コード例 #1
0
ファイル: 233.py プロジェクト: LEONOB2014/DS-GA1001-Project
def rf_final():
    from sklearn import ensemble
    tr_x, tr_y, _, __, te_x, te_y = load_data()
    fl = open(RF_FILE)
    pars = pickle.load(fl)
    fl.close()
    opt = reduce(lambda x, y: x if x[2] > y[2] else y, pars)
    print 'RF best: ', opt[1]
    m = ensemble.RandomForestClassifier(criterion='gini', **opt[1])
    m = m.fit(tr_x, tr_y)
    proba = m.predict_proba(te_x)
    fpr, tpr, thresh = roc_curve(te_y, proba[:, 1])
    fpr_tpr = np.vstack((fpr, tpr)).T
    np.savetxt('rf_fpr_tpr.csv', fpr_tpr, delimiter=',')
コード例 #2
0
ファイル: 233.py プロジェクト: LEONOB2014/DS-GA1001-Project
def dt_final():
    from sklearn import tree
    tr_x, tr_y, _, __, te_x, te_y = load_data()
    fl = open(DT_FILE)
    pars = pickle.load(fl)
    fl.close()
    opt = reduce(lambda x, y: x if x[2] > y[2] else y, pars)
    print 'DT best: ', opt[1]
    m = tree.DecisionTreeClassifier(criterion='entropy', **opt[1])
    m = m.fit(tr_x, tr_y)
    proba = m.predict_proba(te_x)
    fpr, tpr, thresh = roc_curve(te_y, proba[:, 1])
    fpr_tpr = np.vstack((fpr, tpr)).T
    np.savetxt('dt_fpr_tpr.csv', fpr_tpr, delimiter=',')