コード例 #1
0
def test_diffeomorphic_map_simplification_2d():
    r"""
    Create an invertible deformation field, and define a DiffeomorphicMap
    using different voxel-to-space transforms for domain, codomain, and
    reference discretizations, also use a non-identity pre-aligning matrix.
    Warp a circle using the diffeomorphic map to obtain the expected warped
    circle. Now simplify the DiffeomorphicMap and warp the same circle using
    this simplified map. Verify that the two warped circles are equal up to
    numerical precision.
    """
    #create a simple affine transformation
    dom_shape = (64, 64)
    cod_shape = (80, 80)
    nr = dom_shape[0]
    nc = dom_shape[1]
    s = 1.1
    t = 0.25
    trans = np.array([[1, 0, -t*nr],
                      [0, 1, -t*nc],
                      [0, 0, 1]])
    trans_inv = np.linalg.inv(trans)
    scale = np.array([[1*s, 0, 0],
                      [0, 1*s, 0],
                      [0, 0, 1]])
    gt_affine = trans_inv.dot(scale.dot(trans))
    # Create the invertible displacement fields and the circle
    radius = 16
    circle = vfu.create_circle(cod_shape[0], cod_shape[1], radius)
    d, dinv = vfu.create_harmonic_fields_2d(dom_shape[0], dom_shape[1], 0.3, 6)
    #Define different voxel-to-space transforms for domain, codomain and
    #reference grid, also, use a non-identity pre-align transform
    D = gt_affine
    C = imwarp.mult_aff(gt_affine, gt_affine)
    R = np.eye(3)
    P = gt_affine

    #Create the original diffeomorphic map
    diff_map = imwarp.DiffeomorphicMap(2, dom_shape, R,
                                          dom_shape, D,
                                          cod_shape, C,
                                          P)
    diff_map.forward = np.array(d, dtype = floating)
    diff_map.backward = np.array(dinv, dtype = floating)
    #Warp the circle to obtain the expected image
    expected = diff_map.transform(circle, 'linear')

    #Simplify
    simplified = diff_map.get_simplified_transform()
    #warp the circle
    warped = simplified.transform(circle, 'linear')
    #verify that the simplified map is equivalent to the
    #original one
    assert_array_almost_equal(warped, expected)
    #And of course, it must be simpler...
    assert_equal(simplified.domain_affine, None)
    assert_equal(simplified.codomain_affine, None)
    assert_equal(simplified.disp_affine, None)
    assert_equal(simplified.domain_affine_inv, None)
    assert_equal(simplified.codomain_affine_inv, None)
    assert_equal(simplified.disp_affine_inv, None)
コード例 #2
0
def test_mult_aff():
    r""" Test matrix multiplication using None as identity
    """
    A = np.array([[1.0, 2.0], [3.0, 4.0]])
    B = np.array([[2.0, 0.0], [0.0, 2.0]])

    C = imwarp.mult_aff(A, B)
    expected_mult = np.array([[2.0, 4.0], [6.0, 8.0]])
    assert_array_almost_equal(C, expected_mult)

    C = imwarp.mult_aff(A, None)
    assert_array_almost_equal(C, A)

    C = imwarp.mult_aff(None, B)
    assert_array_almost_equal(C, B)

    C = imwarp.mult_aff(None, None)
    assert_equal(C, None)
コード例 #3
0
ファイル: test_imwarp.py プロジェクト: MPDean/dipy
def test_mult_aff():
    r""" Test matrix multiplication using None as identity
    """
    A = np.array([[1.0, 2.0], [3.0, 4.0]])
    B = np.array([[2.0, 0.0], [0.0, 2.0]])

    C = imwarp.mult_aff(A, B)
    expected_mult = np.array([[2.0, 4.0], [6.0, 8.0]])
    assert_array_almost_equal(C, expected_mult)

    C = imwarp.mult_aff(A, None)
    assert_array_almost_equal(C, A)

    C = imwarp.mult_aff(None, B)
    assert_array_almost_equal(C, B)

    C = imwarp.mult_aff(None, None)
    assert_equal(C, None)
コード例 #4
0
def test_mult_aff():
    r"""mult_aff from imwarp returns the matrix product A.dot(B) considering
    None as the identity
    """
    A = np.array([[1.0, 2.0], [3.0, 4.0]])
    B = np.array([[2.0, 0.0], [0.0, 2.0]])

    C = imwarp.mult_aff(A, B)
    expected_mult = np.array([[2.0, 4.0], [6.0, 8.0]])
    assert_array_almost_equal(C, expected_mult)

    C = imwarp.mult_aff(A, None)
    assert_array_almost_equal(C, A)

    C = imwarp.mult_aff(None, B)
    assert_array_almost_equal(C, B)

    C = imwarp.mult_aff(None, None)
    assert_equal(C, None)