def dt_fit(input_dict): from discomll.ensemble import forest_distributed_decision_trees random_state = None if input_dict["seed"] == "None" else int(input_dict["seed"]) fitmodel_url = forest_distributed_decision_trees.fit(input_dict["dataset"], trees_per_chunk=input_dict["trees_per_subset"], max_tree_nodes=input_dict["tree_nodes"], min_samples_leaf=input_dict["min_samples_leaf"], min_samples_split=input_dict["min_samples_split"], class_majority=input_dict["majority"], bootstrap=input_dict["bootstrap"] == "true", measure=input_dict["measure"], accuracy=input_dict["accuracy"], separate_max=input_dict["separate_max"] == "true", random_state=random_state, save_results=True) return {"fitmodel_url": fitmodel_url}
def dt_fit(input_dict): from discomll.ensemble import forest_distributed_decision_trees random_state = None if input_dict["seed"] == "None" else int( input_dict["seed"]) fitmodel_url = forest_distributed_decision_trees.fit( input_dict["dataset"], trees_per_chunk=input_dict["trees_per_subset"], max_tree_nodes=input_dict["tree_nodes"], min_samples_leaf=input_dict["min_samples_leaf"], min_samples_split=input_dict["min_samples_split"], class_majority=input_dict["majority"], bootstrap=input_dict["bootstrap"] == "true", measure=input_dict["measure"], accuracy=input_dict["accuracy"], separate_max=input_dict["separate_max"] == "true", random_state=random_state, save_results=True) return {"fitmodel_url": fitmodel_url}
from discomll import dataset from discomll.ensemble import forest_distributed_decision_trees train = dataset.Data(data_tag=["http://ropot.ijs.si/data/segmentation/train/xaaaaa.gz", "http://ropot.ijs.si/data/segmentation/train/xaaabj.gz"], data_type="gzip", generate_urls=True, X_indices=range(2, 21), id_index=0, y_index=1, X_meta=["c" for i in range(2, 21)], delimiter=",") test = dataset.Data(data_tag=["http://ropot.ijs.si/data/segmentation/test/xaaaaa.gz", "http://ropot.ijs.si/data/segmentation/test/xaaabj.gz"], data_type="gzip", generate_urls=True, X_indices=range(2, 21), id_index=0, y_index=1, X_meta=["c" for i in range(2, 21)], delimiter=",") fit_model = forest_distributed_decision_trees.fit(train, trees_per_chunk=1, bootstrap=True, max_tree_nodes=50, min_samples_leaf=10, min_samples_split=5, class_majority=1, separate_max=True, measure="info_gain", accuracy=1, random_state=None, save_results=True) predict_url = forest_distributed_decision_trees.predict(test, fit_model) print predict_url
y_index=1, X_meta=["c" for i in range(2, 21)], delimiter=",") test = dataset.Data(data_tag=[ "http://ropot.ijs.si/data/segmentation/test/xaaaaa.gz", "http://ropot.ijs.si/data/segmentation/test/xaaabj.gz" ], data_type="gzip", generate_urls=True, X_indices=range(2, 21), id_index=0, y_index=1, X_meta=["c" for i in range(2, 21)], delimiter=",") fit_model = forest_distributed_decision_trees.fit(train, trees_per_chunk=1, bootstrap=True, max_tree_nodes=50, min_samples_leaf=10, min_samples_split=5, class_majority=1, separate_max=True, measure="info_gain", accuracy=1, random_state=None, save_results=True) predict_url = forest_distributed_decision_trees.predict(test, fit_model) print predict_url