コード例 #7
0
ファイル: A2_RunCntk_py3.py プロジェクト: rlugojr/CNTK
def train_fast_rcnn(debug_output=False):
    if debug_output:
        print("Storing graphs and intermediate models to %s." % os.path.join(abs_path, "Output"))

    # Create the minibatch source
    minibatch_source = create_mb_source(image_height, image_width, num_channels,
                                        num_classes, num_rois, base_path, "train")

    # Input variables denoting features, rois and label data
    image_input = input_variable((num_channels, image_height, image_width))
    roi_input   = input_variable((num_rois, 4))
    label_input = input_variable((num_rois, num_classes))

    # define mapping from reader streams to network inputs
    input_map = {
        image_input: minibatch_source[features_stream_name],
        roi_input: minibatch_source[roi_stream_name],
        label_input: minibatch_source[label_stream_name]
    }

    # Instantiate the Fast R-CNN prediction model and loss function
    frcn_output = frcn_predictor(image_input, roi_input, num_classes)
    ce = cross_entropy_with_softmax(frcn_output, label_input, axis=1)
    pe = classification_error(frcn_output, label_input, axis=1)
    if debug_output:
        plot(frcn_output, os.path.join(abs_path, "Output", "graph_frcn.png"))

    # Set learning parameters
    l2_reg_weight = 0.0005
    lr_per_sample = [0.00001] * 10 + [0.000001] * 5 + [0.0000001]
    lr_schedule = learning_rate_schedule(lr_per_sample, unit=UnitType.sample)
    mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant)

    # Instantiate the trainer object
    learner = momentum_sgd(frcn_output.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight)
    trainer = Trainer(frcn_output, (ce, pe), learner)

    # Get minibatches of images and perform model training
    print("Training Fast R-CNN model for %s epochs." % max_epochs)
    log_number_of_parameters(frcn_output)
    progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs)
    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = minibatch_source.next_minibatch(min(mb_size, epoch_size-sample_count), input_map=input_map)
            trainer.train_minibatch(data)                                    # update model with it
            sample_count += trainer.previous_minibatch_sample_count          # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True)  # log progress

        progress_printer.epoch_summary(with_metric=True)
        if debug_output:
            frcn_output.save(os.path.join(abs_path, "Output", "frcn_py_%s.model" % (epoch+1)))

    return frcn_output
コード例 #8
0
def train_sequence_classifier(debug_output=False):
    input_dim = 2000
    cell_dim = 25
    hidden_dim = 25
    embedding_dim = 50
    num_output_classes = 5

    # Input variables denoting the features and label data
    features = input_variable(shape=input_dim, is_sparse=True)
    label = input_variable(num_output_classes, dynamic_axes=[
                           Axis.default_batch_axis()])

    # Instantiate the sequence classification model
    classifier_output = LSTM_sequence_classifer_net(
        features, num_output_classes, embedding_dim, hidden_dim, cell_dim)

    ce = cross_entropy_with_softmax(classifier_output, label)
    pe = classification_error(classifier_output, label)

    rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf"
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path)

    reader = create_reader(path, True, input_dim, num_output_classes)

    input_map = {
        features : reader.streams.features,
        label    : reader.streams.labels
    }

    lr_per_sample = learning_rate_schedule(0.0005, UnitType.sample)
    # Instantiate the trainer object to drive the model training
    trainer = Trainer(classifier_output, (ce, pe),
                      sgd(classifier_output.parameters, lr=lr_per_sample))

    # Get minibatches of sequences to train with and perform model training
    minibatch_size = 200
    training_progress_output_freq = 10

    if debug_output:
        training_progress_output_freq = training_progress_output_freq/3

    for i in range(251):
        mb = reader.next_minibatch(minibatch_size, input_map=input_map)
        trainer.train_minibatch(mb)
        print_training_progress(trainer, i, training_progress_output_freq)

    import copy

    evaluation_average = copy.copy(
        trainer.previous_minibatch_evaluation_average)
    loss_average = copy.copy(trainer.previous_minibatch_loss_average)

    return evaluation_average, loss_average
コード例 #9
0
def train(reader, model, max_epochs):

    # declare the model's input dimension, so that the saved model is usable
    model.update_signature(Sequence[SparseTensor[vocab_size]])
    #model.declare_args(vocab_size)

    # criterion: (model args, labels) -> (loss, metric)
    #   here  (query, slot_labels) -> (ce, errs)
    criterion = create_criterion_function(model)

    labels = reader.streams.slot_labels
    #labels = reader.streams.intent_labels  # for intent classification

    #from cntk.graph import plot
    #plot(criterion, filename=data_dir + "/model.pdf")

    # iteration parameters  --needed here because learner schedule needs it
    epoch_size = 36000
    minibatch_size = 70
    #epoch_size = 1000 ; max_epochs = 1 # uncomment for faster testing

    # SGD parameters
    learner = adam_sgd(criterion.parameters,
                       lr         = learning_rate_schedule([0.003]*2+[0.0015]*12+[0.0003], UnitType.sample, epoch_size),
                       momentum   = momentum_as_time_constant_schedule(minibatch_size / -math.log(0.9)),
                       low_memory = True,
                       gradient_clipping_threshold_per_sample = 15,
                       gradient_clipping_with_truncation = True)

    # trainer
    trainer = Trainer(None, criterion, learner)

    # process minibatches and perform model training
    log_number_of_parameters(model) ; print()
    progress_printer = ProgressPrinter(freq=100, first=10, tag='Training') # more detailed logging
    #progress_printer = ProgressPrinter(tag='Training')

    t = 0
    for epoch in range(max_epochs):         # loop over epochs
        peek(model, epoch)                  # log some interesting info
        epoch_end = (epoch+1) * epoch_size
        while t < epoch_end:                # loop over minibatches on the epoch
            # BUGBUG: The change of minibatch_size parameter vv has no effect.
            # TODO: change all examples to this pattern; then remove this comment
            data = reader.next_minibatch(min(minibatch_size, epoch_end-t))     # fetch minibatch
            #trainer.train_minibatch(data[reader.streams.query], data[labels])  # update model with it
            trainer.train_minibatch({criterion.arguments[0]: data[reader.streams.query], criterion.arguments[1]: data[labels]})  # update model with it
            t += data[labels].num_samples                                      # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True)    # log progress
        loss, metric, actual_samples = progress_printer.epoch_summary(with_metric=True)

    return loss, metric # return values from last epoch
コード例 #10
0
ファイル: EndToEnd.py プロジェクト: junjieqian/CNTK
def simple_mnist():
    input_dim = 784
    num_output_classes = 10
    num_hidden_layers = 1
    hidden_layers_dim = 200

    # Input variables denoting the features and label data
    input = input_variable(input_dim, np.float32)
    label = input_variable(num_output_classes, np.float32)

    # Instantiate the feedforward classification model
    scaled_input = element_times(constant((), 0.00390625), input)
    netout = fully_connected_classifier_net(scaled_input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    rel_path = os.path.join(*"../../../../Examples/Image/MNIST/Data/Train-28x28_cntk_text.txt".split("/"))
    path = os.path.normpath(os.path.join(abs_path, rel_path))
    if not os.path.exists(path):
        readme_file = os.path.normpath(os.path.join(os.path.dirname(path), "..", "README.md"))
        raise RuntimeError("File '%s' does not exist. Please follow the instructions at %s to download and prepare it."%(path, readme_file))
    feature_stream_name = 'features'
    labels_stream_name = 'labels'
    
    mb_source = text_format_minibatch_source(path, [ 
                    StreamConfiguration( feature_stream_name, input_dim ), 
                    StreamConfiguration( labels_stream_name, num_output_classes) ])
    features_si = mb_source.stream_info(feature_stream_name)
    labels_si = mb_source.stream_info(labels_stream_name)

    # Instantiate the trainer object to drive the model training
    lr = learning_rates_per_sample(0.003125)
    trainer = Trainer(netout, ce, pe, [sgd_learner(netout.owner.parameters(), lr)])

    # Get minibatches of images to train with and perform model training
    minibatch_size = 32
    num_samples_per_sweep = 60000
    num_sweeps_to_train_with = 1
    num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size
    training_progress_output_freq = 20
    for i in range(0, int(num_minibatches_to_train)):
        mb = mb_source.get_next_minibatch(minibatch_size)

        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        arguments = {input : mb[features_si].m_data, label : mb[labels_si].m_data}
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)
コード例 #11
0
def train_sequence_classifier():
    input_dim = 2000;
    cell_dim = 25;
    hidden_dim = 25;
    embedding_dim = 50;
    num_output_classes = 5;

    # Input variables denoting the features and label data
    features = input_variable(shape=input_dim, is_sparse=True)
    label = input_variable(num_output_classes, dynamic_axes = [Axis.default_batch_axis()])

    # Instantiate the sequence classification model
    classifier_output = LSTM_sequence_classifer_net(features, num_output_classes, embedding_dim, hidden_dim, cell_dim)

    ce = cross_entropy_with_softmax(classifier_output, label)
    pe = classification_error(classifier_output, label)

    rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf"
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path)
    feature_stream_name = 'features'
    labels_stream_name = 'labels'

    mb_source = text_format_minibatch_source(path, [
                    StreamConfiguration( feature_stream_name, input_dim, True, 'x' ),
                    StreamConfiguration( labels_stream_name, num_output_classes, False, 'y')], 0)

    features_si = mb_source.stream_info(features)
    labels_si = mb_source.stream_info(label)

    # Instantiate the trainer object to drive the model training
    lr = lr = learning_rates_per_sample(0.0005)
    trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)])

    # Get minibatches of sequences to train with and perform model training
    minibatch_size = 200
    training_progress_output_freq = 10
    i = 0;
    while True:
        mb = mb_source.get_next_minibatch(minibatch_size)
        if  len(mb) == 0:
            break

        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        arguments = {features : mb[features_si].m_data, label : mb[labels_si].m_data}
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)

        i += 1
コード例 #12
0
ファイル: TransferLearning.py プロジェクト: FDecaYed/CNTK
def train_model(base_model_file, feature_node_name, last_hidden_node_name,
                image_width, image_height, num_channels, num_classes, train_map_file,
                num_epochs, max_images=-1, freeze=False):
    epoch_size = sum(1 for line in open(train_map_file))
    if max_images > 0:
        epoch_size = min(epoch_size, max_images)

    # Create the minibatch source and input variables
    minibatch_source = create_mb_source(train_map_file, image_width, image_height, num_channels, num_classes)
    image_input = input_variable((num_channels, image_height, image_width))
    label_input = input_variable(num_classes)

    # Define mapping from reader streams to network inputs
    input_map = {
        image_input: minibatch_source[features_stream_name],
        label_input: minibatch_source[label_stream_name]
    }

    # Instantiate the transfer learning model and loss function
    tl_model = create_model(base_model_file, feature_node_name, last_hidden_node_name, num_classes, image_input, freeze)
    ce = cross_entropy_with_softmax(tl_model, label_input)
    pe = classification_error(tl_model, label_input)

    # Instantiate the trainer object
    lr_schedule = learning_rate_schedule(lr_per_mb, unit=UnitType.minibatch)
    mm_schedule = momentum_schedule(momentum_per_mb)
    learner = momentum_sgd(tl_model.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight)
    trainer = Trainer(tl_model, (ce, pe), learner)

    # Get minibatches of images and perform model training
    print("Training transfer learning model for {0} epochs (epoch_size = {1}).".format(num_epochs, epoch_size))
    log_number_of_parameters(tl_model)
    progress_printer = ProgressPrinter(tag='Training', num_epochs=num_epochs)
    for epoch in range(num_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = minibatch_source.next_minibatch(min(mb_size, epoch_size-sample_count), input_map=input_map)
            trainer.train_minibatch(data)                                    # update model with it
            sample_count += trainer.previous_minibatch_sample_count          # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True)  # log progress
            if sample_count % (100 * mb_size) == 0:
                print ("Processed {0} samples".format(sample_count))

        progress_printer.epoch_summary(with_metric=True)

    return tl_model
コード例 #13
0
ファイル: simplernn.py プロジェクト: AllanYiin/CNTK
def train_sequence_classifier():
    input_dim = 2000
    cell_dim = 25
    hidden_dim = 25
    embedding_dim = 50
    num_output_classes = 5

    # Input variables denoting the features and label data
    features = sequence.input_variable(shape=input_dim, is_sparse=True)
    label = input_variable(num_output_classes)

    # Instantiate the sequence classification model
    classifier_output = LSTM_sequence_classifier_net(
        features, num_output_classes, embedding_dim, hidden_dim, cell_dim)

    ce = cross_entropy_with_softmax(classifier_output, label)
    pe = classification_error(classifier_output, label)

    rel_path = ("../../../Tests/EndToEndTests/Text/" +
                "SequenceClassification/Data/Train.ctf")
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path)

    reader = create_reader(path, True, input_dim, num_output_classes)

    input_map = {
            features: reader.streams.features,
            label:    reader.streams.labels
    }

    lr_per_sample = learning_parameter_schedule_per_sample(0.0005)
    # Instantiate the trainer object to drive the model training
    progress_printer = ProgressPrinter(0)
    trainer = Trainer(classifier_output, (ce, pe),
                      sgd(classifier_output.parameters, lr=lr_per_sample),
                      progress_printer)

    # Get minibatches of sequences to train with and perform model training
    minibatch_size = 200

    for i in range(255):
        mb = reader.next_minibatch(minibatch_size, input_map=input_map)
        trainer.train_minibatch(mb)

    evaluation_average = float(trainer.previous_minibatch_evaluation_average)
    loss_average = float(trainer.previous_minibatch_loss_average)
    return evaluation_average, loss_average
コード例 #14
0
def Evaluator(criterion):
    loss, metric = Trainer._get_loss_metric(criterion)
    parameters = set(loss.parameters)
    if metric:
        parameters |= set(metric.parameters)
    dummy_learner = momentum_sgd(tuple(parameters), 
                                 lr = learning_rate_schedule(1, UnitType.minibatch),
                                 momentum = momentum_as_time_constant_schedule(0))
    return Trainer(None, (loss, metric), dummy_learner)
コード例 #15
0
def train_model(reader, reader_test, model, epoch_size=50000, max_epochs=80):

    # declare the model's input dimension
    # Training does not require this, but it is needed for deployment.
    model.update_signature((num_channels, image_height, image_width))

    # criterion function. This is what is being trained trained.
    # Model gets "sandwiched" between normalization (not part of model proper) and criterion.
    criterion = create_criterion_function(model, normalize=lambda x: x / 256)
    #debughelpers.dump_function(criterion, 'criterion')

    #from cntk.logging.graph import plot
    #plot(criterion, filename=os.path.join(model_path, "ConvNet_CIFAR10_DataAug.pdf"))

    # iteration parameters
    minibatch_size = 64
    #epoch_size = 1000 ; max_epochs = 1 # for faster testing

    # learning parameters
    learner = momentum_sgd(model.parameters, 
                           lr       = learning_rate_schedule([0.0015625]*20+[0.00046875]*20+[0.00015625]*20+[0.000046875]*10+[0.000015625], unit=UnitType.sample, epoch_size=epoch_size),
                           momentum = momentum_as_time_constant_schedule([0]*20+[600]*20+[1200], epoch_size=epoch_size),
                           l2_regularization_weight = 0.002)
    
    # trainer object
    trainer = Trainer(None, criterion, learner)

    # perform model training
    log_number_of_parameters(model) ; print()
    progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs)

    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            mb = reader.next_minibatch(min(minibatch_size, epoch_size - sample_count)) # fetch minibatch.
            #trainer.train_minibatch(mb[reader.streams.features], mb[reader.streams.labels])
            trainer.train_minibatch({criterion.arguments[0]: mb[reader.streams.features], criterion.arguments[1]: mb[reader.streams.labels]})
            sample_count += mb[reader.streams.labels].num_samples                     # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True) # log progress
        loss, metric, actual_samples = progress_printer.epoch_summary(with_metric=True)
        model.save(os.path.join(model_path, "ConvNet_CIFAR10_DataAug_{}.dnn".format(epoch)))

    # return evaluation error.
    return loss, metric # return values from last epoch
コード例 #16
0
ファイル: FeedForwardNet.py プロジェクト: hahatt/CNTK
def ffnet(debug_output=False):
    input_dim = 2
    num_output_classes = 2
    num_hidden_layers = 2
    hidden_layers_dim = 50

    # Input variables denoting the features and label data
    input = input_variable((input_dim), np.float32)
    label = input_variable((num_output_classes), np.float32)

    # Instantiate the feedforward classification model
    netout = fully_connected_classifier_net(
        input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    # Instantiate the trainer object to drive the model training
    trainer = Trainer(netout, ce, pe, [sgd(netout.parameters(), lr=0.02)])

    # Get minibatches of training data and perform model training
    minibatch_size = 25
    num_samples_per_sweep = 10000
    num_sweeps_to_train_with = 2
    num_minibatches_to_train = (
        num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size
    training_progress_output_freq = 60

    if debug_output:
        training_progress_output_freq = training_progress_output_freq/3

    for i in range(0, int(num_minibatches_to_train)):
        features, labels = generate_random_data(
            minibatch_size, input_dim, num_output_classes)
        # Specify the mapping of input variables in the model to actual
        # minibatch data to be trained with
        trainer.train_minibatch({input: features, label: labels})
        print_training_progress(trainer, i, training_progress_output_freq)

    test_features, test_labels = generate_random_data(
        minibatch_size, input_dim, num_output_classes)
    avg_error = trainer.test_minibatch(
        {input: test_features, label: test_labels})
    return avg_error
コード例 #17
0
ファイル: debug_test.py プロジェクト: AllanYiin/CNTK
def _train_backcompatible_test(z, loss, eval_error,
           f_input, l_input,
           num_output_classes,
           steps):
    np.random.seed(0)

    input_dim = 2

    lr_schedule = learning_parameter_schedule(0.5)

    learner = sgd(z.parameters, lr_schedule)
    trainer = Trainer(z, (loss, eval_error), [learner])

    minibatch_size = 10

    for i in range(steps):
        features, labels = _generate_random_data_sample(
            minibatch_size, input_dim, num_output_classes)

        trainer.train_minibatch({f_input: features, l_input: labels})
コード例 #18
0
ファイル: debug_test.py プロジェクト: AllanYiin/CNTK
def _train(z, loss, eval_error,
           f_input, l_input,
           num_output_classes,
           steps):
    np.random.seed(0)

    input_dim = 2

    lr_schedule = C.learning_parameter_schedule(0.5)
    #now we want the learning be compatible with the way in the literature without the per sample benefit:
    learner = sgd(z.parameters, lr_schedule, minibatch_size = C.learners.IGNORE)
    trainer = Trainer(z, (loss, eval_error), [learner])

    minibatch_size = 10

    for i in range(steps):
        features, labels = _generate_random_data_sample(
            minibatch_size, input_dim, num_output_classes)

        trainer.train_minibatch({f_input: features, l_input: labels})
コード例 #19
0
ファイル: CNTK_01.py プロジェクト: aflubenov/neuralnetworks
def cargarRedDesdeArchivo(archivo):
    input_dim = 800;
    num_output_classes = 3;

    feature = input((input_dim), np.float32);
    label = input((num_output_classes), np.float32)

    netout = crearRed(input_dim, 3, feature);
    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    lr_per_minibatch=learning_rate_schedule(0.5, UnitType.minibatch)
    # Instantiate the trainer object to drive the model training
    learner = sgd(netout.parameters, lr=lr_per_minibatch)
    progress_printer = ProgressPrinter(1)
    trainer = Trainer(netout, (ce, pe), learner, progress_printer)


    trainer.restore_from_checkpoint(archivo);

    return netout;
コード例 #20
0
ファイル: Sequence2Sequence.py プロジェクト: AllanYiin/CNTK
def Evaluator(model, criterion):
    from cntk import Trainer
    from cntk.learners import momentum_sgd, momentum_schedule_per_sample
    loss, metric = Trainer._get_loss_metric(criterion)
    parameters = set(loss.parameters)
    if model:
        parameters |= set(model.parameters)
    if metric:
        parameters |= set(metric.parameters)
    dummy_learner = momentum_sgd(tuple(parameters),
                                 lr = learning_parameter_schedule(1),
                                 momentum = momentum_schedule_per_sample(0))
    return Trainer(model, (loss, metric), dummy_learner)
コード例 #21
0
def Evaluator(model, criterion):
    from cntk import Trainer
    from cntk.learners import momentum_sgd, learning_rate_schedule, UnitType, momentum_as_time_constant_schedule
    loss, metric = Trainer._get_loss_metric(criterion)
    parameters = set(loss.parameters)
    if model:
        parameters |= set(model.parameters)
    if metric:
        parameters |= set(metric.parameters)
    dummy_learner = momentum_sgd(tuple(parameters),
                                 lr = learning_rate_schedule(1, UnitType.minibatch),
                                 momentum = momentum_as_time_constant_schedule(0))
    return Trainer(model, (loss, metric), dummy_learner)
コード例 #22
0
ファイル: FeedForwardNet.py プロジェクト: Microsoft/CNTK
def ffnet():
    input_dim = 2
    num_output_classes = 2
    num_hidden_layers = 2
    hidden_layers_dim = 50

    # Input variables denoting the features and label data
    input = input_variable((input_dim), np.float32)
    label = input_variable((num_output_classes), np.float32)

    # Instantiate the feedforward classification model
    netout = fully_connected_classifier_net(
        input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    lr_per_minibatch=learning_rate_schedule(0.5, UnitType.minibatch)
    # Instantiate the trainer object to drive the model training
    trainer = Trainer(netout, ce, pe, sgd(netout.parameters, lr=lr_per_minibatch))

    # Get minibatches of training data and perform model training
    minibatch_size = 25

    pp = ProgressPrinter(128)
    for i in range(1024):
        features, labels = generate_random_data(
            minibatch_size, input_dim, num_output_classes)
        # Specify the mapping of input variables in the model to actual
        # minibatch data to be trained with
        trainer.train_minibatch({input: features, label: labels})
        pp.update_with_trainer(trainer)
    pp.epoch_summary()
    test_features, test_labels = generate_random_data(
        minibatch_size, input_dim, num_output_classes)
    avg_error = trainer.test_minibatch(
        {input: test_features, label: test_labels})
    return avg_error
コード例 #23
0
ファイル: CifarResNet.py プロジェクト: junjieqian/CNTK
def cifar_resnet():
    image_height = 32
    image_width = 32
    num_channels = 3
    num_classes = 10
    feats_stream_name = 'features'
    labels_stream_name = 'labels'
    minibatch_source = create_mb_source(feats_stream_name, labels_stream_name, 
                        image_height, image_width, num_channels, num_classes)
    features_si = minibatch_source.stream_info(feats_stream_name)
    labels_si = minibatch_source.stream_info(labels_stream_name)

    # Input variables denoting the features and label data
    image_input = input_variable((num_channels, image_height, image_width), features_si.m_element_type)
    label_var = input_variable((num_classes), features_si.m_element_type)

    # Instantiate the resnet classification model
    classifier_output = resnet_classifer(image_input, num_classes)

    ce = cross_entropy_with_softmax(classifier_output, label_var)
    pe = classification_error(classifier_output, label_var)

    # Instantiate the trainer object to drive the model training
    lr = learning_rates_per_sample(0.0078125)
    trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)])

    # Get minibatches of images to train with and perform model training
    mb_size = 32
    training_progress_output_freq = 20
    num_mbs = 1000
    for i in range(0, num_mbs):
        mb=minibatch_source.get_next_minibatch(mb_size)

        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        arguments = {image_input : mb[features_si].m_data, label_var : mb[labels_si].m_data}
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)
コード例 #24
0
ファイル: tmp.py プロジェクト: aflubenov/neuralnetworks
def ffnet(data, labels):
    input_dim = 800
    num_output_classes = 3
    num_hidden_layers = 2
    hidden_layers_dim = 50

    # Input variables denoting the features and label data
    feature = input((input_dim), np.float32)
    label = input((num_output_classes), np.float32)

    netout = Sequential([For(range(num_hidden_layers), lambda i: Dense(hidden_layers_dim, activation=sigmoid)),
                         Dense(num_output_classes)])(feature)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    lr_per_minibatch=learning_rate_schedule(0.5, UnitType.minibatch)
    # Instantiate the trainer object to drive the model training
    learner = sgd(netout.parameters, lr=lr_per_minibatch)
    progress_printer = ProgressPrinter(128)
    trainer = Trainer(netout, (ce, pe), learner, progress_printer)

    # Get minibatches of training data and perform model training
    minibatch_size = 25


    features, labels = generate_stock_data(minibatch_size);

    for i in range(1024):
    #    features, labels = generate_random_data(
    #        minibatch_size, input_dim, num_output_classes)
        # Specify the mapping of input variables in the model to actual
        # minibatch data to be trained with
        trainer.train_minibatch({feature: features, label: labels})

    trainer.summarize_training_progress()
    test_features, test_labels = generate_random_data(
        minibatch_size, input_dim, num_output_classes)
    avg_error = trainer.test_minibatch(
        {feature: test_features, label: test_labels})
    return avg_error
コード例 #25
0
ファイル: SimpleMNIST.py プロジェクト: rlugojr/CNTK
def simple_mnist():
    input_dim = 784
    num_output_classes = 10
    num_hidden_layers = 1
    hidden_layers_dim = 200

    # Input variables denoting the features and label data
    features = input_variable(input_dim, np.float32)
    label = input_variable(num_output_classes, np.float32)

    # Instantiate the feedforward classification model
    scaled_input = element_times(constant(0.00390625), features)
    netout = fully_connected_classifier_net(
        scaled_input, num_output_classes, hidden_layers_dim, num_hidden_layers, relu)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    try:
        rel_path = os.path.join(os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'],
                                *"Image/MNIST/v0/Train-28x28_cntk_text.txt".split("/"))
    except KeyError:
        rel_path = os.path.join(*"../Image/DataSets/MNIST/Train-28x28_cntk_text.txt".split("/"))
    path = os.path.normpath(os.path.join(abs_path, rel_path))
    check_path(path)

    reader_train = create_reader(path, True, input_dim, num_output_classes)

    input_map = {
        features: reader_train.streams.features,
        label: reader_train.streams.labels
    }

    # Instantiate progress writers.
    logdir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "mnist_log")
    tensorboard_writer = TensorBoardProgressWriter(freq=1, log_dir=logdir, model=netout)
    progress_printer = ProgressPrinter(freq=10, tag='Training')

    # Instantiate the trainer object to drive the model training
    lr_per_minibatch = learning_rate_schedule(0.2, UnitType.minibatch)
    learner = sgd(netout.parameters, lr=lr_per_minibatch)
    trainer = Trainer(netout, (ce, pe), learner, [tensorboard_writer, progress_printer])

    # Get minibatches of images to train with and perform model training
    minibatch_size = 64
    num_samples_per_sweep = 6000
    num_sweeps_to_train_with = 2
    num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size

    for minibatch_idx in range(0, int(num_minibatches_to_train)):
        trainer.train_minibatch(reader_train.next_minibatch(minibatch_size, input_map=input_map))

        # Log max/min/mean of each parameter tensor, so that we can confirm that the parameters change indeed.
        # Don't want to do that very often though, otherwise will spend too much time computing min/max/mean.
        if minibatch_idx % 10 == 9:
            for p in netout.parameters:
                tensorboard_writer.write_value(p.uid + "/max", reduce_max(p).eval(), minibatch_idx)
                tensorboard_writer.write_value(p.uid + "/min", reduce_min(p).eval(), minibatch_idx)
                tensorboard_writer.write_value(p.uid + "/mean", reduce_mean(p).eval(), minibatch_idx)

    trainer.summarize_training_progress()

    # Load test data
    try:
        rel_path = os.path.join(os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'],
                                *"Image/MNIST/v0/Test-28x28_cntk_text.txt".split("/"))
    except KeyError:
        rel_path = os.path.join(*"../Image/DataSets/MNIST/Test-28x28_cntk_text.txt".split("/"))
    path = os.path.normpath(os.path.join(abs_path, rel_path))
    check_path(path)

    reader_test = create_reader(path, False, input_dim, num_output_classes)

    input_map = {
        features: reader_test.streams.features,
        label: reader_test.streams.labels
    }

    # Test data for trained model
    test_minibatch_size = 1024
    num_samples = 10000
    num_minibatches_to_test = num_samples / test_minibatch_size
    test_result = 0.0
    for i in range(0, int(num_minibatches_to_test)):
        mb = reader_test.next_minibatch(test_minibatch_size, input_map=input_map)
        test_result += trainer.test_minibatch(mb)

    # Average of evaluation errors of all test minibatches
    trainer.summarize_test_progress()
    return test_result / num_minibatches_to_test
コード例 #26
0
ファイル: CifarConvNet.py プロジェクト: quixoticblink/CNTK
def train_and_evaluate(reader_train, reader_test, max_epochs):

    # Input variables denoting the features and label data
    input_var = input_variable((num_channels, image_height, image_width))
    label_var = input_variable((num_classes))

    # apply model to input
    model = create_basic_model(input_var)
    #model = create_basic_model_layer(input_var)
    z = model['fc5']

    #
    # Training action
    #

    # loss and metric
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)

    # training config
    epoch_size     = 50000
    minibatch_size = 64

    # For basic model
    lr_per_sample       = [0.00015625]*10+[0.000046875]*10+[0.0000156]
    momentum_per_sample = 0.9 ** (1.0 / minibatch_size)  # BUGBUG: why does this work? Should be as time const, no?
    l2_reg_weight       = 0.03

    # For basic model with batch normalization
    # lr_per_sample       = [0.00046875]*7+[0.00015625]*10+[0.000046875]*10+[0.000015625]
    # momentum_per_sample = 0
    # l2_reg_weight       = 0

    # trainer object
    lr_schedule = learning_rate_schedule(lr_per_sample, units=epoch_size)
    learner     = momentum_sgd(z.parameters, lr_schedule, momentum_per_sample, 
                               l2_regularization_weight = l2_reg_weight)
    trainer     = Trainer(z, ce, pe, [learner])

    # define mapping from reader streams to network inputs
    input_map = {
        input_var: reader_train.streams.features,
        label_var: reader_train.streams.labels
    }

    log_number_of_parameters(z) ; print()
    progress_printer = ProgressPrinter(tag='Training')

    # perform model training
    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = reader_train.next_minibatch(min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch.
            trainer.train_minibatch(data)                                   # update model with it
            sample_count += data[label_var].num_samples                     # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True) # log progress
        progress_printer.epoch_summary(with_metric=True)
    
    #
    # Evaluation action
    # TODO: This should be a separate function call.
    #
    epoch_size     = 10000
    minibatch_size = 16

    # process minibatches and evaluate the model
    metric_numer    = 0
    metric_denom    = 0
    sample_count    = 0
    minibatch_index = 0

    #progress_printer = ProgressPrinter(freq=100, first=10, tag='Eval')
    while sample_count < epoch_size:
        current_minibatch = min(minibatch_size, epoch_size - sample_count)

        # Fetch next test min batch.
        data = reader_train.next_minibatch(current_minibatch, input_map=input_map)
        #data = reader_test.next_minibatch(current_minibatch)

        # minibatch data to be trained with
        #metric_numer += trainer.test_minibatch(input_map) * current_minibatch
        metric_numer += trainer.test_minibatch(data) * current_minibatch
        metric_denom += current_minibatch

        # Keep track of the number of samples processed so far.
        sample_count += data[label_var].num_samples
        minibatch_index += 1
        if current_minibatch != minibatch_size:
            break

    print("")
    print("Final Results: Minibatch[1-{}]: errs = {:0.1f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom))
    print("")
コード例 #27
0
def train_lm(training_file, epochs, max_num_minibatches):

    # load the data and vocab
    data, char_to_ix, ix_to_char, data_size, vocab_dim = load_data_and_vocab(
        training_file)

    # Model the source and target inputs to the model
    input_sequence, label_sequence = create_inputs(vocab_dim)

    # create the model
    model = create_model(vocab_dim)

    # and apply it to the input sequence
    z = model(input_sequence)

    # setup the criterions (loss and metric)
    ce = cross_entropy_with_softmax(z, label_sequence)
    errs = classification_error(z, label_sequence)

    # Instantiate the trainer object to drive the model training
    lr_per_sample = learning_rate_schedule(0.001, UnitType.sample)
    momentum_time_constant = momentum_as_time_constant_schedule(1100)
    clipping_threshold_per_sample = 5.0
    gradient_clipping_with_truncation = True
    learner = momentum_sgd(
        z.parameters,
        lr_per_sample,
        momentum_time_constant,
        gradient_clipping_threshold_per_sample=clipping_threshold_per_sample,
        gradient_clipping_with_truncation=gradient_clipping_with_truncation)
    progress_printer = ProgressPrinter(freq=100, tag='Training')
    trainer = Trainer(z, (ce, errs), learner, progress_printer)

    sample_freq = 1000
    minibatches_per_epoch = min(data_size // minibatch_size,
                                max_num_minibatches // epochs)

    # print out some useful training information
    log_number_of_parameters(z)
    print("Running %d epochs with %d minibatches per epoch" %
          (epochs, minibatches_per_epoch))
    print()

    for e in range(0, epochs):
        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        # If it's the start of the data, we specify that we are looking at a new sequence (True)
        mask = [True]
        for b in range(0, minibatches_per_epoch):
            # get the data
            features, labels = get_data(b, minibatch_size, data, char_to_ix,
                                        vocab_dim)
            arguments = ({
                input_sequence: features,
                label_sequence: labels
            }, mask)
            mask = [False]
            trainer.train_minibatch(arguments)

            global_minibatch = e * minibatches_per_epoch + b
            if global_minibatch % sample_freq == 0:
                print(sample(z, ix_to_char, vocab_dim, char_to_ix))

        model_filename = "models/shakespeare_epoch%d.dnn" % (e + 1)
        z.save_model(model_filename)
        print("Saved model to '%s'" % model_filename)
コード例 #28
0
def train(reader, model, max_epochs):
    # Input variables denoting the features and label data
    query = Input(input_dim, is_sparse=False)
    slot_labels = Input(num_labels,
                        is_sparse=True)  # TODO: make sparse once it works

    # apply model to input
    z = model(query)

    # loss and metric
    ce = cross_entropy_with_softmax(z, slot_labels)
    pe = classification_error(z, slot_labels)

    # training config
    epoch_size = 36000
    minibatch_size = 70
    num_mbs_to_show_result = 100
    momentum_as_time_constant = minibatch_size / -math.log(
        0.9)  # TODO: Change to round number. This is 664.39. 700?

    lr_per_sample = [0.003] * 2 + [0.0015] * 12 + [
        0.0003
    ]  # LR schedule over epochs (we don't run that mayn epochs, but if we did, these are good values)

    # trainer object
    lr_schedule = learning_rate_schedule(lr_per_sample, units=epoch_size)
    learner = adam_sgd(z.parameters,
                       lr_per_sample=lr_schedule,
                       momentum_time_constant=momentum_as_time_constant,
                       low_memory=True,
                       gradient_clipping_threshold_per_sample=15,
                       gradient_clipping_with_truncation=True)

    trainer = Trainer(z, ce, pe, [learner])

    # define mapping from reader streams to network inputs
    input_map = {
        query: reader.streams.query,
        slot_labels: reader.streams.slot_labels
    }

    # process minibatches and perform model training
    log_number_of_parameters(z)
    print()
    progress_printer = ProgressPrinter(freq=100, first=10,
                                       tag='Training')  # more detailed logging
    #progress_printer = ProgressPrinter(tag='Training')

    t = 0
    for epoch in range(max_epochs):  # loop over epochs
        epoch_end = (epoch + 1) * epoch_size
        while t < epoch_end:  # loop over minibatches on the epoch
            # BUGBUG? The change of minibatch_size parameter vv has no effect.
            data = reader.next_minibatch(
                min(minibatch_size,
                    epoch_end - t), input_map=input_map)  # fetch minibatch
            trainer.train_minibatch(data)  # update model with it
            t += data[
                slot_labels].num_samples  # count samples processed so far
            progress_printer.update_with_trainer(
                trainer, with_metric=True)  # log progress
            #def trace_node(name):
            #    nl = [n for n in z.parameters if n.name() == name]
            #    if len(nl) > 0:
            #        print (name, np.asarray(nl[0].value))
            #trace_node('W')
            #trace_node('stabilizer_param')
        loss, metric, actual_samples = progress_printer.epoch_summary(
            with_metric=True)

    return loss, metric
コード例 #29
0
ファイル: helpers_cntk.py プロジェクト: simonzhaoms/mlmodels
def train_model(base_model_file, train_map_file, test_map_file, input_resolution,
                num_epochs, mb_size, max_train_images, lr_per_mb, momentum_per_mb, l2_reg_weight,
                dropout_rate, freeze_weights, num_channels = 3):

    #init
    image_width  = input_resolution
    image_height = input_resolution
    epoch_size_test  = len(readTable(test_map_file))
    epoch_size_train = len(readTable(train_map_file))
    epoch_size_train = min(epoch_size_train, max_train_images)
    num_classes = max(ToIntegers(getColumn(readTable(train_map_file), 1))) + 1

    # Create the minibatch source
    minibatch_source_train = create_mb_source(train_map_file, image_width, image_height, num_channels, num_classes, True)
    minibatch_source_test  = create_mb_source(test_map_file,  image_width, image_height, num_channels, num_classes, False)

    # Define mapping from reader streams to network inputs
    label_input = input_variable(num_classes)
    image_input = input_variable((num_channels, image_height, image_width), name = "input")
    input_map = {
        image_input: minibatch_source_train['features'],
        label_input: minibatch_source_train['labels']
    }

    # Instantiate the transfer learning model and loss function
    cntkModel = create_model(base_model_file, image_input, num_classes, dropout_rate, freeze_weights)
    ce = cross_entropy_with_softmax(cntkModel, label_input)
    pe = classification_error(cntkModel, label_input)

    # Instantiate the trainer object
    lr_schedule = learning_rate_schedule(lr_per_mb, unit=UnitType.minibatch)
    mm_schedule = momentum_schedule(momentum_per_mb)
    learner = momentum_sgd(cntkModel.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight)
    progress_writers = [ProgressPrinter(tag='Training', num_epochs=num_epochs)]
    trainer = Trainer(cntkModel, (ce, pe), learner, progress_writers)

    # Run training epochs
    print("Training transfer learning model for {0} epochs (epoch_size_train = {1}).".format(num_epochs, epoch_size_train))
    errsTest  = []
    errsTrain = []
    log_number_of_parameters(cntkModel)

    for epoch in range(num_epochs):
        # Train model
        err_numer = 0
        sample_counts = 0
        while sample_counts < epoch_size_train:  # Loop over minibatches in the epoch
            sample_count = min(mb_size, epoch_size_train - sample_counts)
            data = minibatch_source_train.next_minibatch(sample_count, input_map = input_map)
            trainer.train_minibatch(data)        # Update model with it
            sample_counts += sample_count        # Count samples processed so far
            err_numer += trainer.previous_minibatch_evaluation_average * sample_count

            if sample_counts % (100 * mb_size) == 0:
                print ("Training: processed {0} samples".format(sample_counts))

            # Visualize training images
            # img_data = data[image_input].asarray()
            # for i in range(len(img_data)):
            #     debugImg = img_data[i].squeeze().swapaxes(0, 1).swapaxes(1, 2) / 255.0
            #     imshow(debugImg)

        # Compute accuracy on training and test sets
        errsTrain.append(err_numer / float(sample_counts))
        trainer.summarize_training_progress()
        errsTest.append(cntkComputeTestError(trainer, minibatch_source_test, mb_size, epoch_size_test, input_map))
        trainer.summarize_test_progress()

        # Plot training progress
        plt.plot(errsTrain, 'b-', errsTest, 'g-')
        plt.xlabel('Epoch number')
        plt.ylabel('Error')
        plt.title('Training error (blue), test error (green)')
        plt.draw()
    return cntkModel
コード例 #30
0
def train_and_evaluate(reader_train, reader_test, network_name, epoch_size, max_epochs, profiler_dir=None,
                       model_dir=None, log_dir=None, tensorboard_logdir=None, gen_heartbeat=False):

    set_computation_network_trace_level(0)

    # Input variables denoting the features and label data
    input_var = C.input_variable((num_channels, image_height, image_width), name='features')
    label_var = C.input_variable((num_classes))

    # create model, and configure learning parameters
    if network_name == 'resnet20':
        z = create_cifar10_model(input_var, 3, num_classes)
        lr_per_mb = [1.0]*80+[0.1]*40+[0.01]
    elif network_name == 'resnet110':
        z = create_cifar10_model(input_var, 18, num_classes)
        lr_per_mb = [0.1]*1+[1.0]*80+[0.1]*40+[0.01]
    else:
        raise RuntimeError("Unknown model name!")

    # loss and metric
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)

    # shared training parameters
    minibatch_size = 128
    momentum_time_constant = -minibatch_size/np.log(0.9)
    l2_reg_weight = 0.0001

    # Set learning parameters
    lr_per_sample = [lr/minibatch_size for lr in lr_per_mb]
    lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample)
    mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant)

    # progress writers
    progress_writers = [ProgressPrinter(tag='Training', log_to_file=log_dir, num_epochs=max_epochs, gen_heartbeat=gen_heartbeat)]
    tensorboard_writer = None
    if tensorboard_logdir is not None:
        tensorboard_writer = TensorBoardProgressWriter(freq=10, log_dir=tensorboard_logdir, model=z)
        progress_writers.append(tensorboard_writer)

    # trainer object
    learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule,
                           l2_regularization_weight = l2_reg_weight)
    trainer = Trainer(z, (ce, pe), learner, progress_writers)

    # define mapping from reader streams to network inputs
    input_map = {
        input_var: reader_train.streams.features,
        label_var: reader_train.streams.labels
    }

    log_number_of_parameters(z) ; print()

    # perform model training
    if profiler_dir:
        start_profiler(profiler_dir, True)

    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = reader_train.next_minibatch(min(minibatch_size, epoch_size-sample_count), input_map=input_map) # fetch minibatch.
            trainer.train_minibatch(data)                                   # update model with it
            sample_count += trainer.previous_minibatch_sample_count         # count samples processed so far

        trainer.summarize_training_progress()

        # Log mean of each parameter tensor, so that we can confirm that the parameters change indeed.
        if tensorboard_writer:
            for parameter in z.parameters:
                tensorboard_writer.write_value(parameter.uid + "/mean", reduce_mean(parameter).eval(), epoch)

        if model_dir:
            z.save(os.path.join(model_dir, network_name + "_{}.dnn".format(epoch)))
        enable_profiler() # begin to collect profiler data after first epoch

    if profiler_dir:
        stop_profiler()

    # Evaluation parameters
    test_epoch_size     = 10000
    minibatch_size = 16

    # process minibatches and evaluate the model
    metric_numer    = 0
    metric_denom    = 0
    sample_count    = 0

    while sample_count < test_epoch_size:
        current_minibatch = min(minibatch_size, test_epoch_size - sample_count)
        # Fetch next test min batch.
        data = reader_test.next_minibatch(current_minibatch, input_map=input_map)
        # minibatch data to be trained with
        metric_numer += trainer.test_minibatch(data) * current_minibatch
        metric_denom += current_minibatch
        # Keep track of the number of samples processed so far.
        sample_count += data[label_var].num_samples

    print("")
    trainer.summarize_test_progress()
    print("")

    return metric_numer/metric_denom
コード例 #31
0
def train_model(reader, reader_test, model, epoch_size=50000, max_epochs=80):

    # declare the model's input dimension
    # Training does not require this, but it is needed for deployment.
    model.update_signature((num_channels, image_height, image_width))

    # criterion function. This is what is being trained trained.
    # Model gets "sandwiched" between normalization (not part of model proper) and criterion.
    criterion = create_criterion_function(model, normalize=lambda x: x / 256)
    #debughelpers.dump_function(criterion, 'criterion')

    #from cntk.logging.graph import plot
    #plot(criterion, filename=os.path.join(model_path, "ConvNet_CIFAR10_DataAug.pdf"))

    # iteration parameters
    minibatch_size = 64
    #epoch_size = 1000 ; max_epochs = 1 # for faster testing

    # learning parameters
    learner = momentum_sgd(
        model.parameters,
        lr=learning_rate_schedule([0.0015625] * 20 + [0.00046875] * 20 +
                                  [0.00015625] * 20 + [0.000046875] * 10 +
                                  [0.000015625],
                                  unit=UnitType.sample,
                                  epoch_size=epoch_size),
        momentum=momentum_as_time_constant_schedule([0] * 20 + [600] * 20 +
                                                    [1200],
                                                    epoch_size=epoch_size),
        l2_regularization_weight=0.002)

    # trainer object
    trainer = Trainer(None, criterion, learner)

    # perform model training
    log_number_of_parameters(model)
    print()
    progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs)

    for epoch in range(max_epochs):  # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            mb = reader.next_minibatch(
                min(minibatch_size,
                    epoch_size - sample_count))  # fetch minibatch.
            #trainer.train_minibatch(mb[reader.streams.features], mb[reader.streams.labels])
            trainer.train_minibatch({
                criterion.arguments[0]:
                mb[reader.streams.features],
                criterion.arguments[1]:
                mb[reader.streams.labels]
            })
            sample_count += mb[
                reader.streams.
                labels].num_samples  # count samples processed so far
            progress_printer.update_with_trainer(
                trainer, with_metric=True)  # log progress
        loss, metric, actual_samples = progress_printer.epoch_summary(
            with_metric=True)
        model.save(
            os.path.join(model_path,
                         "ConvNet_CIFAR10_DataAug_{}.dnn".format(epoch)))

    # return evaluation error.
    return loss, metric  # return values from last epoch
コード例 #32
0
def sequence_to_sequence_translator(debug_output=False, run_test=False):

    input_vocab_dim = 69
    label_vocab_dim = 69

    # network complexity; initially low for faster testing
    hidden_dim = 256
    num_layers = 1

    # Source and target inputs to the model
    batch_axis = Axis.default_batch_axis()
    input_seq_axis = Axis('inputAxis')
    label_seq_axis = Axis('labelAxis')

    input_dynamic_axes = [batch_axis, input_seq_axis]
    raw_input = input_variable(shape=(input_vocab_dim),
                               dynamic_axes=input_dynamic_axes,
                               name='raw_input')

    label_dynamic_axes = [batch_axis, label_seq_axis]
    raw_labels = input_variable(shape=(label_vocab_dim),
                                dynamic_axes=label_dynamic_axes,
                                name='raw_labels')

    # Instantiate the sequence to sequence translation model
    input_sequence = raw_input

    # Drop the sentence start token from the label, for decoder training
    label_sequence = sequence.slice(raw_labels, 1,
                                    0)  # <s> A B C </s> --> A B C </s>
    label_sentence_start = sequence.first(raw_labels)  # <s>

    is_first_label = sequence.is_first(label_sequence)  # <s> 0 0 0 ...
    label_sentence_start_scattered = sequence.scatter(label_sentence_start,
                                                      is_first_label)

    # Encoder
    encoder_outputH = stabilize(input_sequence)
    for i in range(0, num_layers):
        (encoder_outputH,
         encoder_outputC) = LSTMP_component_with_self_stabilization(
             encoder_outputH.output, hidden_dim, hidden_dim, future_value,
             future_value)

    thought_vectorH = sequence.first(encoder_outputH)
    thought_vectorC = sequence.first(encoder_outputC)

    thought_vector_broadcastH = sequence.broadcast_as(thought_vectorH,
                                                      label_sequence)
    thought_vector_broadcastC = sequence.broadcast_as(thought_vectorC,
                                                      label_sequence)

    # Decoder
    decoder_history_hook = alias(
        label_sequence, name='decoder_history_hook')  # copy label_sequence

    decoder_input = element_select(is_first_label,
                                   label_sentence_start_scattered,
                                   past_value(decoder_history_hook))

    decoder_outputH = stabilize(decoder_input)
    for i in range(0, num_layers):
        if (i > 0):
            recurrence_hookH = past_value
            recurrence_hookC = past_value
        else:
            isFirst = sequence.is_first(label_sequence)
            recurrence_hookH = lambda operand: element_select(
                isFirst, thought_vector_broadcastH, past_value(operand))
            recurrence_hookC = lambda operand: element_select(
                isFirst, thought_vector_broadcastC, past_value(operand))

        (decoder_outputH,
         encoder_outputC) = LSTMP_component_with_self_stabilization(
             decoder_outputH.output, hidden_dim, hidden_dim, recurrence_hookH,
             recurrence_hookC)

    decoder_output = decoder_outputH

    # Softmax output layer
    z = linear_layer(stabilize(decoder_output), label_vocab_dim)

    # Criterion nodes
    ce = cross_entropy_with_softmax(z, label_sequence)
    errs = classification_error(z, label_sequence)

    # network output for decoder history
    net_output = hardmax(z)

    # make a clone of the graph where the ground truth is replaced by the network output
    ng = z.clone(CloneMethod.share,
                 {decoder_history_hook.output: net_output.output})

    # Instantiate the trainer object to drive the model training
    lr_per_minibatch = learning_rate_schedule(0.5, UnitType.minibatch)
    momentum_time_constant = momentum_as_time_constant_schedule(1100)
    clipping_threshold_per_sample = 2.3
    gradient_clipping_with_truncation = True
    learner = momentum_sgd(
        z.parameters,
        lr_per_minibatch,
        momentum_time_constant,
        gradient_clipping_threshold_per_sample=clipping_threshold_per_sample,
        gradient_clipping_with_truncation=gradient_clipping_with_truncation)
    trainer = Trainer(z, ce, errs, learner)

    # setup data
    train_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..",
                              "Data", "cmudict-0.7b.train-dev-20-21.ctf")
    valid_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..",
                              "Data", "tiny.ctf")

    # readers
    randomize_data = True
    if run_test:
        randomize_data = False  # because we want to get an exact error

    train_reader = create_reader(train_path, randomize_data, input_vocab_dim,
                                 label_vocab_dim)
    train_bind = {
        raw_input: train_reader.streams.features,
        raw_labels: train_reader.streams.labels
    }

    # get the vocab for printing output sequences in plaintext
    vocab_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..",
                              "Data", "cmudict-0.7b.mapping")
    vocab = [w.strip() for w in open(vocab_path).readlines()]
    i2w = {i: ch for i, ch in enumerate(vocab)}

    # Get minibatches of sequences to train with and perform model training
    i = 0
    mbs = 0
    minibatch_size = 72
    epoch_size = 908241
    max_epochs = 10
    training_progress_output_freq = 500

    # make things more basic for running a quicker test
    if run_test:
        epoch_size = 5000
        max_epochs = 1
        training_progress_output_freq = 30

    valid_reader = create_reader(valid_path, False, input_vocab_dim,
                                 label_vocab_dim)
    valid_bind = {
        find_arg_by_name('raw_input', ng): valid_reader.streams.features,
        find_arg_by_name('raw_labels', ng): valid_reader.streams.labels
    }

    for epoch in range(max_epochs):
        loss_numer = 0
        metric_numer = 0
        denom = 0

        while i < (epoch + 1) * epoch_size:
            # get next minibatch of training data
            mb_train = train_reader.next_minibatch(minibatch_size,
                                                   input_map=train_bind)
            trainer.train_minibatch(mb_train)

            # collect epoch-wide stats
            samples = trainer.previous_minibatch_sample_count
            loss_numer += trainer.previous_minibatch_loss_average * samples
            metric_numer += trainer.previous_minibatch_evaluation_average * samples
            denom += samples

            # every N MBs evaluate on a test sequence to visually show how we're doing
            if mbs % training_progress_output_freq == 0:
                mb_valid = valid_reader.next_minibatch(minibatch_size,
                                                       input_map=valid_bind)
                e = ng.eval(mb_valid)
                print_sequences(e, i2w)

            print_training_progress(trainer, mbs,
                                    training_progress_output_freq)
            i += mb_train[raw_labels].num_samples
            mbs += 1

        print("--- EPOCH %d DONE: loss = %f, errs = %f ---" %
              (epoch, loss_numer / denom, 100.0 * (metric_numer / denom)))

    error1 = translator_test_error(z, trainer, input_vocab_dim,
                                   label_vocab_dim)

    z.save_model("seq2seq.dnn")
    z.restore_model("seq2seq.dnn")

    label_seq_axis = Axis('labelAxis')
    label_sequence = sequence.slice(find_arg_by_name('raw_labels', z), 1, 0)
    ce = cross_entropy_with_softmax(z, label_sequence)
    errs = classification_error(z, label_sequence)
    trainer = Trainer(z, ce, errs, [
        momentum_sgd(z.parameters, lr_per_minibatch, momentum_time_constant,
                     clipping_threshold_per_sample,
                     gradient_clipping_with_truncation)
    ])

    error2 = translator_test_error(z, trainer, input_vocab_dim,
                                   label_vocab_dim)

    assert error1 == error2

    return error1
def train_model(base_model_file,
                feature_node_name,
                last_hidden_node_name,
                image_width,
                image_height,
                num_channels,
                num_classes,
                train_map_file,
                num_epochs,
                max_images=-1,
                freeze=False):
    epoch_size = sum(1 for line in open(train_map_file))
    if max_images > 0:
        epoch_size = min(epoch_size, max_images)

    # Create the minibatch source and input variables
    minibatch_source = create_mb_source(train_map_file, image_width,
                                        image_height, num_channels,
                                        num_classes)
    image_input = C.input_variable((num_channels, image_height, image_width))
    label_input = C.input_variable(num_classes)

    # Define mapping from reader streams to network inputs
    input_map = {
        image_input: minibatch_source[features_stream_name],
        label_input: minibatch_source[label_stream_name]
    }

    # Instantiate the transfer learning model and loss function
    tl_model = create_model(base_model_file, feature_node_name,
                            last_hidden_node_name, num_classes, image_input,
                            freeze)
    ce = cross_entropy_with_softmax(tl_model, label_input)
    pe = classification_error(tl_model, label_input)

    # Instantiate the trainer object
    lr_schedule = learning_rate_schedule(lr_per_mb, unit=UnitType.minibatch)
    mm_schedule = momentum_schedule(momentum_per_mb)
    learner = momentum_sgd(tl_model.parameters,
                           lr_schedule,
                           mm_schedule,
                           l2_regularization_weight=l2_reg_weight)
    progress_printer = ProgressPrinter(tag='Training', num_epochs=num_epochs)
    trainer = Trainer(tl_model, (ce, pe), learner, progress_printer)

    # Get minibatches of images and perform model training
    print(
        "Training transfer learning model for {0} epochs (epoch_size = {1}).".
        format(num_epochs, epoch_size))
    log_number_of_parameters(tl_model)
    for epoch in range(num_epochs):  # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = minibatch_source.next_minibatch(min(
                mb_size, epoch_size - sample_count),
                                                   input_map=input_map)
            trainer.train_minibatch(data)  # update model with it
            sample_count += trainer.previous_minibatch_sample_count  # count samples processed so far
            if sample_count % (100 * mb_size) == 0:
                print("Processed {0} samples".format(sample_count))

        trainer.summarize_training_progress()

    return tl_model
コード例 #34
0
ファイル: ConvNet_CIFAR10.py プロジェクト: zzmjohn/CNTK
def convnet_cifar10(debug_output=False):
    set_computation_network_trace_level(0)

    image_height = 32
    image_width  = 32
    num_channels = 3
    input_dim = image_height * image_width * num_channels
    num_output_classes = 10

    # Input variables denoting the features and label data
    input_var = input_variable((num_channels, image_height, image_width), np.float32)
    label_var = input_variable(num_output_classes, np.float32)

    # Instantiate the feedforward classification model
    input_removemean = minus(input_var, constant(128))
    scaled_input = element_times(constant(0.00390625), input_removemean)
    with default_options (activation=relu, pad=True): 
        z = Sequential([
            LayerStack(2, lambda : [
                Convolution((3,3), 64), 
                Convolution((3,3), 64), 
                MaxPooling((3,3), (2,2))
            ]), 
            LayerStack(2, lambda i: [
                Dense([256,128][i]), 
                Dropout(0.5)
            ]), 
            Dense(num_output_classes, activation=None)
        ])(scaled_input)
    
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)

    reader_train = create_reader(os.path.join(data_path, 'Train_cntk_text.txt'), True, input_dim, num_output_classes)

    # training config
    epoch_size = 50000                  # for now we manually specify epoch size
    minibatch_size = 64

    # Set learning parameters
    lr_per_sample          = [0.0015625]*10+[0.00046875]*10+[0.00015625]
    lr_schedule            = learning_rate_schedule(lr_per_sample, UnitType.sample, epoch_size)
    mm_time_constant       = [0]*20+[-minibatch_size/np.log(0.9)]
    mm_schedule            = momentum_as_time_constant_schedule(mm_time_constant, epoch_size)
    l2_reg_weight          = 0.002

    # Instantiate the trainer object to drive the model training
    learner     = momentum_sgd(z.parameters, lr_schedule, mm_schedule, l2_regularization_weight = l2_reg_weight)
    trainer     = Trainer(z, ce, pe, learner)

    # define mapping from reader streams to network inputs
    input_map = {
        input_var  : reader_train.streams.features,
        label_var  : reader_train.streams.labels
    }

    log_number_of_parameters(z) ; print()
    progress_printer = ProgressPrinter(tag='Training')

    # Get minibatches of images to train with and perform model training
    max_epochs = 30
    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = reader_train.next_minibatch(min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch.
            trainer.train_minibatch(data)                                   # update model with it
            sample_count += trainer.previous_minibatch_sample_count         # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True) # log progress
        progress_printer.epoch_summary(with_metric=True)
        persist.save_model(z, os.path.join(model_path, "ConvNet_CIFAR10_{}.dnn".format(epoch)))
    
    # Load test data
    reader_test = create_reader(os.path.join(data_path, 'Test_cntk_text.txt'), False, input_dim, num_output_classes)

    input_map = {
        input_var  : reader_test.streams.features,
        label_var  : reader_test.streams.labels
    }

    # Test data for trained model
    epoch_size = 10000
    minibatch_size = 16

    # process minibatches and evaluate the model
    metric_numer    = 0
    metric_denom    = 0
    sample_count    = 0
    minibatch_index = 0

    while sample_count < epoch_size:
        current_minibatch = min(minibatch_size, epoch_size - sample_count)
        # Fetch next test min batch.
        data = reader_test.next_minibatch(current_minibatch, input_map=input_map)
        # minibatch data to be trained with
        metric_numer += trainer.test_minibatch(data) * current_minibatch
        metric_denom += current_minibatch
        # Keep track of the number of samples processed so far.
        sample_count += data[label_var].num_samples
        minibatch_index += 1

    print("")
    print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom))
    print("")

    return metric_numer/metric_denom
コード例 #35
0
def train_and_evaluate(create_train_reader,
                       test_reader,
                       network_name,
                       max_epochs,
                       create_dist_learner,
                       scale_up=False):

    set_computation_network_trace_level(0)

    # Input variables denoting the features and label data
    input_var = input_variable((num_channels, image_height, image_width))
    label_var = input_variable((num_classes))

    # create model, and configure learning parameters
    if network_name == 'resnet20':
        z = create_cifar10_model(input_var, 3, num_classes)
        lr_per_mb = [1.0] * 80 + [0.1] * 40 + [0.01]
    elif network_name == 'resnet110':
        z = create_cifar10_model(input_var, 18, num_classes)
        lr_per_mb = [0.1] * 1 + [1.0] * 80 + [0.1] * 40 + [0.01]
    else:
        return RuntimeError("Unknown model name!")

    # loss and metric
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)

    # shared training parameters
    epoch_size = 50000  # for now we manually specify epoch size

    # NOTE: scaling up minibatch_size increases sample throughput. In 8-GPU machine,
    # ResNet110 samples-per-second is ~7x of single GPU, comparing to ~3x without scaling
    # up. However, bigger minimatch size on the same number of samples means less updates,
    # thus leads to higher training error. This is a trade-off of speed and accuracy
    minibatch_size = 128 * (distributed.Communicator.num_workers()
                            if scale_up else 1)

    momentum_time_constant = -minibatch_size / np.log(0.9)
    l2_reg_weight = 0.0001

    # Set learning parameters
    lr_per_sample = [lr / minibatch_size for lr in lr_per_mb]
    lr_schedule = learning_rate_schedule(lr_per_sample,
                                         epoch_size=epoch_size,
                                         unit=UnitType.sample)
    mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant)

    # trainer object
    learner = create_dist_learner(
        momentum_sgd(z.parameters,
                     lr_schedule,
                     mm_schedule,
                     l2_regularization_weight=l2_reg_weight))
    trainer = Trainer(z, ce, pe, learner)

    total_number_of_samples = max_epochs * epoch_size
    train_reader = create_train_reader(total_number_of_samples)

    # define mapping from reader streams to network inputs
    input_map = {
        input_var: train_reader.streams.features,
        label_var: train_reader.streams.labels
    }

    log_number_of_parameters(z)
    print()
    progress_printer = ProgressPrinter(tag='Training')

    # perform model training
    current_epoch = 0
    updated = True
    while updated:
        data = train_reader.next_minibatch(
            minibatch_size, input_map=input_map)  # fetch minibatch.
        updated = trainer.train_minibatch(data)  # update model with it
        progress_printer.update_with_trainer(trainer,
                                             with_metric=True)  # log progress
        epoch_index = int(trainer.total_number_of_samples_seen / epoch_size)
        if current_epoch != epoch_index:  # new epoch reached
            progress_printer.epoch_summary(with_metric=True)
            current_epoch = epoch_index
            trainer.save_checkpoint(
                os.path.join(model_path,
                             network_name + "_{}.dnn".format(current_epoch)))

    # Evaluation parameters
    epoch_size = 10000
    minibatch_size = 16

    # process minibatches and evaluate the model
    metric_numer = 0
    metric_denom = 0
    sample_count = 0
    minibatch_index = 0

    while True:
        data = test_reader.next_minibatch(minibatch_size, input_map=input_map)
        if not data: break

        local_mb_samples = data[label_var].num_samples
        metric_numer += trainer.test_minibatch(data) * local_mb_samples
        metric_denom += local_mb_samples
        minibatch_index += 1

    print("")
    print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(
        minibatch_index + 1, (metric_numer * 100.0) / metric_denom,
        metric_denom))
    print("")

    return metric_numer / metric_denom
コード例 #36
0
ファイル: SimpleMNIST.py プロジェクト: zgsxwsdxg/CNTK
def simple_mnist(debug_output=False):
    input_dim = 784
    num_output_classes = 10
    num_hidden_layers = 1
    hidden_layers_dim = 200

    # Input variables denoting the features and label data
    input = input_variable(input_dim, np.float32)
    label = input_variable(num_output_classes, np.float32)

    # Instantiate the feedforward classification model
    scaled_input = element_times(constant(0.00390625), input)
    netout = fully_connected_classifier_net(scaled_input, num_output_classes,
                                            hidden_layers_dim,
                                            num_hidden_layers, sigmoid)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    try:
        rel_path = os.path.join(
            os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'],
            *"Image/MNIST/v0/Train-28x28_cntk_text.txt".split("/"))
    except KeyError:
        rel_path = os.path.join(
            *
            "../../../../Examples/Image/Datasets/MNIST/Train-28x28_cntk_text.txt"
            .split("/"))
    path = os.path.normpath(os.path.join(abs_path, rel_path))
    check_path(path)

    feature_stream_name = 'features'
    labels_stream_name = 'labels'

    mb_source = text_format_minibatch_source(path, [
        StreamConfiguration(feature_stream_name, input_dim),
        StreamConfiguration(labels_stream_name, num_output_classes)
    ])
    features_si = mb_source[feature_stream_name]
    labels_si = mb_source[labels_stream_name]

    # Instantiate the trainer object to drive the model training
    trainer = Trainer(netout, ce, pe, [sgd(netout.parameters, lr=0.003125)])

    # Get minibatches of images to train with and perform model training
    minibatch_size = 32
    num_samples_per_sweep = 60000
    num_sweeps_to_train_with = 1
    num_minibatches_to_train = (num_samples_per_sweep *
                                num_sweeps_to_train_with) / minibatch_size
    training_progress_output_freq = 80

    if debug_output:
        training_progress_output_freq = training_progress_output_freq / 4

    for i in range(0, int(num_minibatches_to_train)):
        mb = mb_source.next_minibatch(minibatch_size)

        # Specify the mapping of input variables in the model to actual
        # minibatch data to be trained with
        arguments = {input: mb[features_si], label: mb[labels_si]}
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)

    # Load test data
    try:
        rel_path = os.path.join(
            os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'],
            *"Image/MNIST/v0/Test-28x28_cntk_text.txt".split("/"))
    except KeyError:
        rel_path = os.path.join(
            *
            "../../../../Examples/Image/Datasets/MNIST/Test-28x28_cntk_text.txt"
            .split("/"))
    path = os.path.normpath(os.path.join(abs_path, rel_path))
    check_path(path)

    test_mb_source = text_format_minibatch_source(path, [
        StreamConfiguration(feature_stream_name, input_dim),
        StreamConfiguration(labels_stream_name, num_output_classes)
    ],
                                                  randomize=False)
    features_si = test_mb_source[feature_stream_name]
    labels_si = test_mb_source[labels_stream_name]

    # Test data for trained model
    test_minibatch_size = 512
    num_samples = 10000
    num_minibatches_to_test = num_samples / test_minibatch_size
    test_result = 0.0
    for i in range(0, int(num_minibatches_to_test)):
        mb = test_mb_source.next_minibatch(test_minibatch_size)

        # Specify the mapping of input variables in the model to actual
        # minibatch data to be tested with
        arguments = {input: mb[features_si], label: mb[labels_si]}
        eval_error = trainer.test_minibatch(arguments)
        test_result = test_result + eval_error

    # Average of evaluation errors of all test minibatches
    return test_result / num_minibatches_to_test
コード例 #37
0
#available activation function: relu, leaky_relu, sigmoid, tanh

if nettype == "cls":
    model = create_model(input, output_dim, [25, 25, 25], sigmoid)
    ce = cross_entropy_with_softmax(model, label)
    lr_per_minibatch=learning_rate_schedule(0.25, UnitType.minibatch)
else:
    if output_dim == 3:
        model = create_model(input, output_dim, [100, 80, 50, 20], sigmoid)
    else:
        model = create_model(input, output_dim, [50, 30, 20], sigmoid)
    lr_per_minibatch=learning_rate_schedule(0.25, UnitType.minibatch)
    ce = squared_error(model, label)

pe = classification_error(model, label)
trainer = Trainer(model, (ce, pe), sgd(model.parameters, lr=lr_per_minibatch))

mini_batch_sz = 25    
error = 0.0;
expFactor = 0.001;

for ep in range(epochs):
    for i in range(0, N, mini_batch_sz):
        j = i + mini_batch_sz
        trainer.train_minibatch({input: features[i:j], label: labels[i:j]})
        error = (1-expFactor)*error + expFactor*trainer.previous_minibatch_loss_average * mini_batch_sz;
    if (ep+1) % refreshFreq == 0:
        LogReport(ep+1, error)

if ep % refreshFreq != 0 :
    LogReport(ep, 1.00)
コード例 #38
0
def train_fast_rcnn(cfg):
    # Train only if no model exists yet
    model_path = cfg['MODEL_PATH']
    if os.path.exists(model_path) and cfg["CNTK"].MAKE_MODE:
        print("Loading existing model from %s" % model_path)
        return load_model(model_path)
    else:
        # Input variables denoting features and labeled ground truth rois (as 5-tuples per roi)
        image_input = input_variable(shape=(cfg.NUM_CHANNELS, cfg.IMAGE_HEIGHT,
                                            cfg.IMAGE_WIDTH),
                                     dynamic_axes=[Axis.default_batch_axis()],
                                     name=cfg["MODEL"].FEATURE_NODE_NAME)
        roi_proposals = input_variable(
            (cfg.NUM_ROI_PROPOSALS, 4),
            dynamic_axes=[Axis.default_batch_axis()],
            name="roi_proposals")
        label_targets = input_variable(
            (cfg.NUM_ROI_PROPOSALS, cfg["DATA"].NUM_CLASSES),
            dynamic_axes=[Axis.default_batch_axis()])
        bbox_targets = input_variable(
            (cfg.NUM_ROI_PROPOSALS, 4 * cfg["DATA"].NUM_CLASSES),
            dynamic_axes=[Axis.default_batch_axis()])
        bbox_inside_weights = input_variable(
            (cfg.NUM_ROI_PROPOSALS, 4 * cfg["DATA"].NUM_CLASSES),
            dynamic_axes=[Axis.default_batch_axis()])

        # Instantiate the Fast R-CNN prediction model and loss function
        loss, pred_error = create_fast_rcnn_model(image_input, roi_proposals,
                                                  label_targets, bbox_targets,
                                                  bbox_inside_weights, cfg)
        if isinstance(loss, cntk.Variable):
            loss = combine([loss])

        if cfg["CNTK"].DEBUG_OUTPUT:
            print("Storing graphs and models to %s." % cfg.OUTPUT_PATH)
            plot(
                loss,
                os.path.join(cfg.OUTPUT_PATH,
                             "graph_frcn_train." + cfg["CNTK"].GRAPH_TYPE))

        # Set learning parameters
        lr_factor = cfg["CNTK"].LR_FACTOR
        lr_per_sample_scaled = [
            x * lr_factor for x in cfg["CNTK"].LR_PER_SAMPLE
        ]
        mm_schedule = momentum_schedule(cfg["CNTK"].MOMENTUM_PER_MB)
        l2_reg_weight = cfg["CNTK"].L2_REG_WEIGHT
        epochs_to_train = cfg["CNTK"].MAX_EPOCHS

        print("Using base model:   {}".format(cfg["MODEL"].BASE_MODEL))
        print("lr_per_sample:      {}".format(lr_per_sample_scaled))

        # --- train ---
        # Instantiate the learners and the trainer object
        params = loss.parameters
        biases = [p for p in params if '.b' in p.name or 'b' == p.name]
        others = [p for p in params if not p in biases]
        bias_lr_mult = cfg["CNTK"].BIAS_LR_MULT
        lr_schedule = learning_rate_schedule(lr_per_sample_scaled,
                                             unit=UnitType.sample)
        learner = momentum_sgd(others,
                               lr_schedule,
                               mm_schedule,
                               l2_regularization_weight=l2_reg_weight,
                               unit_gain=False,
                               use_mean_gradient=True)

        bias_lr_per_sample = [
            v * bias_lr_mult for v in cfg["CNTK"].LR_PER_SAMPLE
        ]
        bias_lr_schedule = learning_rate_schedule(bias_lr_per_sample,
                                                  unit=UnitType.sample)
        bias_learner = momentum_sgd(biases,
                                    bias_lr_schedule,
                                    mm_schedule,
                                    l2_regularization_weight=l2_reg_weight,
                                    unit_gain=False,
                                    use_mean_gradient=True)
        trainer = Trainer(None, (loss, pred_error), [learner, bias_learner])

        # Get minibatches of images and perform model training
        print("Training model for %s epochs." % epochs_to_train)
        log_number_of_parameters(loss)

        # Create the minibatch source
        if cfg.USE_PRECOMPUTED_PROPOSALS:
            proposal_provider = ProposalProvider.fromfile(
                cfg["DATA"].TRAIN_PRECOMPUTED_PROPOSALS_FILE,
                cfg.NUM_ROI_PROPOSALS)
        else:
            proposal_provider = ProposalProvider.fromconfig(cfg)

        od_minibatch_source = ObjectDetectionMinibatchSource(
            cfg["DATA"].TRAIN_MAP_FILE,
            cfg["DATA"].TRAIN_ROI_FILE,
            max_annotations_per_image=cfg.INPUT_ROIS_PER_IMAGE,
            pad_width=cfg.IMAGE_WIDTH,
            pad_height=cfg.IMAGE_HEIGHT,
            pad_value=cfg["MODEL"].IMG_PAD_COLOR,
            randomize=True,
            use_flipping=cfg["TRAIN"].USE_FLIPPED,
            max_images=cfg["DATA"].NUM_TRAIN_IMAGES,
            num_classes=cfg["DATA"].NUM_CLASSES,
            proposal_provider=proposal_provider,
            provide_targets=True,
            proposal_iou_threshold=cfg.BBOX_THRESH,
            normalize_means=None
            if not cfg.BBOX_NORMALIZE_TARGETS else cfg.BBOX_NORMALIZE_MEANS,
            normalize_stds=None
            if not cfg.BBOX_NORMALIZE_TARGETS else cfg.BBOX_NORMALIZE_STDS)

        # define mapping from reader streams to network inputs
        input_map = {
            od_minibatch_source.image_si: image_input,
            od_minibatch_source.proposals_si: roi_proposals,
            od_minibatch_source.label_targets_si: label_targets,
            od_minibatch_source.bbox_targets_si: bbox_targets,
            od_minibatch_source.bbiw_si: bbox_inside_weights
        }

        progress_printer = ProgressPrinter(tag='Training',
                                           num_epochs=epochs_to_train,
                                           gen_heartbeat=True)
        for epoch in range(epochs_to_train):  # loop over epochs
            sample_count = 0
            while sample_count < cfg[
                    "DATA"].NUM_TRAIN_IMAGES:  # loop over minibatches in the epoch
                data = od_minibatch_source.next_minibatch(min(
                    cfg.MB_SIZE, cfg["DATA"].NUM_TRAIN_IMAGES - sample_count),
                                                          input_map=input_map)

                trainer.train_minibatch(data)  # update model with it
                sample_count += trainer.previous_minibatch_sample_count  # count samples processed so far
                progress_printer.update_with_trainer(
                    trainer, with_metric=True)  # log progress
                if sample_count % 100 == 0:
                    print("Processed {} samples".format(sample_count))

            progress_printer.epoch_summary(with_metric=True)

        eval_model = create_fast_rcnn_eval_model(loss, image_input,
                                                 roi_proposals, cfg)
        eval_model.save(cfg['MODEL_PATH'])
        return eval_model
コード例 #39
0
ファイル: SequenceClassification.py プロジェクト: hahatt/CNTK
def train_sequence_classifier(debug_output=False):
    input_dim = 2000
    cell_dim = 25
    hidden_dim = 25
    embedding_dim = 50
    num_output_classes = 5

    # Input variables denoting the features and label data
    features = input_variable(shape=input_dim, is_sparse=True)
    label = input_variable(num_output_classes, dynamic_axes=[
                           Axis.default_batch_axis()])

    # Instantiate the sequence classification model
    classifier_output = LSTM_sequence_classifer_net(
        features, num_output_classes, embedding_dim, hidden_dim, cell_dim)

    ce = cross_entropy_with_softmax(classifier_output, label)
    pe = classification_error(classifier_output, label)

    rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf"
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path)
    feature_stream_name = 'features'
    labels_stream_name = 'labels'

    mb_source = text_format_minibatch_source(path, [
        StreamConfiguration(feature_stream_name, input_dim, True, 'x'),
        StreamConfiguration(labels_stream_name, num_output_classes, False, 'y')], 0)

    features_si = mb_source[features]
    labels_si = mb_source[label]

    # Instantiate the trainer object to drive the model training
    trainer = Trainer(classifier_output, ce, pe,
                      [sgd(classifier_output.parameters(), lr=0.0005)])

    # Get minibatches of sequences to train with and perform model training
    minibatch_size = 200
    training_progress_output_freq = 10
    i = 0

    if debug_output:
        training_progress_output_freq = training_progress_output_freq/3

    while True:
        mb = mb_source.get_next_minibatch(minibatch_size)

        if len(mb) == 0:
            break

        # Specify the mapping of input variables in the model to actual
        # minibatch data to be trained with
        arguments = {features: mb[features_si],
                     label: mb[labels_si]}
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)
        i += 1

    import copy

    evaluation_average = copy.copy(
        trainer.previous_minibatch_evaluation_average())
    loss_average = copy.copy(trainer.previous_minibatch_loss_average())

    return evaluation_average, loss_average
コード例 #40
0
ファイル: CifarConvNet.py プロジェクト: Soukiy/CNTK
def train_and_evaluate(reader_train, reader_test, max_epochs):

    # Input variables denoting the features and label data
    input_var = input_variable((num_channels, image_height, image_width))
    label_var = input_variable((num_classes))

    # Normalize the input
    feature_scale = 1.0 / 256.0
    input_var_norm = element_times(feature_scale, input_var)
   
    # apply model to input
    z = create_vgg9_model(input_var_norm, 10)

    #
    # Training action
    #

    # loss and metric
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)

    # training config
    epoch_size     = 50000
    minibatch_size = 64

    # Set learning parameters
    lr_per_minibatch       = learning_rate_schedule([0.01]*10 + [0.003]*10 + [0.001], epoch_size, UnitType.minibatch)
    momentum_time_constant = momentum_as_time_constant_schedule(-minibatch_size/np.log(0.9))
    l2_reg_weight          = 0.0001

    # trainer object
    learner     = momentum_sgd(z.parameters, 
                               lr = lr_per_minibatch, momentum = momentum_time_constant,
                               l2_regularization_weight = l2_reg_weight)
    trainer     = Trainer(z, ce, pe, learner)

    # define mapping from reader streams to network inputs
    input_map = {
        input_var: reader_train.streams.features,
        label_var: reader_train.streams.labels
    }

    log_number_of_parameters(z) ; print()
    progress_printer = ProgressPrinter(tag='Training')

    # perform model training
    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = reader_train.next_minibatch(min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch.
            trainer.train_minibatch(data)                                   # update model with it

            sample_count += data[label_var].num_samples                     # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True) # log progress
        progress_printer.epoch_summary(with_metric=True)
    
    #
    # Evaluation action
    #
    epoch_size     = 10000
    minibatch_size = 16

    # process minibatches and evaluate the model
    metric_numer    = 0
    metric_denom    = 0
    sample_count    = 0
    minibatch_index = 0

    #progress_printer = ProgressPrinter(freq=100, first=10, tag='Eval')
    while sample_count < epoch_size:
        current_minibatch = min(minibatch_size, epoch_size - sample_count)

        # Fetch next test min batch.
        data = reader_test.next_minibatch(current_minibatch, input_map=input_map)

        # minibatch data to be trained with
        metric_numer += trainer.test_minibatch(data) * current_minibatch
        metric_denom += current_minibatch

        # Keep track of the number of samples processed so far.
        sample_count += data[label_var].num_samples
        minibatch_index += 1

    print("")
    print("Final Results: Minibatch[1-{}]: errs = {:0.1f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom))
    print("")

    # return evaluation error.
    return metric_numer/metric_denom
コード例 #41
0
def train_and_evaluate(reader_train, reader_test, max_epochs,
                       distributed_trainer):

    # Input variables denoting the features and label data
    input_var = input_variable((num_channels, image_height, image_width))
    label_var = input_variable((num_classes))

    # Normalize the input
    feature_scale = 1.0 / 256.0
    input_var_norm = element_times(feature_scale, input_var)

    # apply model to input
    z = create_resnet_model(input_var_norm, 10)

    #
    # Training action
    #

    # loss and metric
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)

    # training config
    epoch_size = 50000
    minibatch_size = 128

    # Set learning parameters
    lr_per_minibatch = learning_rate_schedule([1] * 80 + [0.1] * 40 + [0.01],
                                              UnitType.minibatch, epoch_size)
    momentum_time_constant = momentum_as_time_constant_schedule(
        -minibatch_size / np.log(0.9))
    l2_reg_weight = 0.0001

    # trainer object
    learner = momentum_sgd(z.parameters,
                           lr=lr_per_minibatch,
                           momentum=momentum_time_constant,
                           l2_regularization_weight=l2_reg_weight)
    trainer = Trainer(z, ce, pe, learner, distributed_trainer)

    # define mapping from reader streams to network inputs
    input_map = {
        input_var: reader_train.streams.features,
        label_var: reader_train.streams.labels
    }

    log_number_of_parameters(z)
    print()
    progress_printer = ProgressPrinter(tag='Training')

    # perform model training
    for epoch in range(max_epochs):  # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = reader_train.next_minibatch(
                minibatch_size, input_map=input_map)  # fetch minibatch.
            trainer.train_minibatch(data)  # update model with it

            sample_count += trainer.previous_minibatch_sample_count  # count samples processed so far
            progress_printer.update_with_trainer(
                trainer, with_metric=True)  # log progress
        progress_printer.epoch_summary(with_metric=True)
        if distributed_trainer.communicator().current_worker(
        ).global_rank == 0:
            persist.save_model(
                z,
                os.path.join(model_path,
                             "CifarResNet_Distributed_{}.dnn".format(epoch)))

    #
    # Evaluation action
    #
    epoch_size = 10000
    minibatch_size = 16

    # process minibatches and evaluate the model
    metric_numer = 0
    metric_denom = 0
    sample_count = 0
    minibatch_index = 0

    #progress_printer = ProgressPrinter(freq=100, first=10, tag='Eval')
    while sample_count < epoch_size:
        current_minibatch = min(minibatch_size, epoch_size - sample_count)

        # Fetch next test min batch.
        data = reader_test.next_minibatch(current_minibatch,
                                          input_map=input_map)

        # minibatch data to be trained with
        metric_numer += trainer.test_minibatch(data) * current_minibatch
        metric_denom += current_minibatch

        # Keep track of the number of samples processed so far.
        sample_count += data[label_var].num_samples
        minibatch_index += 1

    print("")
    print("Final Results: Minibatch[1-{}]: errs = {:0.1f}% * {}".format(
        minibatch_index + 1, (metric_numer * 100.0) / metric_denom,
        metric_denom))
    print("")

    # return evaluation error.
    return metric_numer / metric_denom
コード例 #42
0
labels_arr = [np.array([0,1],dtype=np.float32) if x==-1 else np.array([1,0],dtype=np.float32) for x in labels]

input_var = C.input_variable((input_size,vocab_size))
label_var = C.input_variable((2))

model = Sequential([Dense(500,activation=C.ops.relu),Dense(2,activation=None)])

z = model(input_var)

ce = cross_entropy_with_softmax(z, label_var)
errs = classification_error(z, label_var)

lr_per_sample = learning_rate_schedule(0.02, UnitType.minibatch)
learner = C.learners.sgd(z.parameters, lr_per_sample)
progress_printer = ProgressPrinter(freq=100, tag='Training')
trainer = Trainer(z, (ce, errs), learner, progress_printer)

    
log_number_of_parameters(z)

minibatch_size=10

for ep in range(20):
    print("Epoch={}".format(ep))
    for mb in range(0,len(words),minibatch_size):
        trainer.train_minibatch({input_var: words_arr[mb:mb+minibatch_size], label_var: labels_arr[mb:mb+minibatch_size]})

words_test, labels_test = read("sentiment-test.txt")

def check(net,dofill=True):
    total = 0
コード例 #43
0
ファイル: Sequence2Sequence.py プロジェクト: Microsoft/CNTK
def sequence_to_sequence_translator(debug_output=False, run_test=False):

    input_vocab_dim = 69
    label_vocab_dim = 69

    # network complexity; initially low for faster testing
    hidden_dim = 256
    num_layers = 1

    # Source and target inputs to the model
    batch_axis = Axis.default_batch_axis()
    input_seq_axis = Axis('inputAxis')
    label_seq_axis = Axis('labelAxis')

    input_dynamic_axes = [batch_axis, input_seq_axis]
    raw_input = input_variable(
        shape=(input_vocab_dim), dynamic_axes=input_dynamic_axes, name='raw_input')

    label_dynamic_axes = [batch_axis, label_seq_axis]
    raw_labels = input_variable(
        shape=(label_vocab_dim), dynamic_axes=label_dynamic_axes, name='raw_labels')

    # Instantiate the sequence to sequence translation model
    input_sequence = raw_input

    # Drop the sentence start token from the label, for decoder training
    label_sequence = sequence.slice(raw_labels, 1, 0) # <s> A B C </s> --> A B C </s>
    label_sentence_start = sequence.first(raw_labels)        # <s>

    is_first_label = sequence.is_first(label_sequence)       # <s> 0 0 0 ...
    label_sentence_start_scattered = sequence.scatter(
        label_sentence_start, is_first_label)

    # Encoder
    encoder_outputH = stabilize(input_sequence)
    for i in range(0, num_layers):
        (encoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization(
            encoder_outputH.output, hidden_dim, hidden_dim, future_value, future_value)

    thought_vectorH = sequence.first(encoder_outputH)
    thought_vectorC = sequence.first(encoder_outputC)

    thought_vector_broadcastH = sequence.broadcast_as(
        thought_vectorH, label_sequence)
    thought_vector_broadcastC = sequence.broadcast_as(
        thought_vectorC, label_sequence)

    # Decoder
    decoder_history_hook = alias(label_sequence, name='decoder_history_hook') # copy label_sequence

    decoder_input = element_select(is_first_label, label_sentence_start_scattered, past_value(
        decoder_history_hook))

    decoder_outputH = stabilize(decoder_input)
    for i in range(0, num_layers):
        if (i > 0):
            recurrence_hookH = past_value
            recurrence_hookC = past_value
        else:
            isFirst = sequence.is_first(label_sequence)
            recurrence_hookH = lambda operand: element_select(
                isFirst, thought_vector_broadcastH, past_value(operand))
            recurrence_hookC = lambda operand: element_select(
                isFirst, thought_vector_broadcastC, past_value(operand))

        (decoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization(
            decoder_outputH.output, hidden_dim, hidden_dim, recurrence_hookH, recurrence_hookC)

    decoder_output = decoder_outputH

    # Softmax output layer
    z = linear_layer(stabilize(decoder_output), label_vocab_dim)

    # Criterion nodes
    ce = cross_entropy_with_softmax(z, label_sequence)
    errs = classification_error(z, label_sequence)

    # network output for decoder history
    net_output = hardmax(z)

    # make a clone of the graph where the ground truth is replaced by the network output
    ng = z.clone(CloneMethod.share, {decoder_history_hook.output : net_output.output})

    # Instantiate the trainer object to drive the model training
    lr_per_minibatch = learning_rate_schedule(0.5, UnitType.minibatch)
    momentum_time_constant = momentum_as_time_constant_schedule(1100)
    clipping_threshold_per_sample = 2.3
    gradient_clipping_with_truncation = True
    learner = momentum_sgd(z.parameters, 
                           lr_per_minibatch, momentum_time_constant, 
                           gradient_clipping_threshold_per_sample=clipping_threshold_per_sample, 
                           gradient_clipping_with_truncation=gradient_clipping_with_truncation)
    trainer = Trainer(z, ce, errs, learner)

    # setup data
    train_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "Data", "cmudict-0.7b.train-dev-20-21.ctf")
    valid_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "Data", "tiny.ctf")

    # readers
    randomize_data = True
    if run_test:
        randomize_data = False # because we want to get an exact error

    train_reader = create_reader(train_path, randomize_data, input_vocab_dim, label_vocab_dim)
    train_bind = {
        raw_input  : train_reader.streams.features,
        raw_labels : train_reader.streams.labels
    }

    # get the vocab for printing output sequences in plaintext
    vocab_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "Data", "cmudict-0.7b.mapping")
    vocab = [w.strip() for w in open(vocab_path).readlines()]
    i2w = { i:ch for i,ch in enumerate(vocab) }

    # Get minibatches of sequences to train with and perform model training
    i = 0
    mbs = 0
    minibatch_size = 72
    epoch_size = 908241
    max_epochs = 10
    training_progress_output_freq = 500

    # make things more basic for running a quicker test
    if run_test:
        epoch_size = 5000
        max_epochs = 1
        training_progress_output_freq = 30

    valid_reader = create_reader(valid_path, False, input_vocab_dim, label_vocab_dim)
    valid_bind = {
            find_arg_by_name('raw_input',ng)  : valid_reader.streams.features,
            find_arg_by_name('raw_labels',ng) : valid_reader.streams.labels
        }

    for epoch in range(max_epochs):
        loss_numer = 0
        metric_numer = 0
        denom = 0

        while i < (epoch+1) * epoch_size:
            # get next minibatch of training data
            mb_train = train_reader.next_minibatch(minibatch_size, input_map=train_bind)
            trainer.train_minibatch(mb_train)

            # collect epoch-wide stats
            samples = trainer.previous_minibatch_sample_count
            loss_numer += trainer.previous_minibatch_loss_average * samples
            metric_numer += trainer.previous_minibatch_evaluation_average * samples
            denom += samples

            # every N MBs evaluate on a test sequence to visually show how we're doing
            if mbs % training_progress_output_freq == 0:
                mb_valid = valid_reader.next_minibatch(minibatch_size, input_map=valid_bind)
                e = ng.eval(mb_valid)
                print_sequences(e, i2w)

            print_training_progress(trainer, mbs, training_progress_output_freq)
            i += mb_train[raw_labels].num_samples
            mbs += 1

        print("--- EPOCH %d DONE: loss = %f, errs = %f ---" % (epoch, loss_numer/denom, 100.0*(metric_numer/denom)))


    error1 = translator_test_error(z, trainer, input_vocab_dim, label_vocab_dim)

    z.save_model("seq2seq.dnn")
    z.restore_model("seq2seq.dnn")

    label_seq_axis = Axis('labelAxis')
    label_sequence = sequence.slice(find_arg_by_name('raw_labels',z), 1, 0)
    ce = cross_entropy_with_softmax(z, label_sequence)
    errs = classification_error(z, label_sequence)
    trainer = Trainer(z, ce, errs, [momentum_sgd(
                    z.parameters, lr_per_minibatch, momentum_time_constant, clipping_threshold_per_sample, gradient_clipping_with_truncation)])

    error2 = translator_test_error(z, trainer, input_vocab_dim, label_vocab_dim)

    assert error1 == error2

    return error1
コード例 #44
0
def simple_mnist(tensorboard_logdir=None):
    input_dim = 784
    num_output_classes = 10
    num_hidden_layers = 1
    hidden_layers_dim = 200

    # Input variables denoting the features and label data
    input = input_variable(input_dim, np.float32)
    label = input_variable(num_output_classes, np.float32)

    # Instantiate the feedforward classification model
    scaled_input = element_times(constant(0.00390625), input)
    z = fully_connected_classifier_net(scaled_input, num_output_classes,
                                       hidden_layers_dim, num_hidden_layers,
                                       relu)

    ce = cross_entropy_with_softmax(z, label)
    pe = classification_error(z, label)

    data_dir = os.path.join(abs_path, "..", "..", "..", "DataSets", "MNIST")

    path = os.path.normpath(os.path.join(data_dir,
                                         "Train-28x28_cntk_text.txt"))
    check_path(path)

    reader_train = create_reader(path, True, input_dim, num_output_classes)

    input_map = {
        input: reader_train.streams.features,
        label: reader_train.streams.labels
    }

    # Training config
    minibatch_size = 64
    num_samples_per_sweep = 60000
    num_sweeps_to_train_with = 10

    # Instantiate progress writers.
    #training_progress_output_freq = 100
    progress_writers = [
        ProgressPrinter(
            #freq=training_progress_output_freq,
            tag='Training',
            num_epochs=num_sweeps_to_train_with)
    ]

    if tensorboard_logdir is not None:
        progress_writers.append(
            TensorBoardProgressWriter(freq=10,
                                      log_dir=tensorboard_logdir,
                                      model=z))

    # Instantiate the trainer object to drive the model training
    lr_per_minibatch = learning_rate_schedule(0.2, UnitType.minibatch)
    trainer = Trainer(z, (ce, pe), sgd(z.parameters, lr=lr_per_minibatch),
                      progress_writers)

    training_session(trainer=trainer,
                     mb_source=reader_train,
                     mb_size=minibatch_size,
                     var_to_stream=input_map,
                     max_samples=num_samples_per_sweep *
                     num_sweeps_to_train_with,
                     progress_frequency=num_samples_per_sweep).train()

    # Load test data
    path = os.path.normpath(os.path.join(data_dir, "Test-28x28_cntk_text.txt"))
    check_path(path)

    reader_test = create_reader(path, False, input_dim, num_output_classes)

    input_map = {
        input: reader_test.streams.features,
        label: reader_test.streams.labels
    }

    # Test data for trained model
    test_minibatch_size = 1024
    num_samples = 10000
    num_minibatches_to_test = num_samples / test_minibatch_size
    test_result = 0.0
    for i in range(0, int(num_minibatches_to_test)):
        mb = reader_test.next_minibatch(test_minibatch_size,
                                        input_map=input_map)
        eval_error = trainer.test_minibatch(mb)
        test_result = test_result + eval_error

    # Average of evaluation errors of all test minibatches
    return test_result / num_minibatches_to_test
コード例 #45
0
def train_fast_rcnn(debug_output=False):
    if debug_output:
        print("Storing graphs and intermediate models to %s." %
              os.path.join(abs_path, "Output"))

    # Create the minibatch source
    minibatch_source = create_mb_source(image_height, image_width,
                                        num_channels, num_classes, num_rois,
                                        base_path, "train")

    # Input variables denoting features, rois and label data
    image_input = input((num_channels, image_height, image_width))
    roi_input = input((num_rois, 4))
    label_input = input((num_rois, num_classes))

    # define mapping from reader streams to network inputs
    input_map = {
        image_input: minibatch_source[features_stream_name],
        roi_input: minibatch_source[roi_stream_name],
        label_input: minibatch_source[label_stream_name]
    }

    # Instantiate the Fast R-CNN prediction model and loss function
    frcn_output = frcn_predictor(image_input, roi_input, num_classes)
    ce = cross_entropy_with_softmax(frcn_output, label_input, axis=1)
    pe = classification_error(frcn_output, label_input, axis=1)
    if debug_output:
        plot(frcn_output, os.path.join(abs_path, "Output", "graph_frcn.png"))

    # Set learning parameters
    l2_reg_weight = 0.0005
    lr_per_sample = [0.00001] * 10 + [0.000001] * 5 + [0.0000001]
    lr_schedule = learning_rate_schedule(lr_per_sample, unit=UnitType.sample)
    mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant)

    # Instantiate the trainer object
    learner = momentum_sgd(frcn_output.parameters,
                           lr_schedule,
                           mm_schedule,
                           l2_regularization_weight=l2_reg_weight)
    progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs)
    trainer = Trainer(frcn_output, (ce, pe), learner, progress_printer)

    # Get minibatches of images and perform model training
    print("Training Fast R-CNN model for %s epochs." % max_epochs)
    log_number_of_parameters(frcn_output)
    for epoch in range(max_epochs):  # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = minibatch_source.next_minibatch(min(
                mb_size, epoch_size - sample_count),
                                                   input_map=input_map)
            trainer.train_minibatch(data)  # update model with it
            sample_count += trainer.previous_minibatch_sample_count  # count samples processed so far

        trainer.summarize_training_progress()
        if debug_output:
            frcn_output.save(
                os.path.join(abs_path, "Output",
                             "frcn_py_%s.model" % (epoch + 1)))

    return frcn_output
コード例 #46
0
def test_sweep_based_schedule(tmpdir, device_id):
    from cntk.io import MinibatchSource, CTFDeserializer, StreamDef, StreamDefs
    from cntk import cross_entropy_with_softmax, classification_error, plus, reduce_sum, sequence
    from cntk import Trainer

    input_dim = 69

    ctf_data = '''\
0   |S0 3:1   |S1 3:1 |# <s>
0   |S0 4:1 |# A    |S1 32:1 |# ~AH
0   |S0 5:1 |# B    |S1 36:1 |# ~B
0   |S0 4:1 |# A    |S1 31:1 |# ~AE
0   |S0 7:1 |# D    |S1 38:1 |# ~D
0   |S0 12:1 |# I   |S1 47:1 |# ~IY
0   |S0 1:1 |# </s> |S1 1:1 |# </s>
2   |S0 60:1 |# <s> |S1 3:1 |# <s>
2   |S0 61:1 |# A   |S1 32:1 |# ~AH
'''
    ctf_file = str(tmpdir / '2seqtest.txt')
    with open(ctf_file, 'w') as f:
        f.write(ctf_data)

    mbs = MinibatchSource(CTFDeserializer(
        ctf_file,
        StreamDefs(features=StreamDef(field='S0',
                                      shape=input_dim,
                                      is_sparse=True),
                   labels=StreamDef(field='S1',
                                    shape=input_dim,
                                    is_sparse=True))),
                          randomize=False)

    in1 = sequence.input(shape=(input_dim, ))
    labels = sequence.input(shape=(input_dim, ))
    p = parameter(shape=(input_dim, ), init=10)
    z = plus(in1, reduce_sum(p), name='z')
    ce = cross_entropy_with_softmax(z, labels)
    errs = classification_error(z, labels)

    lr_per_sample = learning_rate_schedule([0.3, 0.2, 0.1, 0.0],
                                           UnitType.sample)
    learner = sgd(z.parameters, lr_per_sample)
    trainer = Trainer(z, (ce, errs), [learner])

    input_map = {in1: mbs.streams.features, labels: mbs.streams.labels}

    # fetch minibatch (first sequence)
    data = mbs.next_minibatch(1, input_map=input_map)
    trainer.train_minibatch(data)
    assert learner.learning_rate() == 0.3

    # fetch minibatch (second sequence, sweep ends at this point)
    data = mbs.next_minibatch(1, input_map=input_map)
    trainer.train_minibatch(data)
    assert learner.learning_rate() == 0.2

    # fetch minibatch (both sequences -- entire sweep in one go)
    data = mbs.next_minibatch(9, input_map=input_map)
    trainer.train_minibatch(data)
    assert learner.learning_rate() == 0.1

    # fetch minibatch (multiple sweeps)
    data = mbs.next_minibatch(30, input_map=input_map)
    trainer.train_minibatch(data, outputs=[z.output])
    assert learner.learning_rate() == 0.0
コード例 #47
0
def train_sequence_classifier(debug_output=False):
    input_dim = 2000
    cell_dim = 25
    hidden_dim = 25
    embedding_dim = 50
    num_output_classes = 5

    # Input variables denoting the features and label data
    features = input_variable(shape=input_dim, is_sparse=True)
    label = input_variable(num_output_classes,
                           dynamic_axes=[Axis.default_batch_axis()])

    # Instantiate the sequence classification model
    classifier_output = LSTM_sequence_classifer_net(features,
                                                    num_output_classes,
                                                    embedding_dim, hidden_dim,
                                                    cell_dim)

    ce = cross_entropy_with_softmax(classifier_output, label)
    pe = classification_error(classifier_output, label)

    rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf"
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path)
    feature_stream_name = 'features'
    labels_stream_name = 'labels'

    mb_source = text_format_minibatch_source(path, [
        StreamConfiguration(feature_stream_name, input_dim, True, 'x'),
        StreamConfiguration(labels_stream_name, num_output_classes, False, 'y')
    ], 0)

    features_si = mb_source[features]
    labels_si = mb_source[label]

    # Instantiate the trainer object to drive the model training
    trainer = Trainer(classifier_output, ce, pe,
                      [sgd(classifier_output.parameters, lr=0.0005)])

    # Get minibatches of sequences to train with and perform model training
    minibatch_size = 200
    training_progress_output_freq = 10
    i = 0

    if debug_output:
        training_progress_output_freq = training_progress_output_freq / 3

    while True:
        mb = mb_source.next_minibatch(minibatch_size)

        if len(mb) == 0:
            break

        # Specify the mapping of input variables in the model to actual
        # minibatch data to be trained with
        arguments = {features: mb[features_si], label: mb[labels_si]}
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)
        i += 1

    import copy

    evaluation_average = copy.copy(
        trainer.previous_minibatch_evaluation_average)
    loss_average = copy.copy(trainer.previous_minibatch_loss_average)

    return evaluation_average, loss_average
コード例 #48
0
def conv3d_ucf11(train_reader, test_reader, max_epochs=30):
    # Replace 0 with 1 to get detailed log.
    set_computation_network_trace_level(0)

    # These values must match for both train and test reader.
    image_height       = train_reader.height
    image_width        = train_reader.width
    num_channels       = train_reader.channel_count
    sequence_length    = train_reader.sequence_length
    num_output_classes = train_reader.label_count

    # Input variables denoting the features and label data
    input_var = input_variable((num_channels, sequence_length, image_height, image_width), np.float32)
    label_var = input_variable(num_output_classes, np.float32)

    # Instantiate simple 3D Convolution network inspired by VGG network 
    # and http://vlg.cs.dartmouth.edu/c3d/c3d_video.pdf
    with default_options (activation=relu):
        z = Sequential([
            Convolution3D((3,3,3), 64, pad=True),
            MaxPooling((1,2,2), (1,2,2)),
            For(range(3), lambda i: [
                Convolution3D((3,3,3), [96, 128, 128][i], pad=True),
                Convolution3D((3,3,3), [96, 128, 128][i], pad=True),
                MaxPooling((2,2,2), (2,2,2))
            ]),
            For(range(2), lambda : [
                Dense(1024), 
                Dropout(0.5)
            ]),
            Dense(num_output_classes, activation=None)
        ])(input_var)
    
    # loss and classification error.
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)

    # training config
    epoch_size     = 1322                  # for now we manually specify epoch size
    minibatch_size = 4

    # Set learning parameters
    lr_per_sample          = [0.01]*10+[0.001]*10+[0.0001]
    lr_schedule            = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample)
    momentum_time_constant = 4096
    mm_schedule            = momentum_as_time_constant_schedule(momentum_time_constant, epoch_size=epoch_size)

    # Instantiate the trainer object to drive the model training
    learner     = momentum_sgd(z.parameters, lr_schedule, mm_schedule, True)
    trainer     = Trainer(z, (ce, pe), learner)

    log_number_of_parameters(z) ; print()
    progress_printer = ProgressPrinter(tag='Training')

    # Get minibatches of images to train with and perform model training
    for epoch in range(max_epochs):       # loop over epochs
        train_reader.reset()

        while train_reader.has_more():
            videos, labels, current_minibatch = train_reader.next_minibatch(minibatch_size)
            trainer.train_minibatch({input_var : videos, label_var : labels})

            progress_printer.update_with_trainer(trainer, with_metric=True) # log progress
        progress_printer.epoch_summary(with_metric=True)
    
    # Test data for trained model
    epoch_size     = 332
    minibatch_size = 2

    # process minibatches and evaluate the model
    metric_numer    = 0
    metric_denom    = 0
    minibatch_index = 0

    test_reader.reset()    
    while test_reader.has_more():
        videos, labels, current_minibatch = test_reader.next_minibatch(minibatch_size)
        # minibatch data to be trained with
        metric_numer += trainer.test_minibatch({input_var : videos, label_var : labels}) * current_minibatch
        metric_denom += current_minibatch
        # Keep track of the number of samples processed so far.
        minibatch_index += 1

    print("")
    print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom))
    print("")

    return metric_numer/metric_denom
コード例 #49
0
ファイル: expt.py プロジェクト: TheBeachMaster/ML
     
    mydict['w'], mydict['b'] = weight_param, bias_param
 
    return times(input_var, weight_param) + bias_param
 
output_dim = num_output_classes
z = linear_layer(input, output_dim)
label = input_variable((num_output_classes), np.float32)
loss = cross_entropy_with_softmax(z, label)
 
eval_error = classification_error(z, label)
 
learning_rate = 0.5
lr_schedule = learning_rate_schedule(learning_rate, UnitType.minibatch) 
learner = sgd(z.parameters, lr_schedule)
trainer = Trainer(z, loss, eval_error, [learner])
 
from cntk.utils import get_train_eval_criterion, get_train_loss
 
# Define a utility function to compute the moving average sum.
# A more efficient implementation is possible with np.cumsum() function
def moving_average(a, w=10):
    if len(a) < w: 
        return a[:]    
    return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)]
 
 
# Defines a utility that prints the training progress
def print_training_progress(trainer, mb, frequency, verbose=1):
    training_loss, eval_error = "NA", "NA"
 
コード例 #50
0
ファイル: seq2seq.py プロジェクト: kanokkorn/python-sktch
def train(train_reader, valid_reader, vocab, i2w, s2smodel, max_epochs, epoch_size):

    # Note: We would like to set the signature of 's2smodel' (s2smodel.update_signature()), but that will cause
    # an error since the training criterion uses a reduced sequence axis for the labels.
    # This is because it removes the initial <s> symbol. Hence, we must leave the model
    # with unspecified input shapes and axes.

    # create the training wrapper for the s2smodel, as well as the criterion function
    model_train = create_model_train(s2smodel)
    criterion = create_criterion_function(model_train)

    # also wire in a greedy decoder so that we can properly log progress on a validation example
    # This is not used for the actual training process.
    model_greedy = create_model_greedy(s2smodel)

    # This does not need to be done in training generally though
    # Instantiate the trainer object to drive the model training
    minibatch_size = 72
    lr = 0.001 if use_attention else 0.005  # TODO: can we use the same value for both?
    learner = fsadagrad(
        model_train.parameters,
        lr=learning_parameter_schedule_per_sample(
            [lr] * 2 + [lr / 2] * 3 + [lr / 4], epoch_size=epoch_size
        ),
        momentum=momentum_schedule_per_sample(0.9990913221888589),
        gradient_clipping_threshold_per_sample=2.3,
        gradient_clipping_with_truncation=True,
    )
    trainer = Trainer(None, criterion, learner)

    # Get minibatches of sequences to train with and perform model training
    total_samples = 0
    mbs = 0
    eval_freq = 100

    # print out some useful training information
    log_number_of_parameters(model_train)
    print()
    progress_printer = ProgressPrinter(freq=30, tag="Training")
    # progress_printer = ProgressPrinter(freq=30, tag='Training', log_to_file=model_path_stem + ".log") # use this to log to file

    sparse_to_dense = create_sparse_to_dense(input_vocab_dim)

    for epoch in range(max_epochs):
        print("Saving model to '%s'" % model_path(epoch))
        s2smodel.save(model_path(epoch))

        while total_samples < (epoch + 1) * epoch_size:
            # get next minibatch of training data
            mb_train = train_reader.next_minibatch(minibatch_size)
            # trainer.train_minibatch(mb_train[train_reader.streams.features], mb_train[train_reader.streams.labels])
            trainer.train_minibatch(
                {
                    criterion.arguments[0]: mb_train[train_reader.streams.features],
                    criterion.arguments[1]: mb_train[train_reader.streams.labels],
                }
            )

            progress_printer.update_with_trainer(
                trainer, with_metric=True
            )  # log progress

            # every N MBs evaluate on a test sequence to visually show how we're doing
            if mbs % eval_freq == 0:
                mb_valid = valid_reader.next_minibatch(1)

                # run an eval on the decoder output model (i.e. don't use the groundtruth)
                e = model_greedy(mb_valid[valid_reader.streams.features])
                print(
                    format_sequences(
                        sparse_to_dense(mb_valid[valid_reader.streams.features]), i2w
                    )
                )
                print("->")
                print(format_sequences(e, i2w))

                # debugging attention
                if use_attention:
                    debug_attention(
                        model_greedy, mb_valid[valid_reader.streams.features]
                    )

            total_samples += mb_train[train_reader.streams.labels].num_samples
            mbs += 1

        # log a summary of the stats for the epoch
        progress_printer.epoch_summary(with_metric=True)

    # done: save the final model
    print("Saving final model to '%s'" % model_path(max_epochs))
    s2smodel.save(model_path(max_epochs))
    print("%d epochs complete." % max_epochs)
コード例 #51
0
ファイル: char_rnn.py プロジェクト: FDecaYed/CNTK
def train_lm(training_file, max_num_minibatches):

    # load the data and vocab
    data, char_to_ix, ix_to_char, data_size, vocab_dim = load_data_and_vocab(training_file)

    # Model the source and target inputs to the model
    input_sequence, label_sequence = create_inputs(vocab_dim)

    # create the model
    model = create_model(vocab_dim)
    
    # and apply it to the input sequence    
    z = model(input_sequence)

    # setup the criterions (loss and metric)
    ce = cross_entropy_with_softmax(z, label_sequence)
    errs = classification_error(z, label_sequence)

    # Instantiate the trainer object to drive the model training
    lr_per_sample = learning_rate_schedule(0.001, UnitType.sample)
    momentum_time_constant = momentum_as_time_constant_schedule(1100)
    clipping_threshold_per_sample = 5.0
    gradient_clipping_with_truncation = True
    learner = momentum_sgd(z.parameters, lr_per_sample, momentum_time_constant,
                           gradient_clipping_threshold_per_sample=clipping_threshold_per_sample,
                           gradient_clipping_with_truncation=gradient_clipping_with_truncation)
    trainer = Trainer(z, (ce, errs), learner)

    sample_freq = 1000
    epochs = 50
    minibatches_per_epoch = int((data_size / minibatch_size))
    minibatches = min(epochs * minibatches_per_epoch, max_num_minibatches)

    # print out some useful training information
    log_number_of_parameters(z) ; print()
    progress_printer = ProgressPrinter(freq=100, tag='Training')    
    
    e = 0
    p = 0
    for i in range(0, minibatches):

        if p + minibatch_size+1 >= data_size:
            p = 0
            e += 1
            model_filename = "models/shakespeare_epoch%d.dnn" % e
            z.save(model_filename)
            print("Saved model to '%s'" % model_filename)

        # get the data            
        features, labels = get_data(p, minibatch_size, data, char_to_ix, vocab_dim)

        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        # If it's the start of the data, we specify that we are looking at a new sequence (True)
        mask = [False] 
        if p == 0:
            mask = [True]
        arguments = ({input_sequence : features, label_sequence : labels}, mask)
        trainer.train_minibatch(arguments)

        progress_printer.update_with_trainer(trainer, with_metric=True) # log progress
        
        if i % sample_freq == 0:
            print(sample(z, ix_to_char, vocab_dim, char_to_ix))

        p += minibatch_size

    # Do a final save of the model        
    model_filename = "models/shakespeare_epoch%d.dnn" % e
    z.save(model_filename)
コード例 #52
0
ファイル: CifarResNet.py プロジェクト: hxl1990/CNTK
def train_and_evaluate(reader_train, reader_test, max_epochs):

    # Input variables denoting the features and label data
    input_var = input_variable((num_channels, image_height, image_width))
    label_var = input_variable((num_classes))

    # apply model to input
    z = create_resnet_model(input_var, 10)

    #
    # Training action
    #

    # loss and metric
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)

    # training config
    epoch_size = 50000
    minibatch_size = 128

    # Set learning parameters
    lr_per_sample = [1 / minibatch_size] * 80 + [0.1 / minibatch_size] * 40 + [
        0.01 / minibatch_size
    ]
    lr_schedule = learning_rate_schedule(lr_per_sample, units=epoch_size)
    momentum_per_sample = 0.9**(1.0 / minibatch_size)
    l2_reg_weight = 0.0001

    # trainer object
    lr_schedule = learning_rate_schedule(lr_per_sample, units=epoch_size)
    learner = momentum_sgd(z.parameters,
                           lr_schedule,
                           momentum_per_sample,
                           l2_regularization_weight=l2_reg_weight)
    trainer = Trainer(z, ce, pe, learner)

    # define mapping from reader streams to network inputs
    input_map = {
        input_var: reader_train.streams.features,
        label_var: reader_train.streams.labels
    }

    log_number_of_parameters(z)
    print()
    progress_printer = ProgressPrinter(tag='Training')

    # perform model training
    for epoch in range(max_epochs):  # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = reader_train.next_minibatch(
                min(minibatch_size, epoch_size - sample_count),
                input_map=input_map)  # fetch minibatch.
            trainer.train_minibatch(data)  # update model with it

            sample_count += data[
                label_var].num_samples  # count samples processed so far
            progress_printer.update_with_trainer(
                trainer, with_metric=True)  # log progress
        progress_printer.epoch_summary(with_metric=True)

    #
    # Evaluation action
    #
    epoch_size = 10000
    minibatch_size = 16

    # process minibatches and evaluate the model
    metric_numer = 0
    metric_denom = 0
    sample_count = 0
    minibatch_index = 0

    #progress_printer = ProgressPrinter(freq=100, first=10, tag='Eval')
    while sample_count < epoch_size:
        current_minibatch = min(minibatch_size, epoch_size - sample_count)

        # Fetch next test min batch.
        data = reader_test.next_minibatch(current_minibatch,
                                          input_map=input_map)

        # minibatch data to be trained with
        metric_numer += trainer.test_minibatch(data) * current_minibatch
        metric_denom += current_minibatch

        # Keep track of the number of samples processed so far.
        sample_count += data[label_var].num_samples
        minibatch_index += 1

    print("")
    print("Final Results: Minibatch[1-{}]: errs = {:0.1f}% * {}".format(
        minibatch_index + 1, (metric_numer * 100.0) / metric_denom,
        metric_denom))
    print("")

    return metric_numer / metric_denom