コード例 #1
0
ファイル: p2p_assists.py プロジェクト: PhilJFry32/NBA-Python
def build_csv(overwrite):
    if not os.path.exists('../data/p2p_assists/'):
        os.makedirs('../data/p2p_assists')
        print('MAKING DIRECTORY : ' + './data/p2p_assists')
    file_path = '../data/p2p_assists/passing.csv'
    if (not os.path.isfile(file_path)) or overwrite:
        passing_df = pd.DataFrame(
            columns=['Year', 'Receiver_Id', 'Receiver_Name', 'Passer_Id', 'Passer_Name', 'Frequency', 'Pass',
                     'Assists'])
        for year in range(2013, 2016):
            base_df = get_general_stats(PlayerOrTeam.P, MeasureTypes.BASE, PerModes.TOTAL, get_year_string(year),
                                        SeasonTypes.REG)
            for index, receiver in base_df.iterrows():
                print(receiver.PLAYER_NAME)
                player_passing_df = get_player_passing_dashboard(receiver.PLAYER_ID, get_year_string(year))
                if player_passing_df is not None:
                    for index2, passer in player_passing_df.iterrows():
                        row = [year, passer.PLAYER_ID, passer.PLAYER_NAME_LAST_FIRST, passer.PASS_TEAMMATE_PLAYER_ID,
                               passer.PASS_FROM, passer.FREQUENCY, passer.PASS, passer.AST]
                        passing_df = passing_df.append(pd.Series(row, index=passing_df.columns), ignore_index=True)
        passing_df = passing_df.sort_values(by='Assists', ascending=False)
        passing_df.to_csv(file_path)
        return passing_df
    else:
        return pd.read_csv(file_path)
コード例 #2
0
ファイル: shot_charts.py プロジェクト: PhilJFry32/NBA-Python
def make_matplot_kde_shot_chart(df, player_name, player_id, year, season_type, chart_type):
    player_pic = get_player_picture(player_id, player_name)

    # create our jointplot

    # get our colormap for the main kde plot
    # Note we can extract a color from cmap to use for
    # the plots that lie on the side and top axes
    cmap = plt.cm.viridis

    # n_levels sets the number of contour lines for the main kde plot
    joint_shot_chart = sns.jointplot(df.LOC_X, df.LOC_Y, stat_func=None,
                                     kind='kde', space=0, color=cmap(0.1),
                                     cmap=cmap, n_levels=50, extent=[-250, 250, 422.5, -47.5])

    joint_shot_chart.fig.set_size_inches(12, 11)

    # A joint plot has 3 Axes, the first one called ax_joint
    # is the one we want to draw our court onto and adjust some other settings
    ax = joint_shot_chart.ax_joint
    draw_court(ax)

    # Adjust the axis limits and orientation of the plot in order
    # to plot half court, with the hoop by the top of the plot
    ax.set_xlim(-250, 250)
    ax.set_ylim(422.5, -47.5)

    # Get rid of axis labels and tick marks
    ax.set_xlabel('')
    ax.set_ylabel('')
    ax.tick_params(labelbottom='off', labelleft='off')

    # Add a title
    title = player_name + ' ' + dg.get_year_string(year) + ' ' + season_type
    ax.set_title(title,
                 y=1.2, fontsize=18)

    # Add Data Scource and Author
    ax.text(-250, 445, 'Data Source: stats.nba.com',
            fontsize=12)

    # Add Harden's image to the top right
    # First create our OffSetImage by passing in our image
    # and set the zoom level to make the image small enough
    # to fit on our plot
    img = OffsetImage(player_pic, zoom=0.6)
    # Pass in a tuple of x,y coordinates to set_offset
    # to place the plot where you want, I just played around
    # with the values until I found a spot where I wanted
    # the image to be
    img.set_offset((987, 907))
    # add the image
    ax.add_artist(img)

    file_path = '../charts/' + chart_type + '/kde/' + player_name + '_' + str(
        year) + '_' + season_type + '.png'
    dg.create_directories_and_check_for_file(file_path)
    plt.savefig(file_path)
    plt.close()
コード例 #3
0
ファイル: shot_charts.py プロジェクト: PhilJFry32/NBA-Python
def make_histogram(df, player_name, year, season_type, chart_type):
    plt.figure()
    title = player_name + ' ' + dg.get_year_string(year) + ' ' + season_type
    plt.title(title)
    plt.xlabel('Distance (Feet)')
    df['SHOT_DISTANCE'].plot.hist(alpha=0.5)
    file_path = '../charts/' + chart_type + '/hist/' + player_name + '_' + str(year) + '_' + season_type + '.png'
    dg.create_directories_and_check_for_file(file_path)
    plt.savefig(file_path)
    plt.close()
コード例 #4
0
def get_season_game_ids(season_year):
    url = (
        "http://stats.nba.com/stats/leaguegamelog?"
        "Counter=1000&"
        "DateFrom=&"
        "DateTo=&"
        "Direction=DESC&"
        "LeagueID=00&"
        "PlayerOrTeam=T&"
        "Season={seasonYear}&"
        "SeasonType=Regular+Season&"
        "Sorter=PTS"
    )
    url = url.format(seasonYear=data.get_year_string(season_year))
    func_df = data.json_to_pandas(url, 0)
    return func_df["GAME_ID"].unique()
コード例 #5
0
ファイル: shot_charts.py プロジェクト: PhilJFry32/NBA-Python
def make_matplot_hexbin_shot_chart(df, player_name, player_id, year, season_type, chart_type):
    player_pic = get_player_picture(player_id, player_name)

    # create our jointplot

    cmap = plt.cm.coolwarm
    plt.axis([-250, 250, 422.5, -47.5])
    joint_shot_chart = sns.jointplot(df.LOC_X, df.LOC_Y, stat_func=None, reduce_C_function=np.sum,
                                     kind='hex', space=0, color=cmap(.2), cmap=cmap, extent=[-250, 250, 422.5, -47.5],
                                     gridsize=30)

    joint_shot_chart.fig.set_size_inches(12, 11)

    # A joint plot has 3 Axes, the first one called ax_joint
    # is the one we want to draw our court onto
    ax = joint_shot_chart.ax_joint
    draw_court(ax)

    # Adjust the axis limits and orientation of the plot in order
    # to plot half court, with the hoop by the top of the plot
    ax.set_xlim(-250, 250)
    ax.set_ylim(422.5, -47.5)

    # Get rid of axis labels and tick marks
    ax.set_xlabel('')
    ax.set_ylabel('')
    ax.tick_params(labelbottom='off', labelleft='off')

    # Add a title
    ax.set_title(player_name + ' ' + dg.get_year_string(year) + ' ' + season_type,
                 y=1.2, fontsize=18)

    img = OffsetImage(player_pic, zoom=0.6)
    img.set_offset((987, 907))
    ax.add_artist(img)

    file_path = '../charts/' + chart_type + '/hexbin/' + player_name + '_' + str(
        year) + '_' + season_type + '.png'
    dg.create_directories_and_check_for_file(file_path)
    plt.savefig(file_path)
    plt.close()
コード例 #6
0
ファイル: shot_charts.py プロジェクト: PhilJFry32/NBA-Python
def make_matplot_scatter_shot_chart(df, player_name, player_id, year, season_type, chart_type):
    player_pic = get_player_picture(player_id, player_name)

    # create our jointplot
    joint_shot_chart = sns.jointplot(df.LOC_X, df.LOC_Y, stat_func=None, kind='scatter', space=0, alpha=0.5)

    joint_shot_chart.fig.set_size_inches(12, 11)

    # A joint plot has 3 Axes, the first one called ax_joint
    # is the one we want to draw our court onto and adjust some other settings
    ax = joint_shot_chart.ax_joint
    draw_court(ax)

    # Adjust the axis limits and orientation of the plot in order
    # to plot half court, with the hoop by the top of the plot
    ax.set_xlim(-250, 250)
    ax.set_ylim(422.5, -47.5)

    # Get rid of axis labels and tick marks
    ax.set_xlabel('')
    ax.set_ylabel('')
    ax.tick_params(labelbottom='off', labelleft='off')

    # Add a title
    ax.set_title(player_name + ' ' + dg.get_year_string(year) + ' ' + season_type,
                 y=1.2, fontsize=18)

    img = OffsetImage(player_pic, zoom=.7)
    img.set_offset((987, 907))
    ax.add_artist(img)

    file_path = '../charts/' + chart_type + '/scatter/' + player_name + '_' + str(
        year) + '_' + season_type + '.png'
    dg.create_directories_and_check_for_file(file_path)
    plt.savefig(file_path)
    plt.close()
コード例 #7
0
def merge_pbp_and_shot_data(year):
    file_path = "../data/merged_shot_pbp/" + str(year) + ".csv"
    if not data.create_directories_and_check_for_file(file_path):
        game_ids = get_season_game_ids(year)
        full_year_merged_df = pd.DataFrame()

        shot_df = data.get_shot_data(overwrite=False, season_year=year)
        shot_df = shot_df[
            [
                "ACTION_TYPE",
                "EVENT_TYPE",
                "GAME_EVENT_ID",
                "GAME_ID",
                "LOC_X",
                "LOC_Y",
                "SHOT_DISTANCE",
                "SHOT_MADE_FLAG",
                "SHOT_TYPE",
                "SHOT_ZONE_AREA",
                "SHOT_ZONE_BASIC",
                "SHOT_ZONE_RANGE",
            ]
        ]

        for i, game_id in enumerate(game_ids):
            print(i, game_id)
            pbp_df = data.get_pbp_data(game_id, data.get_year_string(year), data.SeasonTypes.REG, overwrite=False)
            try:
                pbp_df = pbp_df[
                    [
                        "GAME_ID",
                        "EVENTNUM",
                        "PERIOD",
                        "PCTIMESTRING",
                        "HOMEDESCRIPTION",
                        "NEUTRALDESCRIPTION",
                        "VISITORDESCRIPTION",
                        "PLAYER1_ID",
                        "PLAYER1_NAME",
                        "PLAYER1_TEAM_ID",
                        "PLAYER2_ID",
                        "PLAYER2_NAME",
                        "PLAYER2_TEAM_ID",
                        "PLAYER3_ID",
                        "PLAYER3_NAME",
                        "PLAYER3_TEAM_ID",
                    ]
                ]

                merge_df = pd.merge(
                    pbp_df, shot_df, left_on=["GAME_ID", "EVENTNUM"], right_on=["GAME_ID", "GAME_EVENT_ID"], how="inner"
                )
            except KeyError:
                print("KEY ERROR")

        full_year_merged_df = full_year_merged_df.append(merge_df)
        full_year_merged_df.to_csv("../data/merged_shot_pbp/" + str(year) + ".csv")
        return full_year_merged_df

    else:
        return pd.read_csv(file_path)
コード例 #8
0
ファイル: sql.py プロジェクト: PhilJFry32/NBA-Python
import MySQLdb
import data_getters as data
import pandas as pd

db = MySQLdb.connect(host="localhost", user="******", passwd="1qw2SQL3er4", db="nbadb")
cur = db.cursor()

df = pd.DataFrame()

for year in range(1996, 2016):
    base_df = data.get_general_stats(
        data.PlayerOrTeam.P, data.MeasureTypes.BASE, data.PerModes.TOTAL, year, data.SeasonTypes.REG
    )
    base_df["YEAR"] = data.get_year_string(year)
    base_df = base_df[
        [
            "PLAYER_ID",
            "TEAM_ID",
            "YEAR",
            "AGE",
            "PLAYER_NAME",
            "TEAM_ABBREVIATION",
            "GP",
            "MIN",
            "AST",
            "BLK",
            "DREB",
            "OREB",
            "FGA",
            "FGM",
            "FG3A",