コード例 #1
0
ファイル: readRave.py プロジェクト: jobovy/apogee-rc
def raveRC():
    data= readRave()
    jk= data['Jmag2']-data['Kmag2']-0.17*numpy.exp(data['Av'])
    z= isodist.FEH2Z(data['[M/H]K'],zsolar=0.017)
    logg= data['loggK']
    indx= (jk < 0.8)*(jk >= 0.5)\
        *(z <= 0.06)\
        *(z <= rcmodel.jkzcut(jk,upper=True))\
        *(z >= rcmodel.jkzcut(jk))\
        *(logg >= rcmodel.loggteffcut(data['TeffK'],z,upper=False))\
        *(logg <= rcmodel.loggteffcut(data['TeffK'],z,upper=True))
    data= data[indx]
    #To allow for XY pixelization
    data= esutil.numpy_util.add_fields(data,[('RC_GALR', float),
                                             ('RC_GALPHI', float),
                                             ('RC_GALZ', float),
                                             ('VHELIO_AVG', float)])
    XYZ= bovy_coords.lbd_to_XYZ(data['GLON'],
                                data['GLAT'],
                                data['Dist'],
                                degree=True)
    R,phi,Z= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],
                                          XYZ[:,1],
                                          XYZ[:,2],
                                          Xsun=8.,Zsun=0.025)
    data['RC_GALR']= R
    data['RC_GALPHI']= phi
    data['RC_GALZ']= Z   
    data['VHELIO_AVG']= data['HRV']
    return data
コード例 #2
0
def get_rcsample():
    """
    NAME:
       get_rcsample
    PURPOSE:
       get the RC sample
    INPUT:
       None so far
    OUTPUT:
       sample
    HISTORY:
       2015-02-10 - Started - Bovy (IAS@KITP)
    """
    data = apread.rcsample()
    # Cut to statistical sample
    data = data[data['STAT'] == 1]
    # Add the M_H-based distances
    data = esutil.numpy_util.add_fields(data, [('RC_DIST_H', float),
                                               ('RC_DM_H', float),
                                               ('RC_GALR_H', float),
                                               ('RC_GALPHI_H', float),
                                               ('RC_GALZ_H', float)])
    rcd = rcdist()
    jk = data['J0'] - data['K0']
    z = isodist.FEH2Z(data['METALS'], zsolar=0.017)
    data['RC_DIST_H'] = rcd(jk, z, appmag=data['H0'], mh=True)
    data['RC_DM_H'] = 5. * numpy.log10(data['RC_DIST_H']) + 10.
    XYZ = bovy_coords.lbd_to_XYZ(data['GLON'],
                                 data['GLAT'],
                                 data['RC_DIST_H'],
                                 degree=True)
    R, phi, Z = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0],
                                             XYZ[:, 1],
                                             XYZ[:, 2],
                                             Xsun=8.,
                                             Zsun=0.025)
    data['RC_GALR_H'] = R
    data['RC_GALPHI_H'] = phi
    data['RC_GALZ_H'] = Z
    # Add the average alpha/Fe
    data = esutil.numpy_util.add_fields(data, [('AVG_ALPHAFE', float)])
    data['AVG_ALPHAFE'] = avg_alphafe(data)
    # Apply -0.1 offset in [Fe/H]
    data[_FEHTAG] += -0.10
    # Remove locations outside of the Pan-STARRS dust map
    # In the Southern hemisphere
    data = data[data['LOCATION_ID'] != 4266]  #240,-18
    data = data[data['LOCATION_ID'] != 4331]  #5.5,-14.2
    data = data[data['LOCATION_ID'] != 4381]  #5.2,-12.2
    data = data[data['LOCATION_ID'] != 4332]  #1,-4
    data = data[data['LOCATION_ID'] != 4329]  #0,-5
    data = data[data['LOCATION_ID'] != 4351]  #0,-2
    data = data[data['LOCATION_ID'] != 4353]  #358,0
    data = data[data['LOCATION_ID'] != 4385]  #358.6,1.4
    # Close to the ecliptic pole where there's no data (is it the ecliptic pole?
    data = data[data['LOCATION_ID'] != 4528]  #120,30
    data = data[data['LOCATION_ID'] != 4217]  #123,22.4
    # Remove stars w/ DM < 8.49, because for standard candle RC, these cannot be in the sample
    data = data[data['RC_DM_H'] > 8.49]
    return data
コード例 #3
0
ファイル: fitDens.py プロジェクト: NatalieP-J/apogee-maps
def _setup_effvol(locations,effsel,distmods):
    # First restore the APOGEE selection function (assumed pre-computed)
    selectFile= '../savs/selfunc-nospdata.sav'
    if os.path.exists(selectFile):
        with open(selectFile,'rb') as savefile:
            apo= pickle.load(savefile)
    # Now compute the necessary coordinate transformations
    ds= 10.**(distmods/5-2.)
    Rgrid, phigrid, zgrid= [], [], []
    for loc in locations:
        lcen, bcen= apo.glonGlat(loc)
        XYZ= bovy_coords.lbd_to_XYZ(lcen*numpy.ones_like(ds),
                                    bcen*numpy.ones_like(ds),
                                    ds,
                                    degree=True)
        Rphiz= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],XYZ[:,1],XYZ[:,2],
                                            Xsun=define_rcsample._R0,
                                            Ysun=0.,
                                            Zsun=define_rcsample._Z0)
        Rgrid.append(Rphiz[0])
        phigrid.append(Rphiz[1])
        zgrid.append(Rphiz[2])
    Rgrid= numpy.array(Rgrid)
    phigrid= numpy.array(phigrid)
    zgrid= numpy.array(zgrid)
    # Also need to multiply in distance factors
    effsel*= numpy.tile(ds**3.*(distmods[1]-distmods[0]),(effsel.shape[0],1))
    return (effsel,Rgrid,phigrid,zgrid)
コード例 #4
0
def _calc_lnprob(loc,nls,nbs,ds,distmods,H0,densfunc):
    lcen, bcen= apo.glonGlat(loc)
    rad= apo.radius(loc)
    ls= numpy.linspace(lcen-rad,lcen+rad,nls)
    bs= numpy.linspace(bcen-rad,bcen+rad,nbs)
    # Tile these
    tls= numpy.tile(ls,(len(ds),len(bs),1))
    tbs= numpy.swapaxes(numpy.tile(bs,(len(ds),len(ls),1)),1,2)
    tds= numpy.tile(ds,(len(ls),len(bs),1)).T
    XYZ= bovy_coords.lbd_to_XYZ(tls.flatten(),
                                tbs.flatten(),
                                tds.flatten(),
                                degree=True)
    Rphiz= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],XYZ[:,1],XYZ[:,2],
                                        Xsun=define_rcsample._R0,
                                        Ysun=0.,
                                        Zsun=define_rcsample._Z0)
    # Evaluate probability density
    tH= numpy.tile(distmods.T,(1,len(ls),len(bs),1))[0].T
    for ii in range(tH.shape[1]):
        for jj in range(tH.shape[2]):
            try:
                tH[:,ii,jj]+= dmap(ls[jj],bs[ii],ds)
            except (IndexError, TypeError,ValueError):
                try:
                    tH[:,ii,jj]+= dmapg15(ls[jj],bs[ii],ds)
                except IndexError: # assume zero outside
                    pass
    tH= tH.flatten()+H0[0]
    ps= densfunc(Rphiz[0],Rphiz[1],Rphiz[2])*apo(loc,tH)\
        *numpy.fabs(numpy.cos(tbs.flatten()/180.*numpy.pi))\
        *tds.flatten()**3.
    return numpy.log(numpy.reshape(ps,(len(distmods),nbs,nls))\
                         +10.**-8.)
コード例 #5
0
ファイル: fitDens.py プロジェクト: npricejones/apogee-maps
def _setup_effvol(locations, effsel, distmods):
    # First restore the APOGEE selection function (assumed pre-computed)
    selectFile = '../savs/selfunc-nospdata.sav'
    if os.path.exists(selectFile):
        with open(selectFile, 'rb') as savefile:
            apo = pickle.load(savefile)
    # Now compute the necessary coordinate transformations
    ds = 10.**(distmods / 5 - 2.)
    Rgrid, phigrid, zgrid = [], [], []
    for loc in locations:
        lcen, bcen = apo.glonGlat(loc)
        XYZ = bovy_coords.lbd_to_XYZ(lcen * numpy.ones_like(ds),
                                     bcen * numpy.ones_like(ds),
                                     ds,
                                     degree=True)
        Rphiz = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0],
                                             XYZ[:, 1],
                                             XYZ[:, 2],
                                             Xsun=define_rcsample._R0,
                                             Ysun=0.,
                                             Zsun=define_rcsample._Z0)
        Rgrid.append(Rphiz[0])
        phigrid.append(Rphiz[1])
        zgrid.append(Rphiz[2])
    Rgrid = numpy.array(Rgrid)
    phigrid = numpy.array(phigrid)
    zgrid = numpy.array(zgrid)
    # Also need to multiply in distance factors
    effsel *= numpy.tile(ds**3. * (distmods[1] - distmods[0]),
                         (effsel.shape[0], 1))
    return (effsel, Rgrid, phigrid, zgrid)
コード例 #6
0
def force_pal5(pot: PotentialType,
               dpal5: float,
               ro: float = REFR0,
               vo: float = REFV0) -> Tuple[float]:
    """Return the force at Pal5.

    Parameters
    ----------
    pot: Potential, list
    dpal5: float
    ro, vo: float

    Return
    ------
    force: tuple
        [fx, fy, fz]

    """
    from galpy import potential
    from galpy.util import bovy_coords

    # First compute the location based on the distance
    l5, b5 = bovy_coords.radec_to_lb(229.018, -0.124, degree=True)
    X5, Y5, Z5 = bovy_coords.lbd_to_XYZ(l5, b5, dpal5, degree=True)
    R5, p5, Z5 = bovy_coords.XYZ_to_galcencyl(X5, Y5, Z5, Xsun=ro, Zsun=0.025)

    args: list = [pot, R5 / ro, Z5 / ro]
    kws: dict = {"phi": p5, "use_physical": True, "ro": ro, "vo": vo}

    return (
        potential.evaluateRforces(*args, **kws),
        potential.evaluatezforces(*args, **kws),
        potential.evaluatephiforces(*args, **kws),
    )
コード例 #7
0
ファイル: data_reading.py プロジェクト: ukesh-sys/rothalo
 def read_mgiant(self):
     dpath = "/Users/htian/Documents/GitHub/rothalo/data/dr4_mgiant.csv"
     ra, dec, rv, dist, sn, feh = np.loadtxt(dpath,
                                             skiprows=1,
                                             usecols=(0, 1, 2, 9, 10, 11),
                                             delimiter=',',
                                             unpack=True)
     ind_o = (rv > -10000000) & (sn > 10) & (feh > self.min_feh) & (
         feh < self.max_feh) & (dist > -1000)
     print(len(sn[sn < 10]), len(sn))
     print("there are ", len(ra[ind_o]), " stars readout!")
     # ra_o = data_halo[ind_o, 1]
     # dec_o = data_halo[ind_o, 2]
     lb = gub.radec_to_lb(ra, dec, degree=True)
     l = lb[:, 0]
     b = lb[:, 1]
     xyz = gub.lbd_to_XYZ(l, b, dist, degree=True)
     self.l_o = l[ind_o]
     self.b_o = b[ind_o]
     self.feh_o = feh[ind_o]
     self.rv_o = rv[ind_o]
     self.dist_o = dist[ind_o]
     self.Z_o = xyz[ind_o, 2]
     self.R_o = np.sqrt((8 - xyz[ind_o, 0])**2 + xyz[ind_o, 1]**2)
     self.name = "DR4_mgiant"
コード例 #8
0
def get_rcsample():
    """
    NAME:
       get_rcsample
    PURPOSE:
       get the RC sample
    INPUT:
       None so far
    OUTPUT:
       sample
    HISTORY:
       2015-02-10 - Started - Bovy (IAS@KITP)
    """
    data= apread.rcsample()
    # Cut to statistical sample
    data= data[data['STAT'] == 1]
    # Add the M_H-based distances
    data= esutil.numpy_util.add_fields(data,[('RC_DIST_H', float),
                                             ('RC_DM_H', float),
                                             ('RC_GALR_H', float),
                                             ('RC_GALPHI_H', float),
                                             ('RC_GALZ_H', float)])
    rcd= rcdist()
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    data['RC_DIST_H']= rcd(jk,z,appmag=data['H0'],mh=True)
    data['RC_DM_H']= 5.*numpy.log10(data['RC_DIST_H'])+10.
    XYZ= bovy_coords.lbd_to_XYZ(data['GLON'],
                                data['GLAT'],
                                data['RC_DIST_H'],
                                degree=True)
    R,phi,Z= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],
                                          XYZ[:,1],
                                          XYZ[:,2],
                                          Xsun=8.,Zsun=0.025)
    data['RC_GALR_H']= R
    data['RC_GALPHI_H']= phi
    data['RC_GALZ_H']= Z
    # Add the average alpha/Fe
    data= esutil.numpy_util.add_fields(data,[('AVG_ALPHAFE', float)])
    data['AVG_ALPHAFE']= avg_alphafe(data)
    # Apply -0.1 offset in [Fe/H]
    data[_FEHTAG]+= -0.10
    # Remove locations outside of the Pan-STARRS dust map
    # In the Southern hemisphere
    data= data[data['LOCATION_ID'] != 4266] #240,-18
    data= data[data['LOCATION_ID'] != 4331] #5.5,-14.2
    data= data[data['LOCATION_ID'] != 4381] #5.2,-12.2
    data= data[data['LOCATION_ID'] != 4332] #1,-4
    data= data[data['LOCATION_ID'] != 4329] #0,-5
    data= data[data['LOCATION_ID'] != 4351] #0,-2
    data= data[data['LOCATION_ID'] != 4353] #358,0
    data= data[data['LOCATION_ID'] != 4385] #358.6,1.4
    # Close to the ecliptic pole where there's no data (is it the ecliptic pole?
    data= data[data['LOCATION_ID'] != 4528] #120,30
    data= data[data['LOCATION_ID'] != 4217] #123,22.4
    # Remove stars w/ DM < 8.49, because for standard candle RC, these cannot be in the sample
    data= data[data['RC_DM_H'] > 8.49]
    return data
コード例 #9
0
 def glon_wrapper(*args,**kwargs):
     if kwargs.pop('glon',False):
         XYZ= bovy_coords.lbd_to_XYZ(args[0],args[1],args[2],degree=False)
         R,phi,z= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],XYZ[:,1],XYZ[:,2],
                                               Xsun=_R0,Zsun=_Zsun)
     else:
         R,phi,z= args[0],args[1],args[2]
     return func(R,phi,z,*args[3:],**kwargs)
コード例 #10
0
ファイル: densprofiles.py プロジェクト: jobovy/apogee-maps
 def glon_wrapper(*args,**kwargs):
     if kwargs.pop('glon',False):
         XYZ= bovy_coords.lbd_to_XYZ(args[0],args[1],args[2],degree=False)
         R,phi,z= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],XYZ[:,1],XYZ[:,2],
                                               Xsun=_R0,Zsun=_Zsun)
     else:
         R,phi,z= args[0],args[1],args[2]
     return func(R,phi,z,*args[3:],**kwargs)
コード例 #11
0
def lbd_to_galcencyl(l, b, d, degree=True):
    xyz = bovy_coords.lbd_to_XYZ(l, b, d, degree=degree)
    Rphiz = bovy_coords.XYZ_to_galcencyl(xyz[:, 0],
                                         xyz[:, 1],
                                         xyz[:, 2],
                                         Xsun=1.,
                                         Zsun=0.)

    return (Rphiz[:, 0], Rphiz[:, 1], Rphiz[:, 2])
コード例 #12
0
ファイル: test_coords.py プロジェクト: jls713/galpy
def test_lbd_to_XYZ():
    l,b,d= 90., 30.,1.
    XYZ= bovy_coords.lbd_to_XYZ(l,b,d,degree=True)
    assert numpy.fabs(XYZ[0]) <10.**-10., 'lbd_to_XYZ conversion does not work as expected'
    assert numpy.fabs(XYZ[1]-numpy.sqrt(3.)/2.) < 10.**-10., 'lbd_to_XYZ conversion does not work as expected'
    assert numpy.fabs(XYZ[2]-0.5) < 10.**-10., 'lbd_to_XYZ conversion does not work as expected'
    # Also test for degree=False
    XYZ= bovy_coords.lbd_to_XYZ(l/180.*numpy.pi,b/180.*numpy.pi,d,degree=False)
    assert numpy.fabs(XYZ[0]) <10.**-10., 'lbd_to_XYZ conversion does not work as expected'
    assert numpy.fabs(XYZ[1]-numpy.sqrt(3.)/2.) < 10.**-10., 'lbd_to_XYZ conversion does not work as expected'
    assert numpy.fabs(XYZ[2]-0.5) < 10.**-10., 'lbd_to_XYZ conversion does not work as expected'
    # Also test for arrays
    os= numpy.ones(2)
    XYZ= bovy_coords.lbd_to_XYZ(os*l/180.*numpy.pi,os*b/180.*numpy.pi,
                                os*d,degree=False)
    assert numpy.all(numpy.fabs(XYZ[:,0]) <10.**-10.), 'lbd_to_XYZ conversion does not work as expected'
    assert numpy.all(numpy.fabs(XYZ[:,1]-numpy.sqrt(3.)/2.) < 10.**-10.), 'lbd_to_XYZ conversion does not work as expected'
    assert numpy.all(numpy.fabs(XYZ[:,2]-0.5) < 10.**-10.), 'lbd_to_XYZ conversion does not work as expected'
    return None
コード例 #13
0
ファイル: gaia_cut.py プロジェクト: jtbuch/darkdisk
def cut_indx_vol(gaia, rcut, zcut):

    XYZ = bovy_coords.lbd_to_XYZ(gaia['l'],
                                 gaia['b'],
                                 1. / gaia['parallax'],
                                 degree=True)
    r_cyl = np.sqrt(XYZ[:, 0]**2. + XYZ[:, 1]**2.)
    z_cyl = XYZ[:, 2]

    return [(r_cyl < r_cyl_cut) * (np.abs(z_cyl) < z_cyl_cut)]
コード例 #14
0
def measure_kinematics_onepop(tgas,twomass,jk,dm,mj,spii,zbins,options,
                              csvwriter,csvout,maxcovar=30.):
    # Compute XYZ
    lb= bovy_coords.radec_to_lb(tgas['ra'],tgas['dec'],degree=True,epoch=None)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],1./tgas['parallax'],
                                degree=True)
    # Generate vradec and projection matrix
    vradec= numpy.array([bovy_coords._K/tgas['parallax']*tgas['pmra'],
                         bovy_coords._K/tgas['parallax']*tgas['pmdec']])
    proj= compute_projection(tgas)
    # Sample from the joint (parallax,proper motion) uncertainty distribution 
    # to get the covariance matrix of the vradec, using MC sims
    nmc= 10001
    vradec_cov= compute_vradec_cov_mc(tgas,nmc)
    # Fit each zbin
    if spii == options.start:
        startz= options.startz
    else:
        startz= 0
    for ii in tqdm.trange(startz,len(zbins)-1):
        indx= (XYZ[:,2] > zbins[ii])\
              *(XYZ[:,2] <= zbins[ii+1])\
              *(numpy.sqrt(XYZ[:,0]**2.+XYZ[:,1]**2.) < 0.2)
        nstar= numpy.sum(indx)
        if numpy.sum(indx) < 30: continue
        # Basic XD fit
        ydata= vradec.T[indx]
        ycovar= numpy.zeros_like(vradec.T)[indx]
        initamp= numpy.random.uniform(size=options.ngauss)
        initamp/= numpy.sum(initamp)
        m= numpy.zeros(3)
        s= numpy.array([40.,40.,20.])
        initmean= []
        initcovar= []
        for jj in range(options.ngauss):
            initmean.append(m+numpy.random.normal(size=3)*s)
            initcovar.append(4.*s**2.*numpy.diag(numpy.ones(3)))
        initcovar= numpy.array(initcovar)
        initmean= numpy.array(initmean)
        lnL= extreme_deconvolution(ydata,ycovar,initamp,initmean,initcovar,
                                   projection=proj[indx])
        sig2z= combined_sig2(initamp,initmean[:,2],initcovar[:,2,2],
                             maxcovar=maxcovar)
        kurtz= combined_k(initamp,initmean[:,2],initcovar[:,2,2],
                          maxcovar=maxcovar)
        sam= bootstrap(options.nboot,
                       vradec.T[indx],vradec_cov[indx],proj[indx],
                       ngauss=options.ngauss,maxcovar=maxcovar)
        sig2z_err= 1.4826*numpy.median(numpy.fabs(sam[0]-numpy.median(sam[0])))
        kurtz_err= 1.4826*numpy.median(numpy.fabs(sam[1]-numpy.median(sam[1])))
        sig2kurtz_corr= numpy.corrcoef(sam)[0,1]
        csvwriter.writerow([spii,ii,nstar,
                            sig2z,sig2z_err,kurtz,kurtz_err,sig2kurtz_corr])
        csvout.flush()
    return None
コード例 #15
0
def xyz(req_dict):

    #get heliocentric position
    x_hc, y_hc, z_hc = b_c.lbd_to_XYZ(req_dict['l'],
                                      req_dict['b'],
                                      req_dict['dist'],
                                      degree=True)

    #get galactocentric position
    x_gc, y_gc, z_gc = b_c.XYZ_to_galcenrect(x_hc, y_hc, z_hc, Xsun, Zsun)

    return float(x_gc), y_gc, float(z_gc)
コード例 #16
0
def force_pal5(pot,dpal5,ro,vo):
    """Return the force at Pal5"""
    # First compute the location based on the distance
    l5, b5= bovy_coords.radec_to_lb(229.018,-0.124,degree=True)
    X5,Y5,Z5= bovy_coords.lbd_to_XYZ(l5,b5,dpal5,degree=True)
    R5,p5,Z5= bovy_coords.XYZ_to_galcencyl(X5,Y5,Z5,Xsun=ro,Zsun=0.025)
    return (potential.evaluateRforces(pot,R5/ro,Z5/ro,phi=p5,
                                      use_physical=True,ro=ro,vo=vo),
            potential.evaluatezforces(pot,R5/ro,Z5/ro,phi=p5,
                                      use_physical=True,ro=ro,vo=vo),
            potential.evaluatephiforces(pot,R5/ro,Z5/ro,phi=p5,
                                        use_physical=True,ro=ro,vo=vo))
コード例 #17
0
ファイル: readAndHackHoltz.py プロジェクト: jobovy/apogee-rc
def readAndHackHoltz():
    alldata = apread.allStar(adddist=True, distredux="v402")
    jk = alldata["J0"] - alldata["K0"]
    data = alldata[(jk > 0.8) * (alldata["DISO_GAL"] > 0.0)]
    # To allow for XY pixelization, we will hack these
    data = esutil.numpy_util.add_fields(data, [("RC_GALR", float), ("RC_GALPHI", float), ("RC_GALZ", float)])
    XYZ = bovy_coords.lbd_to_XYZ(data["GLON"], data["GLAT"], data["DISO_GAL"], degree=True)
    R, phi, Z = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], Xsun=8.0, Zsun=0.025)
    data["RC_GALR"] = R
    data["RC_GALPHI"] = phi
    data["RC_GALZ"] = Z
    return data
コード例 #18
0
ファイル: test_coords.py プロジェクト: jls713/galpy
def test_XYZ_to_lbd():
    l,b,d= 90., 30.,1.
    XYZ= bovy_coords.lbd_to_XYZ(l,b,d,degree=True)
    lt,bt,dt= bovy_coords.XYZ_to_lbd(XYZ[0],XYZ[1],XYZ[2],degree=True)
    assert numpy.fabs(lt-l) <10.**-10., 'XYZ_to_lbd conversion does not work as expected'
    assert numpy.fabs(bt-b) < 10.**-10., 'XYZ_to_lbd conversion does not work as expected'
    assert numpy.fabs(dt-d) < 10.**-10., 'XYZ_to_lbd conversion does not work as expected'
    # Also test for degree=False
    XYZ= bovy_coords.lbd_to_XYZ(l/180.*numpy.pi,b/180.*numpy.pi,d,degree=False)
    lt,bt,dt= bovy_coords.XYZ_to_lbd(XYZ[0],XYZ[1],XYZ[2],degree=False)
    assert numpy.fabs(lt-l/180.*numpy.pi) <10.**-10., 'XYZ_to_lbd conversion does not work as expected'
    assert numpy.fabs(bt-b/180.*numpy.pi) < 10.**-10., 'XYZ_to_lbd conversion does not work as expected'
    assert numpy.fabs(dt-d) < 10.**-10., 'XYZ_to_lbd conversion does not work as expected'
    # Also test for arrays
    os= numpy.ones(2)
    XYZ= bovy_coords.lbd_to_XYZ(os*l/180.*numpy.pi,os*b/180.*numpy.pi,
                                os*d,degree=False)
    lbdt= bovy_coords.XYZ_to_lbd(XYZ[:,0],XYZ[:,1],XYZ[:,2],degree=False)
    assert numpy.all(numpy.fabs(lbdt[:,0]-l/180.*numpy.pi) <10.**-10.), 'XYZ_to_lbd conversion does not work as expected'
    assert numpy.all(numpy.fabs(lbdt[:,1]-b/180.*numpy.pi) < 10.**-10.), 'XYZ_to_lbd conversion does not work as expected'
    assert numpy.all(numpy.fabs(lbdt[:,2]-d) < 10.**-10.), 'XYZ_to_lbd conversion does not work as expected'
    return None
コード例 #19
0
 def to_space_velocties(self):
     """
     Wrapper around galpy, and wrapper to go through steps to calc UVW
     """
     self.conv_pmrapmdec_to_pmllpmbb()
     self.calc_covar_pmrapmdec()
     self.calc_covar_pmllpmbb()
     self.XYZ = np.array(bcoords.lbd_to_XYZ(self.get_col('GLON'),
                                            self.get_col('GLAT'),
                                            self.get_col('RC_DIST'),
                                            degree=True))
     self.calc_spacevel()
     self.calc_spacevel_uncer_var_tensor()
コード例 #20
0
ファイル: test_galpypaper.py プロジェクト: jackhong6/galpy
def test_coords():
    from galpy.util import bovy_coords
    ra, dec, dist = 161., 50., 8.5
    pmra, pmdec, vlos = -6.8, -10., -115.
    # Convert to Galactic and then to rect. Galactic
    ll, bb = bovy_coords.radec_to_lb(ra, dec, degree=True)
    pmll, pmbb = bovy_coords.pmrapmdec_to_pmllpmbb(pmra,
                                                   pmdec,
                                                   ra,
                                                   dec,
                                                   degree=True)
    X, Y, Z = bovy_coords.lbd_to_XYZ(ll, bb, dist, degree=True)
    vX, vY, vZ = bovy_coords.vrpmllpmbb_to_vxvyvz(vlos,
                                                  pmll,
                                                  pmbb,
                                                  X,
                                                  Y,
                                                  Z,
                                                  XYZ=True)
    # Convert to cylindrical Galactocentric
    # Assuming Sun's distance to GC is (8,0.025) in (R,z)
    R, phi, z = bovy_coords.XYZ_to_galcencyl(X, Y, Z, Xsun=8., Zsun=0.025)
    vR, vT, vz = bovy_coords.vxvyvz_to_galcencyl(vX,
                                                 vY,
                                                 vZ,
                                                 R,
                                                 phi,
                                                 Z,
                                                 vsun=[-10.1, 244., 6.7],
                                                 galcen=True)
    # 5/12/2016: test weakened, because improved galcen<->heliocen
    #            transformation has changed these, but still close
    print(R, phi, z, vR, vT, vz)
    assert numpy.fabs(R - 12.51328515156942
                      ) < 10.**-1., 'Coordinate transformation has changed'
    assert numpy.fabs(phi - 0.12177409073433249
                      ) < 10.**-1., 'Coordinate transformation has changed'
    assert numpy.fabs(z - 7.1241282354856228
                      ) < 10.**-1., 'Coordinate transformation has changed'
    assert numpy.fabs(vR - 78.961682923035966
                      ) < 10.**-1., 'Coordinate transformation has changed'
    assert numpy.fabs(vT + 241.49247772351964
                      ) < 10.**-1., 'Coordinate transformation has changed'
    assert numpy.fabs(vz + 102.83965442188689
                      ) < 10.**-1., 'Coordinate transformation has changed'
    return None
コード例 #21
0
def xyzgrid(apo, distmods):
    """
    Generates a grid of x, y, z for each location in apo at the distance moduli supplied
    """
    ds = 10**(distmods / 5. - 2.)
    xgrid = np.zeros((len(apo._locations), len(ds)))
    ygrid = np.zeros((len(apo._locations), len(ds)))
    zgrid = np.zeros((len(apo._locations), len(ds)))
    for i in range(len(apo._locations)):
        glon, glat = apo.glonGlat(apo._locations[i])
        glon = np.ones(len(ds)) * glon[0]
        glat = np.ones(len(ds)) * glat[0]
        xyz = bovy_coords.lbd_to_XYZ(glon, glat, ds, degree=True)
        xgrid[i] = xyz[:, 0]
        ygrid[i] = xyz[:, 1]
        zgrid[i] = xyz[:, 2]
    return zgrid, ygrid, zgrid
コード例 #22
0
def Rphizgrid(apo,distmods):
    """
    Generates a grid of R, phi, z for each location in apo at the distance moduli supplied
    """
    ds = 10**(distmods/5.-2.)
    Rgrid = np.zeros((len(apo._locations),len(ds)))
    phigrid = np.zeros((len(apo._locations),len(ds)))
    zgrid = np.zeros((len(apo._locations),len(ds)))
    for i in range(len(apo._locations)):
        glon,glat = apo.glonGlat(apo._locations[i])
        glon = np.ones(len(ds))*glon[0]
        glat = np.ones(len(ds))*glat[0]
        xyz = bovy_coords.lbd_to_XYZ(glon,glat,ds, degree=True)
        rphiz = bovy_coords.XYZ_to_galcencyl(xyz[:,0], xyz[:,1], xyz[:,2], Xsun=8., Zsun=0.02)
        Rgrid[i] = rphiz[:,0]
        phigrid[i] = rphiz[:,1]
        zgrid[i] = rphiz[:,2]
    return Rgrid, phigrid, zgrid
コード例 #23
0
def test_coords():
    from galpy.util import bovy_coords
    ra, dec, dist= 161., 50., 8.5
    pmra, pmdec, vlos= -6.8, -10., -115.
  # Convert to Galactic and then to rect. Galactic
    ll, bb= bovy_coords.radec_to_lb(ra,dec,degree=True)
    pmll, pmbb= bovy_coords.pmrapmdec_to_pmllpmbb(pmra,pmdec,ra,dec,degree=True)
    X,Y,Z= bovy_coords.lbd_to_XYZ(ll,bb,dist,degree=True)
    vX,vY,vZ= bovy_coords.vrpmllpmbb_to_vxvyvz(vlos,pmll,pmbb,X,Y,Z,XYZ=True)
    # Convert to cylindrical Galactocentric
    # Assuming Sun's distance to GC is (8,0.025) in (R,z)
    R,phi,z= bovy_coords.XYZ_to_galcencyl(X,Y,Z,Xsun=8.,Zsun=0.025)
    vR,vT,vz= bovy_coords.vxvyvz_to_galcencyl(vX,vY,vZ,R,phi,Z,vsun=[-10.1,244.,6.7],galcen=True)
    assert numpy.fabs(R-12.51328515156942) < 10.**-4., 'Coordinate transformation has changed'
    assert numpy.fabs(phi-0.12177409073433249) < 10.**-4., 'Coordinate transformation has changed'
    assert numpy.fabs(z-7.1241282354856228) < 10.**-4., 'Coordinate transformation has changed'
    assert numpy.fabs(vR-78.961682923035966) < 10.**-4., 'Coordinate transformation has changed'
    assert numpy.fabs(vT+241.49247772351964) < 10.**-4., 'Coordinate transformation has changed'
    assert numpy.fabs(vz+102.83965442188689) < 10.**-4., 'Coordinate transformation has changed'
    return None
コード例 #24
0
def _calc_lnprob(loc, nls, nbs, ds, distmods, H0, densfunc):
    lcen, bcen = apo.glonGlat(loc)
    rad = apo.radius(loc)
    ls = numpy.linspace(lcen - rad, lcen + rad, nls)
    bs = numpy.linspace(bcen - rad, bcen + rad, nbs)
    # Tile these
    tls = numpy.tile(ls, (len(ds), len(bs), 1))
    tbs = numpy.swapaxes(numpy.tile(bs, (len(ds), len(ls), 1)), 1, 2)
    tds = numpy.tile(ds, (len(ls), len(bs), 1)).T
    XYZ = bovy_coords.lbd_to_XYZ(tls.flatten(),
                                 tbs.flatten(),
                                 tds.flatten(),
                                 degree=True)
    Rphiz = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0],
                                         XYZ[:, 1],
                                         XYZ[:, 2],
                                         Xsun=define_rcsample._R0,
                                         Ysun=0.,
                                         Zsun=define_rcsample._Z0)
    # Evaluate probability density
    tH = numpy.tile(distmods.T, (1, len(ls), len(bs), 1))[0].T
    for ii in range(tH.shape[1]):
        for jj in range(tH.shape[2]):
            try:
                tH[:, ii, jj] += dmap(ls[jj], bs[ii], ds)
            except (IndexError, TypeError, ValueError):
                try:
                    tH[:, ii, jj] += dmapg15(ls[jj], bs[ii], ds)
                except IndexError:  # assume zero outside
                    pass
    tH = tH.flatten() + H0[0]
    ps= densfunc(Rphiz[0],Rphiz[1],Rphiz[2])*apo(loc,tH)\
        *numpy.fabs(numpy.cos(tbs.flatten()/180.*numpy.pi))\
        *tds.flatten()**3.
    return numpy.log(numpy.reshape(ps,(len(distmods),nbs,nls))\
                         +10.**-8.)
コード例 #25
0
ファイル: operations.py プロジェクト: nstarman/clustertools
def from_radec(cluster, do_order=False, do_key_params=False):
    """Calculate galactocentric coordinates from on-sky position, proper motion, and radial velocity of cluster

    Parameters
    ----------
    cluster : class
        StarCluster
    do_order : bool
        sort star by radius after coordinate change (default: False)
    do_key_params : bool
        call key_params to calculate key parameters after unit change (default: False)

    Returns
    -------
    None

    History:
    -------
    2018 - Written - Webb (UofT)

    """
    if cluster.units == "radec" and cluster.origin == "sky":

        origin0 = cluster.origin

        l, b = bovy_coords.radec_to_lb(cluster.ra, cluster.dec, degree=True).T
        x0, y0, z0 = bovy_coords.lbd_to_XYZ(l, b, cluster.dist, degree=True).T
        cluster.x, cluster.y, cluster.z = bovy_coords.XYZ_to_galcenrect(
            x0, y0, z0, Xsun=8.0, Zsun=0.025).T

        pml, pmb = bovy_coords.pmrapmdec_to_pmllpmbb(cluster.pmra,
                                                     cluster.pmdec,
                                                     cluster.ra,
                                                     cluster.dec,
                                                     degree=True).T
        vx0, vy0, vz0 = bovy_coords.vrpmllpmbb_to_vxvyvz(cluster.vlos,
                                                         pml,
                                                         pmb,
                                                         l,
                                                         b,
                                                         cluster.dist,
                                                         degree=True).T
        cluster.vx, cluster.vy, cluster.vz = bovy_coords.vxvyvz_to_galcenrect(
            vx0,
            vy0,
            vz0,
            vsun=[0.0, 220.0, 0.0],
            Xsun=8.0,
            Zsun=0.025,
            _extra_rot=True,
        ).T

        l_gc, b_gc = bovy_coords.radec_to_lb(cluster.ra_gc,
                                             cluster.dec_gc,
                                             degree=True)
        x0_gc, y0_gc, z0_gc = bovy_coords.lbd_to_XYZ(l_gc,
                                                     b_gc,
                                                     cluster.dist_gc,
                                                     degree=True)
        cluster.xgc, cluster.ygc, cluster.zgc = bovy_coords.XYZ_to_galcenrect(
            x0_gc, y0_gc, z0_gc, Xsun=8.0, Zsun=0.025)

        pml_gc, pmb_gc = bovy_coords.pmrapmdec_to_pmllpmbb(cluster.pmra_gc,
                                                           cluster.pmdec_gc,
                                                           cluster.ra_gc,
                                                           cluster.dec_gc,
                                                           degree=True)
        vx0_gc, vy0_gc, vz0_gc = bovy_coords.vrpmllpmbb_to_vxvyvz(
            cluster.vlos_gc,
            pml_gc,
            pmb_gc,
            l_gc,
            b_gc,
            cluster.dist_gc,
            degree=True)
        cluster.vx_gc, cluster.vy_gc, cluster.vz_gc = bovy_coords.vxvyvz_to_galcenrect(
            vx0_gc,
            vy0_gc,
            vz0_gc,
            vsun=[0.0, 220.0, 0.0],
            Xsun=8.0,
            Zsun=0.025,
            _extra_rot=True,
        )

        cluster.origin = "galaxy"
        cluster.units = "kpckms"

    cluster.rv3d()

    if do_key_params:
        cluster.key_params(do_order=do_order)
コード例 #26
0
    def __init__(self,
                 vxvv=None,
                 uvw=False,
                 lb=False,
                 radec=False,
                 vo=235.,
                 ro=8.5,
                 zo=0.025,
                 solarmotion='hogg'):
        """
        NAME:

           __init__

        PURPOSE:

           Initialize an Orbit instance

        INPUT:

           vxvv - initial conditions 
                  3D can be either

              1) in Galactocentric cylindrical coordinates [R,vR,vT(,z,vz,phi)]

              2) [ra,dec,d,mu_ra, mu_dec,vlos] in [deg,deg,kpc,mas/yr,mas/yr,km/s] (all J2000.0; mu_ra = mu_ra * cos dec)

              3) [ra,dec,d,U,V,W] in [deg,deg,kpc,km/s,km/s,kms]

              4) (l,b,d,mu_l, mu_b, vlos) in [deg,deg,kpc,mas/yr,mas/yr,km/s) (all J2000.0; mu_l = mu_l * cos b)

              5) [l,b,d,U,V,W] in [deg,deg,kpc,km/s,km/s,kms]

           4) and 5) also work when leaving out b and mu_b/W

        OPTIONAL INPUTS:

           radec - if True, input is 2) (or 3) above

           uvw - if True, velocities are UVW

           lb - if True, input is 4) or 5) above

           vo - circular velocity at ro

           ro - distance from vantage point to GC (kpc)

           zo - offset toward the NGP of the Sun wrt the plane (kpc)

           solarmotion - 'hogg' or 'dehnen', or 'schoenrich', or value in 
           [-U,V,W]

        OUTPUT:

           instance

        HISTORY:

           2010-07-20 - Written - Bovy (NYU)

        """
        if isinstance(solarmotion, str) and solarmotion.lower() == 'hogg':
            vsolar = nu.array([-10.1, 4.0, 6.7]) / vo
        elif isinstance(solarmotion, str) and solarmotion.lower() == 'dehnen':
            vsolar = nu.array([-10., 5.25, 7.17]) / vo
        elif isinstance(solarmotion,str) \
                and solarmotion.lower() == 'schoenrich':
            vsolar = nu.array([-11.1, 12.24, 7.25]) / vo
        else:
            vsolar = nu.array(solarmotion) / vo
        if radec or lb:
            if radec:
                l, b = coords.radec_to_lb(vxvv[0], vxvv[1], degree=True)
            elif len(vxvv) == 4:
                l, b = vxvv[0], 0.
            else:
                l, b = vxvv[0], vxvv[1]
            if uvw:
                X, Y, Z = coords.lbd_to_XYZ(l, b, vxvv[2], degree=True)
                vx = vxvv[3]
                vy = vxvv[4]
                vz = vxvv[5]
            else:
                if radec:
                    pmll, pmbb = coords.pmrapmdec_to_pmllpmbb(vxvv[3],
                                                              vxvv[4],
                                                              vxvv[0],
                                                              vxvv[1],
                                                              degree=True)
                    d, vlos = vxvv[2], vxvv[5]
                elif len(vxvv) == 4:
                    pmll, pmbb = vxvv[2], 0.
                    d, vlos = vxvv[1], vxvv[3]
                else:
                    pmll, pmbb = vxvv[3], vxvv[4]
                    d, vlos = vxvv[2], vxvv[5]
                X, Y, Z, vx, vy, vz = coords.sphergal_to_rectgal(l,
                                                                 b,
                                                                 d,
                                                                 vlos,
                                                                 pmll,
                                                                 pmbb,
                                                                 degree=True)
            X /= ro
            Y /= ro
            Z /= ro
            vx /= vo
            vy /= vo
            vz /= vo
            vsun = nu.array([
                0.,
                1.,
                0.,
            ]) + vsolar
            R, phi, z = coords.XYZ_to_galcencyl(X, Y, Z, Zsun=zo / ro)
            vR, vT, vz = coords.vxvyvz_to_galcencyl(vx,
                                                    vy,
                                                    vz,
                                                    R,
                                                    phi,
                                                    z,
                                                    vsun=vsun,
                                                    galcen=True)
            if lb and len(vxvv) == 4: vxvv = [R, vR, vT, phi]
            else: vxvv = [R, vR, vT, z, vz, phi]
        self.vxvv = vxvv
        if len(vxvv) == 2:
            self._orb = linearOrbit(vxvv=vxvv)
        elif len(vxvv) == 3:
            self._orb = planarROrbit(vxvv=vxvv)
        elif len(vxvv) == 4:
            self._orb = planarOrbit(vxvv=vxvv)
        elif len(vxvv) == 5:
            self._orb = RZOrbit(vxvv=vxvv)
        elif len(vxvv) == 6:
            self._orb = FullOrbit(vxvv=vxvv)
コード例 #27
0
ファイル: actions.py プロジェクト: RuthAngus/action-time
def action(ra_deg, dec_deg, d_kpc, pm_ra_masyr, pm_dec_masyr, v_los_kms,
           verbose=False):
    """
    parameters:
    ----------
    ra_deg: (float)
        RA in degrees.
    dec_deg: (float)
        Dec in degress.
    d_kpc: (float)
        Distance in kpc.
    pm_ra_masyr: (float)
        RA proper motion in mas/yr.
    pm_decmasyr: (float)
        Dec proper motion in mas/yr.
    v_los_kms: (float)
        RV in kms.
    returns:
    ------
    R_kpc, phi_rad, z_kpc, vR_kms, vT_kms, vz_kms
    jR: (float)
        Radial action.
    lz: (float)
        Vertical ang mom.
    jz: (float)
        Vertical action.
    """
    ra_rad = ra_deg * (np.pi / 180.)  # RA [rad]
    dec_rad = dec_deg * (np.pi / 180.)  # dec [rad]

    # Galactocentric position of the Sun:
    X_gc_sun_kpc = 8.  # [kpc]
    Z_gc_sun_kpc = 0.025  # [kpc]

    # Galactocentric velocity of the Sun:
    vX_gc_sun_kms = -9.58  # = -U              [kms]
    vY_gc_sun_kms = 10.52 + 220.  # = V+v_circ(R_Sun) [kms]
    vZ_gc_sun_kms = 7.01  # = W               [kms]

    # a. convert spatial coordinates (ra,dec,d) to (R,z,phi)

    # (ra,dec) --> Galactic coordinates (l,b):
    lb = bovy_coords.radec_to_lb(ra_rad, dec_rad, degree=False, epoch=2000.0)
    # l_rad = lb[:, 0]
    # b_rad = lb[:, 1]
    l_rad = lb[0]
    b_rad = lb[1]

    # (l,b,d) --> Galactocentric cartesian coordinates (x,y,z):
    xyz = bovy_coords.lbd_to_XYZ(l_rad, b_rad, d_kpc, degree=False)
    # x_kpc = xyz[:, 0]
    # y_kpc = xyz[:, 1]
    # z_kpc = xyz[:, 2]
    x_kpc = xyz[0]
    y_kpc = xyz[1]
    z_kpc = xyz[2]

    # (x,y,z) --> Galactocentric cylindrical coordinates (R,z,phi):
    Rzphi = bovy_coords.XYZ_to_galcencyl(x_kpc, y_kpc, z_kpc,
                                         Xsun=X_gc_sun_kpc, Zsun=Z_gc_sun_kpc)
    # R_kpc = Rzphi[:, 0]
    # phi_rad = Rzphi[:, 1]
    # z_kpc = Rzphi[:, 2]
    R_kpc = Rzphi[0]
    phi_rad = Rzphi[1]
    z_kpc = Rzphi[2]

    # b. convert velocities (pm_ra,pm_dec,vlos) to (vR,vz,vT)

    # (pm_ra,pm_dec) --> (pm_l,pm_b):
    pmlpmb = bovy_coords.pmrapmdec_to_pmllpmbb(pm_ra_masyr, pm_dec_masyr,
                                               ra_rad, dec_rad, degree=False,
                                               epoch=2000.0)
    # pml_masyr = pmlpmb[:, 0]
    # pmb_masyr = pmlpmb[:, 1]
    pml_masyr = pmlpmb[0]
    pmb_masyr = pmlpmb[1]

    # (v_los,pm_l,pm_b) & (l,b,d) --> (vx,vy,vz):
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(v_los_kms, pml_masyr, pmb_masyr,
                                              l_rad, b_rad, d_kpc, XYZ=False,
                                              degree=False)
    # vx_kms = vxvyvz[:, 0]
    # vy_kms = vxvyvz[:, 1]
    # vz_kms = vxvyvz[:, 2]
    vx_kms = vxvyvz[0]
    vy_kms = vxvyvz[1]
    vz_kms = vxvyvz[2]

    # (vx,vy,vz) & (x,y,z) --> (vR,vT,vz):
    vRvTvZ = bovy_coords.vxvyvz_to_galcencyl(vx_kms, vy_kms, vz_kms, R_kpc,
                                             phi_rad, z_kpc,
                                             vsun=[vX_gc_sun_kms,
                                                   vY_gc_sun_kms,
                                                   vZ_gc_sun_kms],
                                             galcen=True)
    # vR_kms = vRvTvZ[:, 0]
    # vT_kms = vRvTvZ[:, 1]
    # vz_kms = vRvTvZ[:, 2]
    vR_kms = vRvTvZ[0]
    vT_kms = vRvTvZ[1]
    vz_kms = vRvTvZ[2]

    if verbose:
        print("R = ", R_kpc, "\t kpc")
        print("phi = ", phi_rad, "\t rad")
        print("z = ", z_kpc, "\t kpc")
        print("v_R = ", vR_kms, "\t km/s")
        print("v_T = ", vT_kms, "\t km/s")
        print("v_z = ", vz_kms, "\t km/s")

    jR, lz, jz = calc_actions(R_kpc, phi_rad, z_kpc, vR_kms, vT_kms, vz_kms)

    return R_kpc, phi_rad, z_kpc, vR_kms, vT_kms, vz_kms, jR, lz, jz
コード例 #28
0
def findfriends(targname,radial_velocity,velocity_limit=5.0,search_radius=25.0,rvcut=5.0,radec=[None,None],output_directory = None,showplots=False,verbose=False,DoGALEX=True,DoWISE=True,DoROSAT=True):
    
    radvel= radial_velocity * u.kilometer / u.second
    
    if output_directory == None:
        outdir = './' + targname.replace(" ", "") + '_friends/'
    else: 
        outdir = output_directory
    if os.path.isdir(outdir) == True:
        print('Output directory ' + outdir +' Already Exists!!')
        print('Either Move it, Delete it, or input a different [output_directory] Please!')
        return
    os.mkdir(outdir)
    
    if velocity_limit < 0.00001 : 
        print('input velocity_limit is too small, try something else')
        print('velocity_limit: ' + str(velocity_limit))
    if search_radius < 0.0000001:
        print('input search_radius is too small, try something else')
        print('search_radius: ' + str(search_radius))
     
    # Search parameters
    vlim=velocity_limit * u.kilometer / u.second
    searchradpc=search_radius * u.parsec

    if (radec[0] != None) & (radec[1] != None):
        usera,usedec = radec[0],radec[1]
    else:  ##use the target name to get simbad ra and dec.
        print('Asking Simbad for RA and DEC')
        result_table = Simbad.query_object(targname)
        usera,usedec = result_table['RA'][0],result_table['DEC'][0]
    
    if verbose == True:
        print('Target name: ',targname)
        print('Coordinates: ' + str(usera) +' '+str(usedec))
        print()

    c = SkyCoord( ra=usera , dec=usedec , unit=(u.hourangle, u.deg) , frame='icrs')
    if verbose == True: print(c)

    # Find precise coordinates and distance from Gaia, define search radius and parallax cutoff
    print('Asking Gaia for precise coordinates')
    sqltext = "SELECT * FROM gaiaedr3.gaia_source WHERE CONTAINS( \
               POINT('ICRS',gaiaedr3.gaia_source.ra,gaiaedr3.gaia_source.dec), \
               CIRCLE('ICRS'," + str(c.ra.value) +","+ str(c.dec.value) +","+ str(6.0/3600.0) +"))=1;"
    job = Gaia.launch_job_async(sqltext , dump_to_file=False)
    Pgaia = job.get_results()
    if verbose == True:
        print(sqltext)
        print()
        print(Pgaia['source_id','ra','dec','phot_g_mean_mag','parallax','ruwe'].pprint_all())
        print()

    minpos = Pgaia['phot_g_mean_mag'].tolist().index(min(Pgaia['phot_g_mean_mag']))
    Pcoord = SkyCoord( ra=Pgaia['ra'][minpos]*u.deg , dec=Pgaia['dec'][minpos]*u.deg , \
                      distance=(1000.0/Pgaia['parallax'][minpos])*u.parsec , frame='icrs' , \
                      radial_velocity=radvel , \
                      pm_ra_cosdec=Pgaia['pmra'][minpos]*u.mas/u.year , pm_dec=Pgaia['pmdec'][minpos]*u.mas/u.year )

    searchraddeg = np.arcsin(searchradpc/Pcoord.distance).to(u.deg)
    minpar = (1000.0 * u.parsec) / (Pcoord.distance + searchradpc) * u.mas
    if verbose == True:
        print(Pcoord)
        print()
        print('Search radius in deg: ',searchraddeg)
        print('Minimum parallax: ',minpar)


    # Query Gaia with search radius and parallax cut
    # Note, a cut on parallax_error was added because searches at low galactic latitude 
    # return an overwhelming number of noisy sources that scatter into the search volume - ALK 20210325
    print('Querying Gaia for neighbors')

    Pllbb     = bc.radec_to_lb(Pcoord.ra.value , Pcoord.dec.value , degree=True)
    if ( np.abs(Pllbb[1]) > 10.0): plxcut = max( 0.5 , (1000.0/Pcoord.distance.value/10.0) )
    else: plxcut = 0.5
    print('Parallax cut: ',plxcut)

    if (searchradpc < Pcoord.distance):
        sqltext = "SELECT * FROM gaiaedr3.gaia_source WHERE CONTAINS( \
            POINT('ICRS',gaiaedr3.gaia_source.ra,gaiaedr3.gaia_source.dec), \
            CIRCLE('ICRS'," + str(Pcoord.ra.value) +","+ str(Pcoord.dec.value) +","+ str(searchraddeg.value) +"))\
            =1 AND parallax>" + str(minpar.value) + " AND parallax_error<" + str(plxcut) + ";"
    if (searchradpc >= Pcoord.distance):
        sqltext = "SELECT * FROM gaiaedr3.gaia_source WHERE parallax>" + str(minpar.value) + " AND parallax_error<" + str(plxcut) + ";"
        print('Note, using all-sky search')
    if verbose == True:
        print(sqltext)
        print()

    job = Gaia.launch_job_async(sqltext , dump_to_file=False)
    r = job.get_results()
   
    if verbose == True: print('Number of records: ',len(r['ra']))


    # Construct coordinates array for all stars returned in cone search

    gaiacoord = SkyCoord( ra=r['ra'] , dec=r['dec'] , distance=(1000.0/r['parallax'])*u.parsec , \
                         frame='icrs' , \
                         pm_ra_cosdec=r['pmra'] , pm_dec=r['pmdec'] )

    sep = gaiacoord.separation(Pcoord)
    sep3d = gaiacoord.separation_3d(Pcoord)

    if verbose == True:
        print('Printing angular separations in degrees as sanity check')
        print(sep.degree)



    Pllbb     = bc.radec_to_lb(Pcoord.ra.value , Pcoord.dec.value , degree=True)
    Ppmllpmbb = bc.pmrapmdec_to_pmllpmbb( Pcoord.pm_ra_cosdec.value , Pcoord.pm_dec.value , \
                                         Pcoord.ra.value , Pcoord.dec.value , degree=True )
    Pvxvyvz   = bc.vrpmllpmbb_to_vxvyvz(Pcoord.radial_velocity.value , Ppmllpmbb[0] , Ppmllpmbb[1] , \
                                   Pllbb[0] , Pllbb[1] , Pcoord.distance.value/1000.0 , XYZ=False , degree=True)

    if verbose == True:
        print('Science Target Name: ',targname)
        print('Science Target RA/DEC: ',Pcoord.ra.value,Pcoord.dec.value)
        print('Science Target Galactic Coordinates: ',Pllbb)
        print('Science Target UVW: ',Pvxvyvz)
        print()

    Gllbb = bc.radec_to_lb(gaiacoord.ra.value , gaiacoord.dec.value , degree=True)
    Gxyz = bc.lbd_to_XYZ( Gllbb[:,0] , Gllbb[:,1] , gaiacoord.distance/1000.0 , degree=True)
    Gvrpmllpmbb = bc.vxvyvz_to_vrpmllpmbb( \
                    Pvxvyvz[0]*np.ones(len(Gxyz[:,0])) , Pvxvyvz[1]*np.ones(len(Gxyz[:,1])) , Pvxvyvz[2]*np.ones(len(Gxyz[:,2])) , \
                    Gxyz[:,0] , Gxyz[:,1] , Gxyz[:,2] , XYZ=True)
    Gpmrapmdec = bc.pmllpmbb_to_pmrapmdec( Gvrpmllpmbb[:,1] , Gvrpmllpmbb[:,2] , Gllbb[:,0] , Gllbb[:,1] , degree=True)

    # Code in case I want to do chi^2 cuts someday
    Gvtanerr = 1.0 * np.ones(len(Gxyz[:,0]))
    Gpmerr = Gvtanerr * 206265000.0 * 3.154e7 / (gaiacoord.distance.value * 3.086e13)


    Gchi2 = ( (Gpmrapmdec[:,0]-gaiacoord.pm_ra_cosdec.value)**2 + (Gpmrapmdec[:,1]-gaiacoord.pm_dec.value)**2 )**0.5
    Gchi2 = Gchi2 / Gpmerr
    if verbose == True:
        print('Predicted PMs if comoving:')
        print(Gpmrapmdec , "\n")
        print('Actual PMRAs from Gaia:')
        print(gaiacoord.pm_ra_cosdec.value , "\n")
        print('Actual PMDECs from Gaia:')
        print(gaiacoord.pm_dec.value , "\n")
        print('Predicted PM errors:')
        print(Gpmerr , "\n")
        print('Chi^2 values:')
        print(Gchi2)


    # Query external list(s) of RVs

    zz = np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) )
    yy = zz[0][np.argsort(sep3d[zz])]
    
    RV    = np.empty(np.array(r['ra']).size)
    RVerr = np.empty(np.array(r['ra']).size)
    RVsrc = np.array([ '                             None' for x in range(np.array(r['ra']).size) ])
    RV[:]    = np.nan
    RVerr[:] = np.nan

    print('Populating RV table')
    for x in range(0 , np.array(yy).size):
        if np.isnan(r['dr2_radial_velocity'][yy[x]]) == False:        # First copy over DR2 RVs
            RV[yy[x]]    = r['dr2_radial_velocity'][yy[x]]
            RVerr[yy[x]] = r['dr2_radial_velocity_error'][yy[x]]
            RVsrc[yy[x]] = 'Gaia DR2'
    if os.path.isfile('LocalRV.csv'):
        with open('LocalRV.csv') as csvfile:                          # Now check for a local RV that would supercede
            readCSV = csv.reader(csvfile, delimiter=',')
            for row in readCSV:
                ww = np.where(r['designation'] == row[0])[0]
                if (np.array(ww).size == 1):
                    RV[ww]    = row[2]
                    RVerr[ww] = row[3]
                    RVsrc[ww] = row[4]
                    if verbose == True: 
                        print('Using stored RV: ',row)
                        print(r['ra','dec','phot_g_mean_mag'][ww])
                        print(RV[ww])
                        print(RVerr[ww])
                        print(RVsrc[ww])



    # Create Gaia CMD plot

    mamajek  = np.loadtxt(datapath+'/sptGBpRp.txt')
    pleiades = np.loadtxt(datapath+'/PleGBpRp.txt')
    tuchor   = np.loadtxt(datapath+'/TucGBpRp.txt')
    usco     = np.loadtxt(datapath+'/UScGBpRp.txt')
    chai     = np.loadtxt(datapath+'/ChaGBpRp.txt')

    zz = np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) & (np.isnan(r['bp_rp']) == False) ) # Note, this causes an error because NaNs
    yy = zz[0][np.argsort(sep3d[zz])]
    zz2= np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) & (sep.degree > 0.00001) & \
                 (r['phot_bp_rp_excess_factor'] < (1.3 + 0.06*r['bp_rp']**2)) & \
                 (np.isnan(r['bp_rp']) == False) )                                                              # Note, this causes an error because NaNs
    yy2= zz2[0][np.argsort((-Gchi2)[zz2])]


    figname=outdir + targname.replace(" ", "") + "cmd.png"
    if verbose == True: print(figname)

    fig,ax1 = plt.subplots(figsize=(12,8))

    ax1.axis([ math.floor(min(r['bp_rp'][zz])) , \
               math.ceil(max(r['bp_rp'][zz])), \
               math.ceil(max((r['phot_g_mean_mag'][zz] - (5.0*np.log10(gaiacoord.distance[zz].value)-5.0))))+1, \
               math.floor(min((r['phot_g_mean_mag'][zz] - (5.0*np.log10(gaiacoord.distance[zz].value)-5.0))))-1 ] )
    ax1.set_xlabel(r'$B_p-R_p$ (mag)' , fontsize=16)
    ax1.set_ylabel(r'$M_G$ (mag)' , fontsize=16)
    ax1.tick_params(axis='both',which='major',labelsize=12)

    ax2 = ax1.twiny()
    ax2.set_xlim(ax1.get_xlim())
    spttickvals = np.array([ -0.037 , 0.377 , 0.782 , 0.980 , 1.84 , 2.50 , 3.36 , 4.75 ])
    sptticklabs = np.array([ 'A0' , 'F0' , 'G0' , 'K0' , 'M0' , 'M3' , 'M5' , 'M7' ])
    xx = np.where( (spttickvals >= math.floor(min(r['bp_rp'][zz]))) & (spttickvals <= math.ceil(max(r['bp_rp'][zz]))) )[0]
    ax2.set_xticks(spttickvals[xx])
    ax2.set_xticklabels( sptticklabs[xx] )
    ax2.set_xlabel('SpT' , fontsize=16, labelpad=15)
    ax2.tick_params(axis='both',which='major',labelsize=12)

    ax1.plot(    chai[:,1] ,     chai[:,0]  , zorder=1 , label='Cha-I (0-5 Myr)')
    ax1.plot(    usco[:,1] ,     usco[:,0]  , zorder=2 , label='USco (11 Myr)')
    ax1.plot(  tuchor[:,1] ,   tuchor[:,0]  , zorder=3 , label='Tuc-Hor (40 Myr)')
    ax1.plot(pleiades[:,1] , pleiades[:,0]  , zorder=4 , label='Pleiades (125 Myr)')
    ax1.plot( mamajek[:,2] ,  mamajek[:,1]  , zorder=5 , label='Mamajek MS')

    for x in range(0 , np.array(yy2).size):
        msize  = (17-12.0*(sep3d[yy2[x]].value/searchradpc.value))**2
        mcolor = Gchi2[yy2[x]]
        medge  = 'black'
        mzorder= 7
        if (r['ruwe'][yy2[x]] < 1.2):
            mshape='o'
        if (r['ruwe'][yy2[x]] >= 1.2):
            mshape='s'
        if (np.isnan(rvcut) == False): 
            if (np.isnan(RV[yy2[x]])==False) & (np.abs(RV[yy2[x]]-Gvrpmllpmbb[yy2[x],0]) > rvcut):
                mshape='+'
                mcolor='black'
                mzorder=6
            if (np.isnan(RV[yy2[x]])==False) & (np.abs(RV[yy2[x]]-Gvrpmllpmbb[yy2[x],0]) <= rvcut):
                medge='blue'

        ccc = ax1.scatter(r['bp_rp'][yy2[x]] , (r['phot_g_mean_mag'][yy2[x]] - (5.0*np.log10(gaiacoord.distance[yy2[x]].value)-5.0)) , \
                s=msize , c=mcolor , marker=mshape , edgecolors=medge , zorder=mzorder , \
                vmin=0.0 , vmax=vlim.value , cmap='cubehelix' , label='_nolabel' )

    temp1 = ax1.scatter([] , [] , c='white' , edgecolors='black', marker='o' , s=12**2 , label = 'RUWE < 1.2')
    temp2 = ax1.scatter([] , [] , c='white' , edgecolors='black', marker='s' , s=12**2 , label = 'RUWE >= 1.2')
    temp3 = ax1.scatter([] , [] , c='white' , edgecolors='blue' , marker='o' , s=12**2 , label = 'RV Comoving')
    temp4 = ax1.scatter([] , [] , c='black' , marker='+' , s=12**2 , label = 'RV Outlier')

    ax1.plot(r['bp_rp'][yy[0]] , (r['phot_g_mean_mag'][yy[0]] - (5.0*np.log10(gaiacoord.distance[yy[0]].value)-5.0)) , \
             'rx' , markersize=18 , mew=3 , markeredgecolor='red' , zorder=10 , label=targname)

    ax1.arrow( 1.3 , 2.5 , 0.374, 0.743 , length_includes_head=True , head_width=0.07 , head_length = 0.10 )
    ax1.text(  1.4 , 2.3, r'$A_V=1$' , fontsize=12)



    ax1.legend(fontsize=11)
    cb = plt.colorbar(ccc , ax=ax1)
    cb.set_label(label='Velocity Difference (km/s)',fontsize=14)
    plt.savefig(figname , bbox_inches='tight', pad_inches=0.2 , dpi=200)
    if showplots == True: plt.show()
    plt.close('all')


    # Create PM plot


    zz2= np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) & (sep.degree > 0.00001) )
    yy2= zz2[0][np.argsort((-Gchi2)[zz2])]
    zz3= np.where( (sep3d.value < searchradpc.value) & (sep.degree > 0.00001) )

    figname=outdir + targname.replace(" ", "") + "pmd.png"

    fig,ax1 = plt.subplots(figsize=(12,8))

    ax1.axis([ (max(r['pmra'][zz2]) + 0.05*np.ptp(r['pmra'][zz2]) ) , \
           (min(r['pmra'][zz2]) - 0.05*np.ptp(r['pmra'][zz2]) ) , \
           (min(r['pmdec'][zz2])- 0.05*np.ptp(r['pmra'][zz2]) ) , \
           (max(r['pmdec'][zz2])+ 0.05*np.ptp(r['pmra'][zz2]) ) ] )
    ax1.tick_params(axis='both',which='major',labelsize=16)

    if  ((max(r['pmra'][zz2]) + 0.05*np.ptp(r['pmra'][zz2])) > 0.0) & \
            ((min(r['pmra'][zz2]) - 0.05*np.ptp(r['pmra'][zz2])) < 0.0) & \
            ((min(r['pmdec'][zz2])- 0.05*np.ptp(r['pmra'][zz2])) < 0.0) & \
            ((max(r['pmdec'][zz2])+ 0.05*np.ptp(r['pmra'][zz2])) > 0.0):
        ax1.plot( [0.0,0.0] , [-1000.0,1000.0] , 'k--' , linewidth=1 )
        ax1.plot( [-1000.0,1000.0] , [0.0,0.0] , 'k--' , linewidth=1 )

    ax1.errorbar( (r['pmra'][yy2]) , (r['pmdec'][yy2]) , \
            yerr=(r['pmdec_error'][yy2]) , xerr=(r['pmra_error'][yy2]) , fmt='none' , ecolor='k' )

    ax1.scatter( (r['pmra'][zz3]) , (r['pmdec'][zz3]) , \
              s=(0.5)**2 , marker='o' , c='black' , zorder=2 , label='Field' )

    for x in range(0 , np.array(yy2).size):
        msize  = (17-12.0*(sep3d[yy2[x]].value/searchradpc.value))**2
        mcolor = Gchi2[yy2[x]]
        medge  = 'black'
        mzorder= 7
        if (r['ruwe'][yy2[x]] < 1.2):
            mshape='o'
        if (r['ruwe'][yy2[x]] >= 1.2):
            mshape='s'
        if (np.isnan(rvcut) == False): 
            if (np.isnan(RV[yy2[x]])==False) & (np.abs(RV[yy2[x]]-Gvrpmllpmbb[yy2[x],0]) > rvcut):
                mshape='+'
                mcolor='black'
                mzorder=6
            if (np.isnan(RV[yy2[x]])==False) & (np.abs(RV[yy2[x]]-Gvrpmllpmbb[yy2[x],0]) <= rvcut):
                medge='blue'
        ccc = ax1.scatter(r['pmra'][yy2[x]] , r['pmdec'][yy2[x]] , \
                s=msize , c=mcolor , marker=mshape , edgecolors=medge , zorder=mzorder , \
                vmin=0.0 , vmax=vlim.value , cmap='cubehelix' , label='_nolabel' )

    temp1 = ax1.scatter([] , [] , c='white' , edgecolors='black', marker='o' , s=12**2 , label = 'RUWE < 1.2')
    temp2 = ax1.scatter([] , [] , c='white' , edgecolors='black', marker='s' , s=12**2 , label = 'RUWE >= 1.2')
    temp3 = ax1.scatter([] , [] , c='white' , edgecolors='blue' , marker='o' , s=12**2 , label = 'RV Comoving')
    temp4 = ax1.scatter([] , [] , c='black' , marker='+' , s=12**2 , label = 'RV Outlier')

    ax1.plot( Pgaia['pmra'][minpos] , Pgaia['pmdec'][minpos] , \
         'rx' , markersize=18 , mew=3 , markeredgecolor='red' , zorder=3 , label=targname)

    ax1.set_xlabel(r'$\mu_{RA}$ (mas/yr)' , fontsize=22 , labelpad=10)
    ax1.set_ylabel(r'$\mu_{DEC}$ (mas/yr)' , fontsize=22 , labelpad=10)
    ax1.legend(fontsize=12)

    cb = plt.colorbar(ccc , ax=ax1)
    cb.set_label(label='Tangential Velocity Difference (km/s)',fontsize=18 , labelpad=10)
    plt.savefig(figname , bbox_inches='tight', pad_inches=0.2 , dpi=200)
    if showplots == True: plt.show()
    plt.close('all')


    # Create RV plot

    zz2= np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) & (sep.degree > 0.00001) & \
             (np.isnan(RV) == False) )
    yy2= zz2[0][np.argsort((-Gchi2)[zz2])]

    zz3= np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) & (sep.degree > 0.00001) & \
             (np.isnan(RV) == False) & (np.isnan(r['phot_g_mean_mag']) == False) & \
             (np.abs(RV-Gvrpmllpmbb[:,0]) < 20.0) ) # Just to set Y axis

    fig,ax1 = plt.subplots(figsize=(12,8))
    ax1.axis([ -20.0 , +20.0, \
           max( np.append( np.array(r['phot_g_mean_mag'][zz3] - (5.0*np.log10(gaiacoord.distance[zz3].value)-5.0)) ,  0.0 )) + 0.3 , \
           min( np.append( np.array(r['phot_g_mean_mag'][zz3] - (5.0*np.log10(gaiacoord.distance[zz3].value)-5.0)) , 15.0 )) - 0.3   ])
    ax1.tick_params(axis='both',which='major',labelsize=16)

    ax1.plot( [0.0,0.0] , [-20.0,25.0] , 'k--' , linewidth=1 )

    ax1.errorbar( (RV[yy2]-Gvrpmllpmbb[yy2,0]) , \
           (r['phot_g_mean_mag'][yy2] - (5.0*np.log10(gaiacoord.distance[yy2].value)-5.0)) , \
            yerr=None,xerr=(RVerr[yy2]) , fmt='none' , ecolor='k' )

    for x in range(0 , np.array(yy2).size):
        msize  = (17-12.0*(sep3d[yy2[x]].value/searchradpc.value))**2
        mcolor = Gchi2[yy2[x]]
        medge  = 'black'
        mzorder= 2
        if (r['ruwe'][yy2[x]] < 1.2):
            mshape='o'
        if (r['ruwe'][yy2[x]] >= 1.2):
            mshape='s'
        ccc = ax1.scatter( (RV[yy2[x]]-Gvrpmllpmbb[yy2[x],0]) , \
                (r['phot_g_mean_mag'][yy2[x]] - (5.0*np.log10(gaiacoord.distance[yy2[x]].value)-5.0)) , \
                s=msize , c=mcolor , marker=mshape , edgecolors=medge , zorder=mzorder , \
                vmin=0.0 , vmax=vlim.value , cmap='cubehelix' , label='_nolabel' )

    temp1 = ax1.scatter([] , [] , c='white' , edgecolors='black', marker='o' , s=12**2 , label = 'RUWE < 1.2')
    temp2 = ax1.scatter([] , [] , c='white' , edgecolors='black', marker='s' , s=12**2 , label = 'RUWE >= 1.2')
    temp3 = ax1.scatter([] , [] , c='white' , edgecolors='blue' , marker='o' , s=12**2 , label = 'RV Comoving')

    if ( (Pgaia['phot_g_mean_mag'][minpos] - (5.0*np.log10(Pcoord.distance.value)-5.0)) < \
                                     (max( np.append( np.array(r['phot_g_mean_mag'][zz3] - (5.0*np.log10(gaiacoord.distance[zz3].value)-5.0)) , 0.0 )) + 0.3) ):
        ax1.plot( [0.0] , (Pgaia['phot_g_mean_mag'][minpos] - (5.0*np.log10(Pcoord.distance.value)-5.0)) , \
                  'rx' , markersize=18 , mew=3 , markeredgecolor='red' , zorder=3 , label=targname)


    ax1.set_ylabel(r'$M_G$ (mag)' , fontsize=22 , labelpad=10)
    ax1.set_xlabel(r'$v_{r,obs}-v_{r,pred}$ (km/s)' , fontsize=22 , labelpad=10)
    ax1.legend(fontsize=12)

    cb = plt.colorbar(ccc , ax=ax1)
    cb.set_label(label='Tangential Velocity Difference (km/s)',fontsize=18 , labelpad=10)

    figname=outdir + targname.replace(" ", "") + "drv.png"
    plt.savefig(figname , bbox_inches='tight', pad_inches=0.2 , dpi=200)
    if showplots == True: plt.show()
    plt.close('all')



    
    # Create XYZ plot

    Pxyz = bc.lbd_to_XYZ( Pllbb[0] , Pllbb[1] , Pcoord.distance.value/1000.0 , degree=True)

    fig,axs = plt.subplots(2,2)
    fig.set_figheight(16)
    fig.set_figwidth(16)
    fig.subplots_adjust(hspace=0.03,wspace=0.03)

    zz2= np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) & (sep.degree > 0.00001) )
    yy2= zz2[0][np.argsort((-Gchi2)[zz2])]

    for x in range(0 , np.array(yy2).size):
        msize  = (17-12.0*(sep3d[yy2[x]].value/searchradpc.value))**2
        mcolor = Gchi2[yy2[x]]
        medge  = 'black'
        mzorder= 3
        if (r['ruwe'][yy2[x]] < 1.2):
            mshape='o'
        if (r['ruwe'][yy2[x]] >= 1.2):
            mshape='s'
        if (np.isnan(rvcut) == False): 
            if (np.isnan(RV[yy2[x]])==False) & (np.abs(RV[yy2[x]]-Gvrpmllpmbb[yy2[x],0]) > rvcut):
                mshape='+'
                mcolor='black'
                mzorder=2
            if (np.isnan(RV[yy2[x]])==False) & (np.abs(RV[yy2[x]]-Gvrpmllpmbb[yy2[x],0]) <= rvcut):
                medge='blue'
        ccc = axs[0,0].scatter( 1000.0*Gxyz[yy2[x],0] , 1000.0*Gxyz[yy2[x],1] , \
                s=msize , c=mcolor , marker=mshape , edgecolors=medge , zorder=mzorder , \
                vmin=0.0 , vmax=vlim.value , cmap='cubehelix' , label='_nolabel' )
        ccc = axs[0,1].scatter( 1000.0*Gxyz[yy2[x],2] , 1000.0*Gxyz[yy2[x],1] , \
                s=msize , c=mcolor , marker=mshape , edgecolors=medge , zorder=mzorder , \
                vmin=0.0 , vmax=vlim.value , cmap='cubehelix' , label='_nolabel' )
        ccc = axs[1,0].scatter( 1000.0*Gxyz[yy2[x],0] , 1000.0*Gxyz[yy2[x],2] , \
                s=msize , c=mcolor , marker=mshape , edgecolors=medge , zorder=mzorder , \
                vmin=0.0 , vmax=vlim.value , cmap='cubehelix' , label='_nolabel' )

    temp1 = axs[0,0].scatter([] , [] , c='white' , edgecolors='black', marker='o' , s=12**2 , label = 'RUWE < 1.2')
    temp2 = axs[0,0].scatter([] , [] , c='white' , edgecolors='black', marker='s' , s=12**2 , label = 'RUWE >= 1.2')
    temp3 = axs[0,0].scatter([] , [] , c='white' , edgecolors='blue' , marker='o' , s=12**2 , label = 'RV Comoving')
    temp4 = axs[0,0].scatter([] , [] , c='black' , marker='+' , s=12**2 , label = 'RV Outlier')

    axs[0,0].plot( 1000.0*Pxyz[0] , 1000.0*Pxyz[1] , 'rx' , markersize=18 , mew=3 , markeredgecolor='red')
    axs[0,1].plot( 1000.0*Pxyz[2] , 1000.0*Pxyz[1] , 'rx' , markersize=18 , mew=3 , markeredgecolor='red')
    axs[1,0].plot( 1000.0*Pxyz[0] , 1000.0*Pxyz[2] , 'rx' , markersize=18 , mew=3 , markeredgecolor='red' , zorder=1 , label = targname)

    axs[0,0].set_xlim( [1000.0*Pxyz[0]-(search_radius+1.0) , 1000.0*Pxyz[0]+(search_radius+1.0)] )
    axs[0,0].set_ylim( [1000.0*Pxyz[1]-(search_radius+1.0) , 1000.0*Pxyz[1]+(search_radius+1.0)] )
    axs[0,1].set_xlim( [1000.0*Pxyz[2]-(search_radius+1.0) , 1000.0*Pxyz[2]+(search_radius+1.0)] )
    axs[0,1].set_ylim( [1000.0*Pxyz[1]-(search_radius+1.0) , 1000.0*Pxyz[1]+(search_radius+1.0)] )
    axs[1,0].set_xlim( [1000.0*Pxyz[0]-(search_radius+1.0) , 1000.0*Pxyz[0]+(search_radius+1.0)] )
    axs[1,0].set_ylim( [1000.0*Pxyz[2]-(search_radius+1.0) , 1000.0*Pxyz[2]+(search_radius+1.0)] )
    
    axs[0,0].set_xlabel(r'$X$ (pc)',fontsize=20,labelpad=10)
    axs[0,0].set_ylabel(r'$Y$ (pc)',fontsize=20,labelpad=10)

    axs[1,0].set_xlabel(r'$X$ (pc)',fontsize=20,labelpad=10)
    axs[1,0].set_ylabel(r'$Z$ (pc)',fontsize=20,labelpad=10)

    axs[0,1].set_xlabel(r'$Z$ (pc)',fontsize=20,labelpad=10)
    axs[0,1].set_ylabel(r'$Y$ (pc)',fontsize=20,labelpad=10)

    axs[0,0].xaxis.set_ticks_position('top')
    axs[0,1].xaxis.set_ticks_position('top')
    axs[0,1].yaxis.set_ticks_position('right')

    axs[0,0].xaxis.set_label_position('top')
    axs[0,1].xaxis.set_label_position('top')
    axs[0,1].yaxis.set_label_position('right')

    for aa in [0,1]:
        for bb in [0,1]:
            axs[aa,bb].tick_params(top=True,bottom=True,left=True,right=True,direction='in',labelsize=18)

    fig.delaxes(axs[1][1])
    strsize = 26
    if (len(targname) > 12.0): strsize = np.floor(24 / (len(targname)/14.5))
    fig.legend( bbox_to_anchor=(0.92,0.37) , prop={'size':strsize})

    cbaxes = fig.add_axes([0.55,0.14,0.02,0.34])
    cb = plt.colorbar( ccc , cax=cbaxes )
    cb.set_label( label='Velocity Difference (km/s)' , fontsize=24 , labelpad=20 )
    cb.ax.tick_params(labelsize=18)

    figname=outdir + targname.replace(" ", "") + "xyz.png"
    plt.savefig(figname , bbox_inches='tight', pad_inches=0.2 , dpi=200)

    if showplots == True: plt.show()
    plt.close('all')



    # Create sky map
    # Hacked from cartopy.mpl.gridliner
    _DEGREE_SYMBOL = u'\u00B0'
    def _east_west_formatted(longitude, num_format='g'):
        fmt_string = u'{longitude:{num_format}}{degree}'
        return fmt_string.format(longitude=(longitude if (longitude >= 0) else (longitude + 360)) , \
                                            num_format=num_format,degree=_DEGREE_SYMBOL)
    def _north_south_formatted(latitude, num_format='g'):
        fmt_string = u'{latitude:{num_format}}{degree}'
        return fmt_string.format(latitude=latitude, num_format=num_format,degree=_DEGREE_SYMBOL)
    LONGITUDE_FORMATTER = mticker.FuncFormatter(lambda v, pos:
                                                _east_west_formatted(v))
    LATITUDE_FORMATTER = mticker.FuncFormatter(lambda v, pos:
                                               _north_south_formatted(v))

    zz = np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) & (sep.degree > 0.00001) )
    yy = zz[0][np.argsort((-Gchi2)[zz])]

    searchcircle = Pcoord.directional_offset_by( (np.arange(0,360)*u.degree) , searchraddeg*np.ones(360))
    circleRA = searchcircle.ra.value
    circleDE = searchcircle.dec.value
    ww = np.where(circleRA > 180.0)
    circleRA[ww] = circleRA[ww] - 360.0

    RAlist = gaiacoord.ra[yy].value
    DElist = gaiacoord.dec[yy].value
    ww = np.where( RAlist > 180.0 )
    RAlist[ww] = RAlist[ww] - 360.0

    polelat = ((Pcoord.dec.value+90) if (Pcoord.dec.value<0) else (90-Pcoord.dec.value))
    polelong= (Pcoord.ra.value if (Pcoord.dec.value<0.0) else (Pcoord.ra.value+180.0))
    polelong= (polelong if polelong < 180 else polelong - 360.0)

    if verbose == True:
        print('Alignment variables: ',polelat,polelong,Pcoord.ra.value)
        print(Pcoord.dec.value+searchraddeg.value)
    rotated_pole = ccrs.RotatedPole( \
        pole_latitude=polelat , \
        pole_longitude=polelong , \
        central_rotated_longitude=90.0 )#\
    #    (Pcoord.ra.value if (Pcoord.dec.value > 0.0) else (Pcoord.ra.value+180.0)) )

    fig = plt.figure(figsize=(8,8))
    ax = fig.add_subplot(1, 1, 1, projection=rotated_pole)

    ax.gridlines(draw_labels=True,x_inline=True,y_inline=True, \
                 xformatter=LONGITUDE_FORMATTER,yformatter=LATITUDE_FORMATTER)
    ax.plot( circleRA , circleDE , c="gray" , ls="--" , transform=ccrs.Geodetic())
    
    figname=outdir + targname.replace(" ", "") + "sky.png"

    base=plt.cm.get_cmap('cubehelix')

    for x in range(0 , np.array(yy).size):
        msize  = (17-12.0*(sep3d[yy[x]].value/searchradpc.value))
        mcolor = base(Gchi2[yy[x]]/vlim.value)
        medge  = 'black'
        mzorder= 3
        if (r['ruwe'][yy[x]] < 1.2):
            mshape='o'
        if (r['ruwe'][yy[x]] >= 1.2):
            mshape='s'
        if (np.isnan(rvcut) == False): 
            if (np.isnan(RV[yy[x]])==False) & (np.abs(RV[yy[x]]-Gvrpmllpmbb[yy[x],0]) > rvcut):
                mshape='+'
                mcolor='black'
                mzorder=2
            if (np.isnan(RV[yy[x]])==False) & (np.abs(RV[yy[x]]-Gvrpmllpmbb[yy[x],0]) <= rvcut):
                medge='blue'
        ccc = ax.plot( RAlist[x] , DElist[x] , marker=mshape ,  \
                markeredgecolor=medge , ms = msize , mfc = mcolor , transform=ccrs.Geodetic() )
        
    ax.plot( (Pcoord.ra.value-360.0) , Pcoord.dec.value , \
            'rx' , markersize=18 , mew=3 , transform=ccrs.Geodetic())

    plt.savefig(figname , bbox_inches='tight', pad_inches=0.2 , dpi=200)
    
    if showplots == True: plt.show()
    plt.close('all')

    ## Query GALEX and 2MASS data

    zz = np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) )
    yy = zz[0][np.argsort((-Gchi2)[zz])]
    
    NUVmag = np.empty(np.array(r['ra']).size)
    NUVerr = np.empty(np.array(r['ra']).size)
    NUVmag[:] = np.nan
    NUVerr[:] = np.nan

    print('Searching on neighbors in GALEX')
    ##suppress the stupid noresultswarning from the catalogs package
    warnings.filterwarnings("ignore",category=NoResultsWarning)

    for x in range(0 , np.array(yy).size):
        querystring=((str(gaiacoord.ra[yy[x]].value) if (gaiacoord.ra[yy[x]].value > 0) \
                      else str(gaiacoord.ra[yy[x]].value+360.0)) + " " + str(gaiacoord.dec[yy[x]].value))
        print('GALEX query ',x,' of ',np.array(yy).size, end='\r')
        if verbose == True: print('GALEX query ',x,' of ',np.array(yy).size)
        if verbose == True: print(querystring)
        if (DoGALEX == True): 
            galex = Catalogs.query_object(querystring , catalog="Galex" , radius=0.0028 , TIMEOUT=600)
            if ((np.where(galex['nuv_magerr'] > 0.0)[0]).size > 0):
                ww = np.where( (galex['nuv_magerr'] == min(galex['nuv_magerr'][np.where(galex['nuv_magerr'] > 0.0)])))
                NUVmag[yy[x]] = galex['nuv_mag'][ww][0]
                NUVerr[yy[x]] = galex['nuv_magerr'][ww][0]
                if verbose == True: print(galex['distance_arcmin','ra','nuv_mag','nuv_magerr'][ww])

        
    Jmag = np.empty(np.array(r['ra']).size)
    Jerr = np.empty(np.array(r['ra']).size)
    Jmag[:] = np.nan
    Jerr[:] = np.nan

    print('Searching on neighbors in 2MASS')

    for x in range(0 , np.array(yy).size):
        if ( np.isnan(NUVmag[yy[x]]) == False ):
            querycoord = SkyCoord((str(gaiacoord.ra[yy[x]].value) if (gaiacoord.ra[yy[x]].value > 0) else \
                     str(gaiacoord.ra[yy[x]].value+360.0)) , str(gaiacoord.dec[yy[x]].value) , \
                     unit=(u.deg,u.deg) , frame='icrs')
            print('2MASS query ',x,' of ',np.array(yy).size, end='\r')
            if verbose == True: print('2MASS query ',x,' of ',np.array(yy).size)
            if verbose == True: print(querycoord)
            tmass = []
            if (DoGALEX == True): 
                tmass = Irsa.query_region(querycoord , catalog='fp_psc' , radius='0d0m10s' )
                if ((np.where(tmass['j_m'] > -10.0)[0]).size > 0):
                    ww = np.where( (tmass['j_m'] == min(tmass['j_m'][np.where(tmass['j_m'] > 0.0)])))
                    Jmag[yy[x]] = tmass['j_m'][ww][0]
                    Jerr[yy[x]] = tmass['j_cmsig'][ww][0]
                    if verbose == True: print(tmass['j_m','j_cmsig'][ww])
        


    # Create GALEX plots
    mamajek = np.loadtxt(datapath+'/sptGBpRp.txt')
    f = interp1d( mamajek[:,2] , mamajek[:,0] , kind='cubic')

    zz2 = np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) )
    yy2 = zz[0][np.argsort(sep3d[zz])]
    zz = np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) & (sep.degree > 0.00001) )
    yy = zz[0][np.argsort((-Gchi2)[zz])]

    fnuvj = (3631.0 * 10**6 * 10**(-0.4 * NUVmag)) / (1594.0 * 10**6 * 10**(-0.4 * Jmag))
    spt = f(r['bp_rp'].filled(np.nan))
    sptstring = ["nan" for x in range(np.array(r['bp_rp']).size)]
    for x in range(0 , np.array(zz2).size):
        if (round(spt[yy2[x]],1) >= 17.0) and (round(spt[yy2[x]],1) < 27.0):
            sptstring[yy2[x]] = 'M' + ('% 3.1f' % (round(spt[yy2[x]],1)-17.0)).strip()
        if (round(spt[yy2[x]],1) >= 16.0) and (round(spt[yy2[x]],1) < 17.0):
            sptstring[yy2[x]] = 'K' + ('% 3.1f' % (round(spt[yy2[x]],1)-9.0)).strip()
        if (round(spt[yy2[x]],1) >= 10.0) and (round(spt[yy2[x]],1) < 16.0):
            sptstring[yy2[x]] = 'K' + ('% 3.1f' % (round(spt[yy2[x]],1)-10.0)).strip()
        if (round(spt[yy2[x]],1) >= 0.0) and (round(spt[yy2[x]],1) < 10.0):
            sptstring[yy2[x]] = 'G' + ('% 3.1f' % (round(spt[yy2[x]],1)-0.0)).strip()
        if (round(spt[yy2[x]],1) >= -10.0) and (round(spt[yy2[x]],1) < 0.0):
            sptstring[yy2[x]] = 'F' + ('% 3.1f' % (round(spt[yy2[x]],1)+10.0)).strip()
        if (round(spt[yy2[x]],1) >= -20.0) and (round(spt[yy2[x]],1) < -10.0):
            sptstring[yy2[x]] = 'A' + ('% 3.1f' % (round(spt[yy2[x]],1)+20.0)).strip()       
        if (round(spt[yy2[x]],1) >= -30.0) and (round(spt[yy2[x]],1) < -20.0):
            sptstring[yy2[x]] = 'B' + ('% 3.1f' % (round(spt[yy2[x]],1)+30.0)).strip()  
    


    figname=outdir + targname.replace(" ", "") + "galex.png"
    if verbose == True: print(figname)
    ##Muck with the axis to get two x axes

    fig,ax1 = plt.subplots(figsize=(12,8))
    ax1.set_yscale('log')
    ax1.axis([5.0 , 24.0 , 0.000004 , 0.02])
    ax2 = ax1.twiny()
    ax2.set_xlim(ax1.get_xlim())
    ax1.set_xticks(np.array([5.0 , 10.0 , 15.0 , 17.0 , 22.0 , 24.0]))
    ax1.set_xticklabels(['G5','K0','K5','M0','M5','M7'])
    ax1.set_xlabel('SpT' , fontsize=20, labelpad=15)
    ax1.tick_params(axis='both',which='major',labelsize=16)
    ax2.set_xticks(np.array([5.0 , 10.0 , 15.0 , 17.0 , 22.0 , 24.0]))
    ax2.set_xticklabels(['0.85','0.98','1.45','1.84','3.36','4.75'])
    ax2.set_xlabel(r'$B_p-R_p$ (mag)' , fontsize=20, labelpad=15)
    ax2.tick_params(axis='both',which='major',labelsize=16)
    ax1.set_ylabel(r'$F_{NUV}/F_{J}$' , fontsize=22, labelpad=0)

    ##Hyades
    hyades = readsav(datapath +'/HYsaved.sav')
    hyadesfnuvj = (3631.0 * 10**6 * 10**(-0.4 * hyades['clnuv'])) / (1594.0 * 10**6 * 10**(-0.4 * hyades['clJ']))
    ax1.plot(hyades['clspt'] , hyadesfnuvj , 'x' , markersize=4 , mew=1 , markeredgecolor='black' , zorder=1 , label='Hyades' )

    for x in range(0 , np.array(yy).size):
        msize  = (17-12.0*(sep3d[yy[x]].value/searchradpc.value))**2
        mcolor = Gchi2[yy[x]]
        medge  = 'black'
        mzorder= 3
        if (r['ruwe'][yy[x]] < 1.2):
            mshape='o'
        if (r['ruwe'][yy[x]] >= 1.2):
            mshape='s'
        if (np.isnan(rvcut) == False): 
            if (np.isnan(RV[yy[x]])==False) & (np.abs(RV[yy[x]]-Gvrpmllpmbb[yy[x],0]) > rvcut):
                mshape='+'
                mcolor='black'
                mzorder=2
            if (np.isnan(RV[yy[x]])==False) & (np.abs(RV[yy[x]]-Gvrpmllpmbb[yy[x],0]) <= rvcut):
                medge='blue'
        ccc = ax1.scatter( spt[yy[x]] , fnuvj[yy[x]] , \
                s=msize , c=mcolor , marker=mshape , edgecolors=medge , zorder=mzorder , \
                vmin=0.0 , vmax=vlim.value , cmap='cubehelix' , label='_nolabel' )

    temp1 = ax1.scatter([] , [] , c='white' , edgecolors='black', marker='o' , s=12**2 , label = 'RUWE < 1.2')
    temp2 = ax1.scatter([] , [] , c='white' , edgecolors='black', marker='s' , s=12**2 , label = 'RUWE >= 1.2')
    temp3 = ax1.scatter([] , [] , c='white' , edgecolors='blue' , marker='o' , s=12**2 , label = 'RV Comoving')
    temp4 = ax1.scatter([] , [] , c='black' , marker='+' , s=12**2 , label = 'RV Outlier')



    # Plot science target
    if (spt[yy[0]] > 5): ax1.plot(spt[yy[0]] , fnuvj[yy[0]] , 'rx' , markersize=18 , mew=3 , markeredgecolor='red' , zorder=3 , label=targname )

    ax1.legend(fontsize=16 , loc='lower left')
    cb = fig.colorbar(ccc , ax=ax1)
    cb.set_label(label='Velocity Offset (km/s)',fontsize=13)
    if (DoGALEX == True): plt.savefig(figname , bbox_inches='tight', pad_inches=0.2 , dpi=200)
    if showplots == True: plt.show()
    plt.close('all')
    
    
    # Query CatWISE for W1+W2 and AllWISE for W3+W4

    zz = np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) )
    yy = zz[0][np.argsort((-Gchi2)[zz])]

    WISEmag = np.empty([np.array(r['ra']).size,4])
    WISEerr = np.empty([np.array(r['ra']).size,4])
    WISEmag[:] = np.nan
    WISEerr[:] = np.nan

    print('Searching on neighbors in WISE')
    ##there's an annoying nan warning here, hide it for now as it's not a problem
    warnings.filterwarnings("ignore",category=UserWarning)

    for x in range(0 , np.array(yy).size):
        querycoord = SkyCoord((str(gaiacoord.ra[yy[x]].value) if (gaiacoord.ra[yy[x]].value > 0) else \
                     str(gaiacoord.ra[yy[x]].value+360.0)) , str(gaiacoord.dec[yy[x]].value) , \
                     unit=(u.deg,u.deg) , frame='icrs')
        print('WISE query ',x,' of ',np.array(yy).size, end='\r')
        if verbose == True: print('WISE query ',x,' of ',np.array(yy).size)
        if verbose == True: print(querycoord)
    
        wisecat = []
        if (DoWISE == True): 
            wisecat = Irsa.query_region(querycoord,catalog='catwise_2020' , radius='0d0m10s')
            if ((np.where(wisecat['w1mpro'] > -10.0)[0]).size > 0):
                ww = np.where( (wisecat['w1mpro'] == min( wisecat['w1mpro'][np.where(wisecat['w1mpro'] > -10.0)]) ))
                WISEmag[yy[x],0] = wisecat['w1mpro'][ww][0]
                WISEerr[yy[x],0] = wisecat['w1sigmpro'][ww][0]
            if ((np.where(wisecat['w2mpro'] > -10.0)[0]).size > 0):
                ww = np.where( (wisecat['w2mpro'] == min( wisecat['w2mpro'][np.where(wisecat['w2mpro'] > -10.0)]) ))
                WISEmag[yy[x],1] = wisecat['w2mpro'][ww][0]
                WISEerr[yy[x],1] = wisecat['w2sigmpro'][ww][0]
 
        if (DoWISE == True): 
            wisecat = Irsa.query_region(querycoord,catalog='allwise_p3as_psd' , radius='0d0m10s')
            if ((np.where(wisecat['w1mpro'] > -10.0)[0]).size > 0):
                ww = np.where( (wisecat['w1mpro'] == min( wisecat['w1mpro'][np.where(wisecat['w1mpro'] > -10.0)]) ))
                if (np.isnan(WISEmag[yy[x],0]) == True) | (wisecat['w1mpro'][ww][0] < 11.0):				# Note, only if CatWISE absent/saturated
                    WISEmag[yy[x],0] = wisecat['w1mpro'][ww][0]
                    WISEerr[yy[x],0] = wisecat['w1sigmpro'][ww][0]
            if ((np.where(wisecat['w2mpro'] > -10.0)[0]).size > 0):
                ww = np.where( (wisecat['w2mpro'] == min( wisecat['w2mpro'][np.where(wisecat['w2mpro'] > -10.0)]) ))
                if (np.isnan(WISEmag[yy[x],1]) == True) | (wisecat['w2mpro'][ww][0] < 11.0):				# Note, only if CatWISE absent/saturated
                    WISEmag[yy[x],1] = wisecat['w2mpro'][ww][0]
                    WISEerr[yy[x],1] = wisecat['w2sigmpro'][ww][0]
            if ((np.where(wisecat['w3mpro'] > -10.0)[0]).size > 0):
                ww = np.where( (wisecat['w3mpro'] == min( wisecat['w3mpro'][np.where(wisecat['w3mpro'] > -10.0)]) ))
                WISEmag[yy[x],2] = wisecat['w3mpro'][ww][0]
                WISEerr[yy[x],2] = wisecat['w3sigmpro'][ww][0]
            if ((np.where(wisecat['w4mpro'] > -10.0)[0]).size > 0):
                ww = np.where( (wisecat['w4mpro'] == min( wisecat['w4mpro'][np.where(wisecat['w4mpro'] > -10.0)]) ))
                WISEmag[yy[x],3] = wisecat['w4mpro'][ww][0]
                WISEerr[yy[x],3] = wisecat['w4sigmpro'][ww][0]
        
        if verbose == True: print(yy[x],WISEmag[yy[x],:],WISEerr[yy[x],:])

    # Create WISE plots

    W13 = WISEmag[:,0]-WISEmag[:,2]
    W13err = ( WISEerr[:,0]**2 + WISEerr[:,2]**2 )**0.5

    zz = np.argwhere( np.isnan(W13err) )
    W13[zz] = np.nan
    W13err[zz] = np.nan

    zz = np.where( (W13err > 0.15) )
    W13[zz] = np.nan
    W13err[zz] = np.nan
    warnings.filterwarnings("default",category=UserWarning)




    zz2 = np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value))
    yy2 = zz[0][np.argsort(sep3d[zz])]
    zz = np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) & (sep.degree > 0.00001) )
    yy = zz[0][np.argsort((-Gchi2)[zz])]

    figname=outdir + targname.replace(" ", "") + "wise.png"
    if verbose == True: print(figname)
    plt.figure(figsize=(12,8))

    if (verbose == True) & ((np.where(np.isfinite(W13+W13err))[0]).size > 0): print('Max y value: ' , (max((W13+W13err)[np.isfinite(W13+W13err)])+0.1) )
    plt.axis([ 5.0 , 24.0 , \
              max( [(min(np.append((W13-W13err)[ np.isfinite(W13-W13err) ],-0.1))-0.1) , -0.3]) , \
              max( [(max(np.append((W13+W13err)[ np.isfinite(W13+W13err) ],+0.0))+0.2) , +0.6]) ])

    ax1 = plt.gca()
    ax2 = ax1.twiny()
    ax2.set_xlim(5.0,24.0)

    ax1.set_xticks(np.array([5.0 , 10.0 , 15.0 , 17.0 , 22.0 , 24.0]))
    ax1.set_xticklabels(['G5','K0','K5','M0','M5','M7'])
    ax1.set_xlabel('SpT' , fontsize=20, labelpad=15)
    ax1.tick_params(axis='both',which='major',labelsize=16)

    ax2.set_xticks(np.array([5.0 , 10.0 , 15.0 , 17.0 , 22.0 , 24.0]))
    ax2.set_xticklabels(['0.85','0.98','1.45','1.84','3.36','4.75'])
    ax2.set_xlabel(r'$B_p-R_p$ (mag)' , fontsize=20, labelpad=15)
    ax2.tick_params(axis='both',which='major',labelsize=16)

    ax1.set_ylabel(r'$W1-W3$ (mag)' , fontsize=22, labelpad=0)

    # Plot field sequence from Tuc-Hor (Kraus et al. 2014)
    fldspt = [ 5 , 7 , 10 , 12 , 15 , 17 , 20 , 22 , 24 ]
    fldW13 = [ 0 , 0 ,  0 , .02, .06, .12, .27, .40, .60]
    plt.plot(fldspt , fldW13  , zorder=0 , label='Photosphere')

    # Plot neighbors
    ax1.errorbar( spt[yy] , W13[yy] , yerr=W13err[yy] , fmt='none' , ecolor='k')


    for x in range(0 , np.array(yy).size):
        msize  = (17-12.0*(sep3d[yy[x]].value/searchradpc.value))**2
        mcolor = Gchi2[yy[x]]
        medge  = 'black'
        mzorder= 3
        if (r['ruwe'][yy[x]] < 1.2):
            mshape='o'
        if (r['ruwe'][yy[x]] >= 1.2):
            mshape='s'
        if (np.isnan(rvcut) == False): 
            if (np.isnan(RV[yy[x]])==False) & (np.abs(RV[yy[x]]-Gvrpmllpmbb[yy[x],0]) > rvcut):
                mshape='+'
                mcolor='black'
                mzorder=2
            if (np.isnan(RV[yy[x]])==False) & (np.abs(RV[yy[x]]-Gvrpmllpmbb[yy[x],0]) <= rvcut):
                medge='blue'
        ccc = ax1.scatter( spt[yy[x]] , W13[yy[x]] , \
                s=msize , c=mcolor , marker=mshape , edgecolors=medge , zorder=mzorder , \
                vmin=0.0 , vmax=vlim.value , cmap='cubehelix' , label='_nolabel' )

    temp1 = ax1.scatter([] , [] , c='white' , edgecolors='black', marker='o' , s=12**2 , label = 'RUWE < 1.2')
    temp2 = ax1.scatter([] , [] , c='white' , edgecolors='black', marker='s' , s=12**2 , label = 'RUWE >= 1.2')
    temp3 = ax1.scatter([] , [] , c='white' , edgecolors='blue' , marker='o' , s=12**2 , label = 'RV Comoving')
    temp4 = ax1.scatter([] , [] , c='black' , marker='+' , s=12**2 , label = 'RV Outlier')


    # Plot science target
    if (spt[yy2[0]] > 5):
        plt.plot(spt[yy2[0]] , W13[yy2[0]] , 'rx' , markersize=18 , mew=3 , markeredgecolor='red' , zorder=3 , label=targname )

    plt.legend(fontsize=16 , loc='upper left')
    cb = plt.colorbar(ccc , ax=ax1)
    cb.set_label(label='Velocity Offset (km/s)',fontsize=14)
    if (DoWISE == True): plt.savefig(figname , bbox_inches='tight', pad_inches=0.2 , dpi=200)
    if showplots == True: plt.show()
    plt.close('all')

    # Cross-reference with ROSAT

    v = Vizier(columns=["**", "+_R"] , catalog='J/A+A/588/A103/cat2rxs' )

    zz = np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) )
    yy = zz[0][np.argsort(sep3d[zz])]

    ROSATflux = np.empty([np.array(r['ra']).size])
    ROSATflux[:] = np.nan

    print('Searching on neighbors in ROSAT')
    for x in range(0 , np.array(yy).size):
        querycoord = SkyCoord((str(gaiacoord.ra[yy[x]].value) if (gaiacoord.ra[yy[x]].value > 0) else \
                     str(gaiacoord.ra[yy[x]].value+360.0)) , str(gaiacoord.dec[yy[x]].value) , \
                     unit=(u.deg,u.deg) , frame='icrs')
        print('ROSAT query ',x,' of ',np.array(yy).size, end='\r')
        if verbose == True: print('ROSAT query ',x,' of ',np.array(yy).size)
        if verbose == True: print(querycoord)
        if (DoROSAT == True): 
            rosatcat = v.query_region(querycoord , radius='0d1m0s' )
            if (len(rosatcat) > 0):
                rosatcat = rosatcat['J/A+A/588/A103/cat2rxs']
                if verbose == True: print(rosatcat)
                if ((np.where(rosatcat['CRate'] > -999)[0]).size > 0):
                    ww = np.where( (rosatcat['CRate'] == max(rosatcat['CRate'][np.where(rosatcat['CRate'] > -999)])))
                    ROSATflux[yy[x]] = rosatcat['CRate'][ww][0]
                if verbose == True: print(x,yy[x],ROSATflux[yy[x]])


    # Create output table with results
    print('Creating Output Tables with Results')
    if verbose == True: 
        print('Reminder, there were this many input entries: ',len(Gxyz[:,0]))
        print('The search radius in velocity space is: ',vlim)
        print()

    zz = np.where( (sep3d.value < searchradpc.value) & (Gchi2 < vlim.value) )
    sortlist = np.argsort(sep3d[zz])
    yy = zz[0][sortlist]

    fmt1 = "%11.7f %11.7f %6.3f %6.3f %11.3f %8.4f %8.4f %8.2f %8.2f %8.2f %8.3f %4s %8.6f %6.2f %7.3f %7.3f %35s"
    fmt2 = "%11.7f %11.7f %6.3f %6.3f %11.3f %8.4f %8.4f %8.2f %8.2f %8.2f %8.3f %4s %8.6f %6.2f %7.3f %7.3f %35s"
    filename=outdir + targname.replace(" ", "") + ".txt"
    
    warnings.filterwarnings("ignore",category=UserWarning)
    if verbose == True: 
        print('Also creating SIMBAD query table')
        print(filename)
        print('RA            DEC        Gmag   Bp-Rp  Voff(km/s) Sep(deg)   3D(pc) Vr(pred)  Vr(obs)    Vrerr Plx(mas)  SpT    FnuvJ  W1-W3    RUWE  XCrate RVsrc')
    with open(filename,'w') as file1:
        file1.write('RA            DEC        Gmag   Bp-Rp  Voff(km/s) Sep(deg)   3D(pc) Vr(pred)  Vr(obs)    Vrerr Plx(mas)  SpT    FnuvJ  W1-W3    RUWE  XCrate RVsrc \n')
    for x in range(0 , np.array(zz).size):
            if verbose == True:
                print(fmt1 % (gaiacoord.ra[yy[x]].value,gaiacoord.dec[yy[x]].value, \
                  r['phot_g_mean_mag'][yy[x]], r['bp_rp'][yy[x]] , \
                  Gchi2[yy[x]] , sep[yy[x]].value , sep3d[yy[x]].value , \
                  Gvrpmllpmbb[yy[x],0] , RV[yy[x]] , RVerr[yy[x]] , \
                  r['parallax'][yy[x]], \
                  sptstring[yy[x]] , fnuvj[yy[x]] , W13[yy[x]] , r['ruwe'][yy[x]] , ROSATflux[yy[x]] , RVsrc[yy[x]]) )
            with open(filename,'a') as file1:
                  file1.write(fmt2 % (gaiacoord.ra[yy[x]].value,gaiacoord.dec[yy[x]].value, \
                      r['phot_g_mean_mag'][yy[x]], r['bp_rp'][yy[x]] , \
                      Gchi2[yy[x]],sep[yy[x]].value,sep3d[yy[x]].value , \
                      Gvrpmllpmbb[yy[x],0] , RV[yy[x]] , RVerr[yy[x]] , \
                      r['parallax'][yy[x]], \
                      sptstring[yy[x]] , fnuvj[yy[x]] , W13[yy[x]] , r['ruwe'][yy[x]] , ROSATflux[yy[x]] , RVsrc[yy[x]]) )
                  file1.write("\n")

    filename=outdir + targname.replace(" ", "") + ".csv"
    with open(filename,mode='w') as result_file:
        wr = csv.writer(result_file)
        wr.writerow(['RA','DEC','Gmag','Bp-Rp','Voff(km/s)','Sep(deg)','3D(pc)','Vr(pred)','Vr(obs)','Vrerr','Plx(mas)','SpT','FnuvJ','W1-W3','RUWE','XCrate','RVsrc'])
        for x in range(0 , np.array(zz).size):
            wr.writerow(( "{0:.7f}".format(gaiacoord.ra[yy[x]].value) , "{0:.7f}".format(gaiacoord.dec[yy[x]].value) , \
                      "{0:.3f}".format(r['phot_g_mean_mag'][yy[x]]), "{0:.3f}".format(r['bp_rp'][yy[x]]) , \
                      "{0:.3f}".format(Gchi2[yy[x]]) , "{0:.4f}".format(sep[yy[x]].value) , "{0:.4f}".format(sep3d[yy[x]].value) , \
                      "{0:.2f}".format(Gvrpmllpmbb[yy[x],0]) , "{0:.2f}".format(RV[yy[x]]) , "{0:.2f}".format(RVerr[yy[x]]) , \
                      "{0:.3f}".format(r['parallax'][yy[x]]), \
                      sptstring[yy[x]] , "{0:.6f}".format(fnuvj[yy[x]]) , "{0:.2f}".format(W13[yy[x]]) , \
                      "{0:.3f}".format(r['ruwe'][yy[x]]) , "{0:.3f}".format(ROSATflux[yy[x]]) , RVsrc[yy[x]].strip()) )

    if verbose == True: print('All output can be found in ' + outdir)



    return outdir
コード例 #29
0
def make_rcsample(parser):
    options, args = parser.parse_args()
    savefilename = options.savefilename
    if savefilename is None:
        #Create savefilename if not given
        savefilename = os.path.join(
            appath._APOGEE_DATA, 'rcsample_' + appath._APOGEE_REDUX + '.fits')
        print("Saving to %s ..." % savefilename)
    #Read the base-sample
    data = apread.allStar(adddist=_ADDHAYDENDIST, rmdups=options.rmdups)
    #Remove a bunch of fields that we do not want to keep
    data = esutil.numpy_util.remove_fields(data, [
        'TARGET_ID', 'FILE', 'AK_WISE', 'SFD_EBV', 'SYNTHVHELIO_AVG',
        'SYNTHVSCATTER', 'SYNTHVERR', 'SYNTHVERR_MED', 'RV_TEFF', 'RV_LOGG',
        'RV_FEH', 'RV_ALPHA', 'RV_CARB', 'RV_CCFWHM', 'RV_AUTOFWHM',
        'SYNTHSCATTER', 'STABLERV_CHI2', 'STABLERV_RCHI2',
        'STABLERV_CHI2_PROB', 'CHI2_THRESHOLD', 'APSTAR_VERSION',
        'ASPCAP_VERSION', 'RESULTS_VERSION', 'WASH_M', 'WASH_M_ERR', 'WASH_T2',
        'WASH_T2_ERR', 'DDO51', 'DDO51_ERR', 'IRAC_3_6', 'IRAC_3_6_ERR',
        'IRAC_4_5', 'IRAC_4_5_ERR', 'IRAC_5_8', 'IRAC_5_8_ERR', 'IRAC_8_0',
        'IRAC_8_0_ERR', 'WISE_4_5', 'WISE_4_5_ERR', 'TARG_4_5', 'TARG_4_5_ERR',
        'WASH_DDO51_GIANT_FLAG', 'WASH_DDO51_STAR_FLAG', 'REDUCTION_ID',
        'SRC_H', 'PM_SRC'
    ])
    if not appath._APOGEE_REDUX.lower() == 'current' \
            and not 'l30' in appath._APOGEE_REDUX \
            and int(appath._APOGEE_REDUX[1:]) < 500:
        data = esutil.numpy_util.remove_fields(data, ['ELEM'])
    #Select red-clump stars
    jk = data['J0'] - data['K0']
    z = isodist.FEH2Z(data['METALS'], zsolar=0.017)
    if 'l30' in appath._APOGEE_REDUX:
        logg = data['LOGG']
    elif appath._APOGEE_REDUX.lower() == 'current' \
            or int(appath._APOGEE_REDUX[1:]) > 600:
        from apogee.tools import paramIndx
        if False:
            #Use my custom logg calibration that's correct for the RC
            logg = (1. - 0.042) * data['FPARAM'][:, paramIndx('logg')] - 0.213
            lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1.
            logg[lowloggindx] = data['FPARAM'][lowloggindx,
                                               paramIndx('logg')] - 0.255
            hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8
            logg[hiloggindx] = data['FPARAM'][hiloggindx,
                                              paramIndx('logg')] - 0.3726
        else:
            #Use my custom logg calibration that's correct on average
            logg = (1. + 0.03) * data['FPARAM'][:, paramIndx('logg')] - 0.37
            lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1.
            logg[lowloggindx] = data['FPARAM'][lowloggindx,
                                               paramIndx('logg')] - 0.34
            hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8
            logg[hiloggindx] = data['FPARAM'][hiloggindx,
                                              paramIndx('logg')] - 0.256
    else:
        logg = data['LOGG']
    indx= (jk < 0.8)*(jk >= 0.5)\
        *(z <= 0.06)\
        *(z <= rcmodel.jkzcut(jk,upper=True))\
        *(z >= rcmodel.jkzcut(jk))\
        *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\
        *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
    data = data[indx]
    #Add more aggressive flag cut
    data = esutil.numpy_util.add_fields(data, [('ADDL_LOGG_CUT', numpy.int32)])
    data['ADDL_LOGG_CUT'] = (
        (data['TEFF'] - 4800.) / 1000. + 2.75) > data['LOGG']
    if options.loggcut:
        data = data[data['ADDL_LOGG_CUT'] == 1]
    print("Making catalog of %i objects ..." % len(data))
    #Add distances
    data = esutil.numpy_util.add_fields(data, [('RC_DIST', float),
                                               ('RC_DM', float),
                                               ('RC_GALR', float),
                                               ('RC_GALPHI', float),
                                               ('RC_GALZ', float)])
    rcd = rcmodel.rcdist()
    jk = data['J0'] - data['K0']
    z = isodist.FEH2Z(data['METALS'], zsolar=0.017)
    data['RC_DIST'] = rcd(jk, z, appmag=data['K0']) * options.distfac
    data['RC_DM'] = 5. * numpy.log10(data['RC_DIST']) + 10.
    XYZ = bovy_coords.lbd_to_XYZ(data['GLON'],
                                 data['GLAT'],
                                 data['RC_DIST'],
                                 degree=True)
    R, phi, Z = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0],
                                             XYZ[:, 1],
                                             XYZ[:, 2],
                                             Xsun=8.,
                                             Zsun=0.025)
    data['RC_GALR'] = R
    data['RC_GALPHI'] = phi
    data['RC_GALZ'] = Z
    #Save
    fitsio.write(savefilename, data, clobber=True)
    # Add Tycho-2 matches
    if options.tyc2:
        data = esutil.numpy_util.add_fields(data, [('TYC2MATCH', numpy.int32),
                                                   ('TYC1', numpy.int32),
                                                   ('TYC2', numpy.int32),
                                                   ('TYC3', numpy.int32)])
        data['TYC2MATCH'] = 0
        data['TYC1'] = -1
        data['TYC2'] = -1
        data['TYC3'] = -1
        # Write positions
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=2', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:Tycho2',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Directly match on input RA
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           usecols=(1, 2, 7, 8, 9))
        iis = numpy.arange(len(data))
        mai = [iis[data['RA'] == ma[ii, 0]][0] for ii in range(len(ma))]
        data['TYC2MATCH'][mai] = 1
        data['TYC1'][mai] = ma[:, 2]
        data['TYC2'][mai] = ma[:, 3]
        data['TYC3'][mai] = ma[:, 4]
        os.remove(posfilename)
        os.remove(resultfilename)
    if not options.nostat:
        #Determine statistical sample and add flag
        apo = apogee.select.apogeeSelect()
        statIndx = apo.determine_statistical(data)
        mainIndx = apread.mainIndx(data)
        data = esutil.numpy_util.add_fields(data, [('STAT', numpy.int32),
                                                   ('INVSF', float)])
        data['STAT'] = 0
        data['STAT'][statIndx * mainIndx] = 1
        for ii in range(len(data)):
            if (statIndx * mainIndx)[ii]:
                data['INVSF'][ii] = 1. / apo(data['LOCATION_ID'][ii],
                                             data['H'][ii])
            else:
                data['INVSF'][ii] = -1.
    if options.nopm:
        fitsio.write(savefilename, data, clobber=True)
        return None
    #Get proper motions, in a somewhat roundabout way
    pmfile = savefilename.split('.')[0] + '_pms.fits'
    if os.path.exists(pmfile):
        pmdata = fitsio.read(pmfile, 1)
    else:
        pmdata = numpy.recarray(
            len(data),
            formats=['f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'i4'],
            names=[
                'RA', 'DEC', 'PMRA', 'PMDEC', 'PMRA_ERR', 'PMDEC_ERR',
                'PMMATCH'
            ])
        # Write positions, again ...
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=4', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:UCAC4',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           converters={
                               15: lambda s: float(s.strip() or -9999),
                               16: lambda s: float(s.strip() or -9999),
                               17: lambda s: float(s.strip() or -9999),
                               18: lambda s: float(s.strip() or -9999)
                           },
                           usecols=(4, 5, 15, 16, 17, 18))
        h = esutil.htm.HTM()
        m1, m2, d12 = h.match(data['RA'],
                              data['DEC'],
                              ma[:, 0],
                              ma[:, 1],
                              4. / 3600.,
                              maxmatch=1)
        pmdata['PMMATCH'] = 0
        pmdata['RA'] = data['RA']
        pmdata['DEC'] = data['DEC']
        pmdata['PMMATCH'][m1] = 1
        pmdata['PMRA'][m1] = ma[m2, 2]
        pmdata['PMDEC'][m1] = ma[m2, 3]
        pmdata['PMRA_ERR'][m1] = ma[m2, 4]
        pmdata['PMDEC_ERR'][m1] = ma[m2, 5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitsio.write(pmfile, pmdata, clobber=True)
        #To make sure we're using the same format below
        pmdata = fitsio.read(pmfile, 1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions
    try:  #These already exist currently, but may not always exist
        data = esutil.numpy_util.remove_fields(data, ['PMRA', 'PMDEC'])
    except ValueError:
        pass
    data = esutil.numpy_util.add_fields(data, [('PMRA', numpy.float),
                                               ('PMDEC', numpy.float),
                                               ('PMRA_ERR', numpy.float),
                                               ('PMDEC_ERR', numpy.float),
                                               ('PMMATCH', numpy.int32)])
    data['PMMATCH'] = 0
    h = esutil.htm.HTM()
    m1, m2, d12 = h.match(pmdata['RA'],
                          pmdata['DEC'],
                          data['RA'],
                          data['DEC'],
                          2. / 3600.,
                          maxmatch=1)
    data['PMRA'][m2] = pmdata['PMRA'][m1]
    data['PMDEC'][m2] = pmdata['PMDEC'][m1]
    data['PMRA_ERR'][m2] = pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR'][m2] = pmdata['PMDEC_ERR'][m1]
    data['PMMATCH'][m2] = pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx = data['PMMATCH'] == 1
    data['PMRA'][True - pmindx] = -9999.99
    data['PMDEC'][True - pmindx] = -9999.99
    data['PMRA_ERR'][True - pmindx] = -9999.99
    data['PMDEC_ERR'][True - pmindx] = -9999.99
    #Calculate Galactocentric velocities
    data = esutil.numpy_util.add_fields(data, [('GALVR', numpy.float),
                                               ('GALVT', numpy.float),
                                               ('GALVZ', numpy.float)])
    lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True)
    XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0],
                                 lb[:, 1],
                                 data['RC_DIST'],
                                 degree=True)
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],
                                                 data['PMDEC'],
                                                 data['RA'],
                                                 data['DEC'],
                                                 degree=True)
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              lb[:, 0],
                                              lb[:, 1],
                                              data['RC_DIST'],
                                              degree=True)
    vR, vT, vZ = bovy_coords.vxvyvz_to_galcencyl(
        vxvyvz[:, 0],
        vxvyvz[:, 1],
        vxvyvz[:, 2],
        8. - XYZ[:, 0],
        XYZ[:, 1],
        XYZ[:, 2] + 0.025,
        vsun=[-11.1, 30.24 * 8.,
              7.25])  #Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR'] = vR
    data['GALVT'] = vT
    data['GALVZ'] = vZ
    data['GALVR'][True - pmindx] = -9999.99
    data['GALVT'][True - pmindx] = -9999.99
    data['GALVZ'][True - pmindx] = -9999.99
    #Get PPMXL proper motions, in a somewhat roundabout way
    pmfile = savefilename.split('.')[0] + '_pms_ppmxl.fits'
    if os.path.exists(pmfile):
        pmdata = fitsio.read(pmfile, 1)
    else:
        pmdata = numpy.recarray(
            len(data),
            formats=['f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'i4'],
            names=[
                'RA', 'DEC', 'PMRA', 'PMDEC', 'PMRA_ERR', 'PMDEC_ERR',
                'PMMATCH'
            ])
        # Write positions, again ...
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=4', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:PPMXL',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           converters={
                               15: lambda s: float(s.strip() or -9999),
                               16: lambda s: float(s.strip() or -9999),
                               17: lambda s: float(s.strip() or -9999),
                               18: lambda s: float(s.strip() or -9999)
                           },
                           usecols=(4, 5, 15, 16, 19, 20))
        h = esutil.htm.HTM()
        m1, m2, d12 = h.match(data['RA'],
                              data['DEC'],
                              ma[:, 0],
                              ma[:, 1],
                              4. / 3600.,
                              maxmatch=1)
        pmdata['PMMATCH'] = 0
        pmdata['RA'] = data['RA']
        pmdata['DEC'] = data['DEC']
        pmdata['PMMATCH'][m1] = 1
        pmdata['PMRA'][m1] = ma[m2, 2]
        pmdata['PMDEC'][m1] = ma[m2, 3]
        pmdata['PMRA_ERR'][m1] = ma[m2, 4]
        pmdata['PMDEC_ERR'][m1] = ma[m2, 5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitsio.write(pmfile, pmdata, clobber=True)
        #To make sure we're using the same format below
        pmdata = fitsio.read(pmfile, 1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions to ppmxl
    data = esutil.numpy_util.add_fields(data,
                                        [('PMRA_PPMXL', numpy.float),
                                         ('PMDEC_PPMXL', numpy.float),
                                         ('PMRA_ERR_PPMXL', numpy.float),
                                         ('PMDEC_ERR_PPMXL', numpy.float),
                                         ('PMMATCH_PPMXL', numpy.int32)])
    data['PMMATCH_PPMXL'] = 0
    h = esutil.htm.HTM()
    m1, m2, d12 = h.match(pmdata['RA'],
                          pmdata['DEC'],
                          data['RA'],
                          data['DEC'],
                          2. / 3600.,
                          maxmatch=1)
    data['PMRA_PPMXL'][m2] = pmdata['PMRA'][m1]
    data['PMDEC_PPMXL'][m2] = pmdata['PMDEC'][m1]
    data['PMRA_ERR_PPMXL'][m2] = pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR_PPMXL'][m2] = pmdata['PMDEC_ERR'][m1]
    data['PMMATCH_PPMXL'][m2] = pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx = data['PMMATCH_PPMXL'] == 1
    data['PMRA_PPMXL'][True - pmindx] = -9999.99
    data['PMDEC_PPMXL'][True - pmindx] = -9999.99
    data['PMRA_ERR_PPMXL'][True - pmindx] = -9999.99
    data['PMDEC_ERR_PPMXL'][True - pmindx] = -9999.99
    #Calculate Galactocentric velocities
    data = esutil.numpy_util.add_fields(data, [('GALVR_PPMXL', numpy.float),
                                               ('GALVT_PPMXL', numpy.float),
                                               ('GALVZ_PPMXL', numpy.float)])
    lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True)
    XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0],
                                 lb[:, 1],
                                 data['RC_DIST'],
                                 degree=True)
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_PPMXL'],
                                                 data['PMDEC_PPMXL'],
                                                 data['RA'],
                                                 data['DEC'],
                                                 degree=True)
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              lb[:, 0],
                                              lb[:, 1],
                                              data['RC_DIST'],
                                              degree=True)
    vR, vT, vZ = bovy_coords.vxvyvz_to_galcencyl(
        vxvyvz[:, 0],
        vxvyvz[:, 1],
        vxvyvz[:, 2],
        8. - XYZ[:, 0],
        XYZ[:, 1],
        XYZ[:, 2] + 0.025,
        vsun=[-11.1, 30.24 * 8.,
              7.25])  #Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR_PPMXL'] = vR
    data['GALVT_PPMXL'] = vT
    data['GALVZ_PPMXL'] = vZ
    data['GALVR_PPMXL'][True - pmindx] = -9999.99
    data['GALVT_PPMXL'][True - pmindx] = -9999.99
    data['GALVZ_PPMXL'][True - pmindx] = -9999.99
    #Save
    fitsio.write(savefilename, data, clobber=True)
    return None
コード例 #30
0
def generate(locations,
             type='exp',
             sample='lowlow',
             extmap='green15',
             nls=101,
             nmock=1000,
             H0=-1.49,
             _dmapg15=None,             
             ncpu=1):
    """
    NAME:
       generate
    PURPOSE:
       generate mock data following a given density
    INPUT:
       locations - locations to be included in the sample
       type= ('exp') type of density profile to sample from
       sample= ('lowlow') for selecting mock parameters
       extmap= ('green15') extinction map to use ('marshall06' and others use Green15 to fill in unobserved regions)
       nls= (101) number of longitude bins to use for each field
       nmock= (1000) number of mock data points to generate
       H0= (-1.49) absolute magnitude (can be array w/ sampling spread)
       ncpu= (1) number of cpus to use to compute the probability
    OUTPUT:
       mockdata recarray with tags 'RC_GALR_H', 'RC_GALPHI_H', 'RC_GALZ_H'
    HISTORY:
       2015-04-03 - Written - Bovy (IAS)
    """
    if isinstance(H0,float): H0= [H0]
    # Setup the density function and its initial parameters
    rdensfunc= fitDens._setup_densfunc(type)
    mockparams= _setup_mockparams_densfunc(type,sample)
    densfunc= lambda x,y,z: rdensfunc(x,y,z,params=mockparams)   
    # Setup the extinction map
    global dmap
    global dmapg15
    if _dmapg15 is None: dmapg15= mwdust.Green15(filter='2MASS H')
    else: dmapg15= _dmapg15
    if isinstance(extmap,mwdust.DustMap3D.DustMap3D):
        dmap= extmap
    elif extmap.lower() == 'green15':
        dmap= dmapg15
    elif extmap.lower() == 'marshall06':
        dmap= mwdust.Marshall06(filter='2MASS H')
    elif extmap.lower() == 'sale14':
        dmap= mwdust.Sale14(filter='2MASS H')
    elif extmap.lower() == 'drimmel03':
        dmap= mwdust.Drimmel03(filter='2MASS H')
    # Use brute-force rejection sampling to make no approximations
    # First need to estimate the max probability to use in rejection;
    # Loop through all locations and compute sampling probability on grid in 
    # (l,b,D)
    # First restore the APOGEE selection function (assumed pre-computed)
    global apo
    selectFile= '../savs/selfunc-nospdata.sav'
    if os.path.exists(selectFile):
        with open(selectFile,'rb') as savefile:
            apo= pickle.load(savefile)
    # Now compute the necessary coordinate transformations and evaluate the 
    # maximum probability
    distmods= numpy.linspace(7.,15.5,301)
    ds= 10.**(distmods/5-2.)
    nbs= nls
    lnprobs= numpy.empty((len(locations),len(distmods),nbs,nls))
    radii= []
    lcens, bcens= [], []
    lnprobs= multi.parallel_map(lambda x: _calc_lnprob(locations[x],nls,nbs,
                                                       ds,distmods,
                                                       H0,
                                                       densfunc),
                                range(len(locations)),
                                numcores=numpy.amin([len(locations),
                                                     multiprocessing.cpu_count(),ncpu]))
    lnprobs= numpy.array(lnprobs)
    for ll, loc in enumerate(locations):
        lcen, bcen= apo.glonGlat(loc)
        rad= apo.radius(loc)
        radii.append(rad) # save for later
        lcens.append(lcen[0])
        bcens.append(bcen[0])
    maxp= (numpy.exp(numpy.nanmax(lnprobs))-10.**-8.)*1.1 # Just to be sure
    # Now generate mock data using rejection sampling
    nout= 0
    arlocations= numpy.array(locations)
    arradii= numpy.array(radii)
    arlcens= numpy.array(lcens)
    arbcens= numpy.array(bcens)
    out= numpy.recarray((nmock,),
                        dtype=[('RC_DIST_H','f8'),
                               ('RC_DM_H','f8'),
                               ('RC_GALR_H','f8'),
                               ('RC_GALPHI_H','f8'),
                               ('RC_GALZ_H','f8')])
    while nout < nmock:
        nnew= 2*(nmock-nout)
        # nnew new locations
        locIndx= numpy.floor(numpy.random.uniform(size=nnew)*len(locations)).astype('int')
        newlocations= arlocations[locIndx]
        # Point within these locations
        newds_coord= numpy.random.uniform(size=nnew)
        newds= 10.**((newds_coord*(numpy.amax(distmods)-numpy.amin(distmods))\
            +numpy.amin(distmods))/5.-2.)
        newdls_coord= numpy.random.uniform(size=nnew)
        newdls= newdls_coord*2.*arradii[locIndx]\
            -arradii[locIndx]
        newdbs_coord= numpy.random.uniform(size=nnew)
        newdbs= newdbs_coord*2.*arradii[locIndx]\
            -arradii[locIndx]
        newr2s= newdls**2.+newdbs**2.
        keepIndx= newr2s < arradii[locIndx]**2.
        newlocations= newlocations[keepIndx]
        newds_coord= newds_coord[keepIndx]
        newdls_coord= newdls_coord[keepIndx]
        newdbs_coord= newdbs_coord[keepIndx]
        newds= newds[keepIndx]
        newdls= newdls[keepIndx]
        newdbs= newdbs[keepIndx]
        newls= newdls+arlcens[locIndx][keepIndx]
        newbs= newdbs+arbcens[locIndx][keepIndx]
        # Reject?
        tps= numpy.zeros_like(newds)
        for nloc in list(set(newlocations)):
            lindx= newlocations == nloc
            pindx= arlocations == nloc
            coord= numpy.array([newds_coord[lindx]*(len(distmods)-1.),
                                newdbs_coord[lindx]*(nbs-1.),
                                newdls_coord[lindx]*(nls-1.)])
            tps[lindx]= \
                numpy.exp(ndimage.interpolation.map_coordinates(\
                    lnprobs[pindx][0],
                    coord,cval=-10.,
                    order=1))-10.**-8.
        XYZ= bovy_coords.lbd_to_XYZ(newls,newbs,newds,degree=True)
        Rphiz= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],XYZ[:,1],XYZ[:,2],
                                            Xsun=define_rcsample._R0,
                                            Ysun=0.,
                                            Zsun=define_rcsample._Z0)
        testp= numpy.random.uniform(size=len(newds))*maxp
        keepIndx= tps > testp 
        if numpy.sum(keepIndx) > nmock-nout:
            rangeIndx= numpy.zeros(len(keepIndx),dtype='int')
            rangeIndx[keepIndx]= numpy.arange(numpy.sum(keepIndx))
            keepIndx*= (rangeIndx < nmock-nout)
        out['RC_DIST_H'][nout:nout+numpy.sum(keepIndx)]= newds[keepIndx]
        out['RC_DM_H'][nout:nout+numpy.sum(keepIndx)]= newds_coord[keepIndx]*(numpy.amax(distmods)-numpy.amin(distmods))\
            +numpy.amin(distmods)
        out['RC_GALR_H'][nout:nout+numpy.sum(keepIndx)]= Rphiz[0][keepIndx]
        out['RC_GALPHI_H'][nout:nout+numpy.sum(keepIndx)]= Rphiz[1][keepIndx]
        out['RC_GALZ_H'][nout:nout+numpy.sum(keepIndx)]= Rphiz[2][keepIndx]
        nout= nout+numpy.sum(keepIndx)
    return (out,lnprobs)
コード例 #31
0
ファイル: make_rcsample.py プロジェクト: jls713/apogee
def make_rcsample(parser):
    options,args= parser.parse_args()
    savefilename= options.savefilename
    if savefilename is None:
        #Create savefilename if not given
        savefilename= os.path.join(appath._APOGEE_DATA,
                                   'rcsample_'+appath._APOGEE_REDUX+'.fits')
        print "Saving to %s ..." % savefilename
    #Read the base-sample
    data= apread.allStar(adddist=_ADDHAYDENDIST,rmdups=options.rmdups)
    #Remove a bunch of fields that we do not want to keep
    data= esutil.numpy_util.remove_fields(data,
                                          ['TARGET_ID',
                                           'FILE',
                                           'AK_WISE',
                                           'SFD_EBV',
                                           'SYNTHVHELIO_AVG',
                                           'SYNTHVSCATTER',
                                           'SYNTHVERR',
                                           'SYNTHVERR_MED',
                                           'RV_TEFF',
                                           'RV_LOGG',
                                           'RV_FEH',
                                           'RV_CCFWHM',
                                           'RV_AUTOFWHM',
                                           'SYNTHSCATTER',
                                           'CHI2_THRESHOLD',
                                           'APSTAR_VERSION',
                                           'ASPCAP_VERSION',
                                           'RESULTS_VERSION',
                                           'REDUCTION_ID',
                                           'SRC_H',
                                           'PM_SRC'])
    if not appath._APOGEE_REDUX.lower() == 'current' \
            and int(appath._APOGEE_REDUX[1:]) < 500:
        data= esutil.numpy_util.remove_fields(data,
                                              ['ELEM'])
    #Select red-clump stars
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    if appath._APOGEE_REDUX.lower() == 'current' \
            or int(appath._APOGEE_REDUX[1:]) > 600:
        from apogee.tools import paramIndx
        if False:
            #Use my custom logg calibration that's correct for the RC
            logg= (1.-0.042)*data['FPARAM'][:,paramIndx('logg')]-0.213
            lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1.
            logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.255
            hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8
            logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.3726
        else:
            #Use my custom logg calibration that's correct on average
            logg= (1.+0.03)*data['FPARAM'][:,paramIndx('logg')]-0.37
            lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1.
            logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.34
            hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8
            logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.256
    else:
        logg= data['LOGG']
    indx= (jk < 0.8)*(jk >= 0.5)\
        *(z <= 0.06)\
        *(z <= rcmodel.jkzcut(jk,upper=True))\
        *(z >= rcmodel.jkzcut(jk))\
        *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\
        *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
    data= data[indx]
    #Add more aggressive flag cut
    data= esutil.numpy_util.add_fields(data,[('ADDL_LOGG_CUT',numpy.int32)])
    data['ADDL_LOGG_CUT']= ((data['TEFF']-4800.)/1000.+2.75) > data['LOGG']
    if options.loggcut:
        data= data[data['ADDL_LOGG_CUT'] == 1]
    print "Making catalog of %i objects ..." % len(data)
    #Add distances
    data= esutil.numpy_util.add_fields(data,[('RC_DIST', float),
                                             ('RC_DM', float),
                                             ('RC_GALR', float),
                                             ('RC_GALPHI', float),
                                             ('RC_GALZ', float)])
    rcd= rcmodel.rcdist()
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    data['RC_DIST']= rcd(jk,z,appmag=data['K0'])*options.distfac
    data['RC_DM']= 5.*numpy.log10(data['RC_DIST'])+10.
    XYZ= bovy_coords.lbd_to_XYZ(data['GLON'],
                                data['GLAT'],
                                data['RC_DIST'],
                                degree=True)
    R,phi,Z= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],
                                          XYZ[:,1],
                                          XYZ[:,2],
                                          Xsun=8.,Zsun=0.025)
    data['RC_GALR']= R
    data['RC_GALPHI']= phi
    data['RC_GALZ']= Z
    #Save
    fitsio.write(savefilename,data,clobber=True)
    if not options.nostat:
        #Determine statistical sample and add flag
        apo= apogee.select.apogeeSelect()
        statIndx= apo.determine_statistical(data)
        mainIndx= apread.mainIndx(data)
        data= esutil.numpy_util.add_fields(data,[('STAT',numpy.int32),
                                                 ('INVSF',float)])
        data['STAT']= 0
        data['STAT'][statIndx*mainIndx]= 1
        for ii in range(len(data)):
            if (statIndx*mainIndx)[ii]:
                data['INVSF'][ii]= 1./apo(data['LOCATION_ID'][ii],
                                          data['H'][ii])
            else:
                data['INVSF'][ii]= -1.
    if options.nopm:
        fitsio.write(savefilename,data,clobber=True)       
        return None
    #Get proper motions
    from astroquery.vizier import Vizier
    import astroquery
    from astropy import units as u
    import astropy.coordinates as coord
    pmfile= savefilename.split('.')[0]+'_pms.fits'
    if os.path.exists(pmfile):
        pmdata= fitsio.read(pmfile,1)
    else:
        pmdata= numpy.recarray(len(data),
                               formats=['f8','f8','f8','f8','f8','f8','i4'],
                               names=['RA','DEC','PMRA','PMDEC',
                                      'PMRA_ERR','PMDEC_ERR','PMMATCH'])
        rad= u.Quantity(4./3600.,u.degree)
        v= Vizier(columns=['RAJ2000','DEJ2000','pmRA','pmDE','e_pmRA','e_pmDE'])
        for ii in range(len(data)):
            #if ii > 100: break
            sys.stdout.write('\r'+"Getting pm data for point %i / %i" % (ii+1,len(data)))
            sys.stdout.flush()
            pmdata.RA[ii]= data['RA'][ii]
            pmdata.DEC[ii]= data['DEC'][ii]
            co= coord.ICRS(ra=data['RA'][ii],
                           dec=data['DEC'][ii],
                           unit=(u.degree, u.degree))
            trying= True
            while trying:
                try:
                    tab= v.query_region(co,rad,catalog='I/322') #UCAC-4 catalog
                except astroquery.exceptions.TimeoutError:
                    pass
                else:
                    trying= False
            if len(tab) == 0:
                pmdata.PMMATCH[ii]= 0
                print "Didn't find a match for %i ..." % ii
                continue
            else:
                pmdata.PMMATCH[ii]= len(tab)
                if len(tab[0]['pmRA']) > 1:
                    print "Found more than 1 match for %i ..." % ii
            try:
                pmdata.PMRA[ii]= float(tab[0]['pmRA'])
            except TypeError:
                jj= 1
                while len(tab[0]['pmRA']) > 1 and jj < 4: 
                    trad= u.Quantity((4.-jj)/3600.,u.degree)
                    trying= True
                    while trying:
                        try:
                            tab= v.query_region(co,trad,catalog='I/322') #UCAC-4 catalog
                        except astroquery.exceptions.TimeoutError:
                            pass
                        else:
                            trying= False
                    jj+= 1
                if len(tab) == 0:
                    pmdata.PMMATCH[ii]= 0
                    print "Didn't find a unambiguous match for %i ..." % ii
                    continue               
                pmdata.PMRA[ii]= float(tab[0]['pmRA'])
            pmdata.PMDEC[ii]= float(tab[0]['pmDE'])
            pmdata.PMRA_ERR[ii]= float(tab[0]['e_pmRA'])
            pmdata.PMDEC_ERR[ii]= float(tab[0]['e_pmDE'])
            if numpy.isnan(float(tab[0]['pmRA'])): pmdata.PMMATCH[ii]= 0
        sys.stdout.write('\r'+_ERASESTR+'\r')
        sys.stdout.flush()
        fitsio.write(pmfile,pmdata,clobber=True)
        #To make sure we're using the same format below
        pmdata= fitsio.read(pmfile,1)
    #Match proper motions
    try: #These already exist currently, but may not always exist
        data= esutil.numpy_util.remove_fields(data,['PMRA','PMDEC'])
    except ValueError:
        pass
    data= esutil.numpy_util.add_fields(data,[('PMRA', numpy.float),
                                             ('PMDEC', numpy.float),
                                             ('PMRA_ERR', numpy.float),
                                             ('PMDEC_ERR', numpy.float),
                                             ('PMMATCH',numpy.int32)])
    data['PMMATCH']= 0
    h=esutil.htm.HTM()
    m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'],
                        data['RA'],data['DEC'],
                        2./3600.,maxmatch=1)
    data['PMRA'][m2]= pmdata['PMRA'][m1]
    data['PMDEC'][m2]= pmdata['PMDEC'][m1]
    data['PMRA_ERR'][m2]= pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR'][m2]= pmdata['PMDEC_ERR'][m1]
    data['PMMATCH'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx= data['PMMATCH'] == 1
    data['PMRA'][True-pmindx]= -9999.99
    data['PMDEC'][True-pmindx]= -9999.99
    data['PMRA_ERR'][True-pmindx]= -9999.99
    data['PMDEC_ERR'][True-pmindx]= -9999.99
    #Calculate Galactocentric velocities
    data= esutil.numpy_util.add_fields(data,[('GALVR', numpy.float),
                                             ('GALVT', numpy.float),
                                             ('GALVZ', numpy.float)])
    lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True)
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],data['PMDEC'],
                                                data['RA'],data['DEC'],
                                                degree=True)
    vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                             pmllpmbb[:,0],
                                             pmllpmbb[:,1],
                                             lb[:,0],lb[:,1],data['RC_DIST'],
                                             degree=True)
    vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0],
                                                vxvyvz[:,1],
                                                vxvyvz[:,2],
                                                8.-XYZ[:,0],
                                                XYZ[:,1],
                                                XYZ[:,2]+0.025,
                                                vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR']= vR
    data['GALVT']= vT
    data['GALVZ']= vZ
    data['GALVR'][True-pmindx]= -9999.99
    data['GALVT'][True-pmindx]= -9999.99
    data['GALVZ'][True-pmindx]= -9999.99
    #Get proper motions
    pmfile= savefilename.split('.')[0]+'_pms_ppmxl.fits'
    if os.path.exists(pmfile):
        pmdata= fitsio.read(pmfile,1)
    else:
        pmdata= numpy.recarray(len(data),
                               formats=['f8','f8','f8','f8','f8','f8','i4'],
                               names=['RA','DEC','PMRA','PMDEC',
                                      'PMRA_ERR','PMDEC_ERR','PMMATCH'])
        rad= u.Quantity(4./3600.,u.degree)
        v= Vizier(columns=['RAJ2000','DEJ2000','pmRA','pmDE','e_pmRA','e_pmDE'])
        for ii in range(len(data)):
            #if ii > 100: break
            sys.stdout.write('\r'+"Getting pm data for point %i / %i" % (ii+1,len(data)))
            sys.stdout.flush()
            pmdata.RA[ii]= data['RA'][ii]
            pmdata.DEC[ii]= data['DEC'][ii]
            co= coord.ICRS(ra=data['RA'][ii],
                           dec=data['DEC'][ii],
                           unit=(u.degree, u.degree))
            trying= True
            while trying:
                try:
                    tab= v.query_region(co,rad,catalog='I/317') #PPMXL catalog
                except astroquery.exceptions.TimeoutError:
                    pass
                else:
                    trying= False
            if len(tab) == 0:
                pmdata.PMMATCH[ii]= 0
                print "Didn't find a match for %i ..." % ii
                continue
            else:
                pmdata.PMMATCH[ii]= len(tab)
                if len(tab[0]['pmRA']) > 1:
                    pass
                    #print "Found more than 1 match for %i ..." % ii
            try:
                pmdata.PMRA[ii]= float(tab[0]['pmRA'])
            except TypeError:
                #Find nearest
                cosdists= numpy.zeros(len(tab[0]['pmRA']))
                for jj in range(len(tab[0]['pmRA'])):
                    cosdists[jj]= cos_sphere_dist(tab[0]['RAJ2000'][jj],
                                                  tab[0]['DEJ2000'][jj],
                                                  data['RA'][ii],
                                                  data['DEC'][ii])
                closest= numpy.argmax(cosdists)
                pmdata.PMRA[ii]= float(tab[0]['pmRA'][closest])
                pmdata.PMDEC[ii]= float(tab[0]['pmDE'][closest])
                pmdata.PMRA_ERR[ii]= float(tab[0]['e_pmRA'][closest])
                pmdata.PMDEC_ERR[ii]= float(tab[0]['e_pmDE'][closest])
                if numpy.isnan(float(tab[0]['pmRA'][closest])): pmdata.PMMATCH[ii]= 0
            else:
                pmdata.PMDEC[ii]= float(tab[0]['pmDE'])
                pmdata.PMRA_ERR[ii]= float(tab[0]['e_pmRA'])
                pmdata.PMDEC_ERR[ii]= float(tab[0]['e_pmDE'])
                if numpy.isnan(float(tab[0]['pmRA'])): pmdata.PMMATCH[ii]= 0
        sys.stdout.write('\r'+_ERASESTR+'\r')
        sys.stdout.flush()
        fitsio.write(pmfile,pmdata,clobber=True)
        #To make sure we're using the same format below
        pmdata= fitsio.read(pmfile,1)
    #Match proper motions to ppmxl
    data= esutil.numpy_util.add_fields(data,[('PMRA_PPMXL', numpy.float),
                                             ('PMDEC_PPMXL', numpy.float),
                                             ('PMRA_ERR_PPMXL', numpy.float),
                                             ('PMDEC_ERR_PPMXL', numpy.float),
                                             ('PMMATCH_PPMXL',numpy.int32)])
    data['PMMATCH_PPMXL']= 0
    h=esutil.htm.HTM()
    m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'],
                        data['RA'],data['DEC'],
                        2./3600.,maxmatch=1)
    data['PMRA_PPMXL'][m2]= pmdata['PMRA'][m1]
    data['PMDEC_PPMXL'][m2]= pmdata['PMDEC'][m1]
    data['PMRA_ERR_PPMXL'][m2]= pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR_PPMXL'][m2]= pmdata['PMDEC_ERR'][m1]
    data['PMMATCH_PPMXL'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx= data['PMMATCH_PPMXL'] == 1
    data['PMRA_PPMXL'][True-pmindx]= -9999.99
    data['PMDEC_PPMXL'][True-pmindx]= -9999.99
    data['PMRA_ERR_PPMXL'][True-pmindx]= -9999.99
    data['PMDEC_ERR_PPMXL'][True-pmindx]= -9999.99
    #Calculate Galactocentric velocities
    data= esutil.numpy_util.add_fields(data,[('GALVR_PPMXL', numpy.float),
                                             ('GALVT_PPMXL', numpy.float),
                                             ('GALVZ_PPMXL', numpy.float)])
    lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True)
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_PPMXL'],
                                                data['PMDEC_PPMXL'],
                                                data['RA'],data['DEC'],
                                                degree=True)
    vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                             pmllpmbb[:,0],
                                             pmllpmbb[:,1],
                                             lb[:,0],lb[:,1],data['RC_DIST'],
                                             degree=True)
    vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0],
                                                vxvyvz[:,1],
                                                vxvyvz[:,2],
                                                8.-XYZ[:,0],
                                                XYZ[:,1],
                                                XYZ[:,2]+0.025,
                                                vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR_PPMXL']= vR
    data['GALVT_PPMXL']= vT
    data['GALVZ_PPMXL']= vZ
    data['GALVR_PPMXL'][True-pmindx]= -9999.99
    data['GALVT_PPMXL'][True-pmindx]= -9999.99
    data['GALVZ_PPMXL'][True-pmindx]= -9999.99
    #Save
    fitsio.write(savefilename,data,clobber=True)
    return None
コード例 #32
0
def get_rgbsample(loggcut=[1.8, 3.0],
                  teffcut=[0, 10000],
                  add_ages=False,
                  agetype='Martig',
                  apply_corrections=False,
                  distance_correction=False,
                  verbose=False):
    """
	Get a clean sample of dr12 APOGEE data with Michael Haydens distances
	---
	INPUT:
		None
	OUTPUT:
		Clean rgb sample with added distances
	HISTORY:
		Started - Mackereth 02/06/16 
	"""
    #get the allStar catalogue using apogee python (exlude all bad flags etc)
    allStar = apread.allStar(rmcommissioning=True,
                             exclude_star_bad=True,
                             exclude_star_warn=True,
                             main=True,
                             ak=True,
                             adddist=False)
    #cut to a 'sensible' logg range (giants which are not too high on the RGB)
    allStar = allStar[(allStar['LOGG'] > loggcut[0])
                      & (allStar['LOGG'] < loggcut[1]) &
                      (allStar['TEFF'] > teffcut[0]) &
                      (allStar['TEFF'] < teffcut[1])]
    if verbose == True:
        print str(
            len(allStar
                )) + ' Stars before Distance catalogue join (after Log(g) cut)'
    #load the distance VAC
    dists = fits.open(catpath + 'DR12_DIST_R-GC.fits')[1].data
    #convert to astropy Table
    allStar_tab = Table(data=allStar)
    dists_tab = Table(data=dists)
    #join table
    tab = join(allStar_tab,
               dists_tab,
               keys='APOGEE_ID',
               uniq_col_name='{col_name}{table_name}',
               table_names=['', '2'])
    data = tab.as_array()
    data = esutil.numpy_util.add_fields(data, [('M_J', float), ('M_H', float),
                                               ('M_K', float),
                                               ('MH50_DIST', float),
                                               ('MH50_GALR', float),
                                               ('MH50_GALZ', float),
                                               ('MH50_GALPHI', float),
                                               ('AVG_ALPHAFE', float)])
    data['MH50_DIST'] = (10**((data['HAYDEN_DISTMOD_50'] + 5) / 5)) / 1e3

    if distance_correction == True:
        data['MH50_DIST'] *= 1.05
    XYZ = bovy_coords.lbd_to_XYZ(data['GLON'],
                                 data['GLAT'],
                                 data['MH50_DIST'],
                                 degree=True)
    RphiZ = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0],
                                         XYZ[:, 1],
                                         XYZ[:, 2],
                                         Xsun=8.,
                                         Zsun=0.025)
    data['MH50_GALR'] = RphiZ[:, 0]
    data['MH50_GALPHI'] = RphiZ[:, 1]
    data['MH50_GALZ'] = RphiZ[:, 2]
    data['M_J'] = data['J0'] - data['HAYDEN_DISTMOD_50']
    data['M_H'] = data['H0'] - data['HAYDEN_DISTMOD_50']
    data['M_K'] = data['K0'] - data['HAYDEN_DISTMOD_50']
    data['AVG_ALPHAFE'] = avg_alphafe_dr12(data)
    data[_FEHTAG] += -0.1
    #remove locations not in the apogee selection function (FIND OUT WHATS UP HERE)
    data = data[np.in1d(data['LOCATION_ID'], apo.list_fields())]
    # Remove locations outside of the Pan-STARRS dust map
    # In the Southern hemisphere
    data = data[data['LOCATION_ID'] != 4266]  #240,-18
    data = data[data['LOCATION_ID'] != 4331]  #5.5,-14.2
    data = data[data['LOCATION_ID'] != 4381]  #5.2,-12.2
    data = data[data['LOCATION_ID'] != 4332]  #1,-4
    data = data[data['LOCATION_ID'] != 4329]  #0,-5
    data = data[data['LOCATION_ID'] != 4351]  #0,-2
    data = data[data['LOCATION_ID'] != 4353]  #358,0
    data = data[data['LOCATION_ID'] != 4385]  #358.6,1.4
    # Close to the ecliptic pole where there's no data (is it the ecliptic pole?
    data = data[data['LOCATION_ID'] != 4528]  #120,30
    data = data[data['LOCATION_ID'] != 4217]  #123,22.4
    #remove any non-finite magnitudes
    data = data[np.isfinite(data['M_H'])]
    if verbose == True:
        print str(len(
            data)) + ' Stars with distance measures (and in good fields...)'
    if add_ages == True:
        if agetype == 'Martig':
            ages = fits.open(catpath + 'DR12_martigages_vizier.fits')[1].data
            idtag = '2MASS_ID'
        if agetype == 'Cannon':
            ages = fits.open(catpath + 'RGB_Cannon_Ages.fits')[1].data
            ages = esutil.numpy_util.add_fields(ages, [('Age', float)])
            ages['Age'] = np.exp(ages['ln_age'])
            idtag = 'ID'
        ages_tab = Table(data=ages)
        ages_tab.rename_column(idtag, 'APOGEE_ID')
        tab = join(ages_tab,
                   data,
                   keys='APOGEE_ID',
                   uniq_col_name='{col_name}{table_name}',
                   table_names=['', '2'])
        allStar_full = tab.as_array()
        data = allStar_full
        if verbose == True:
            print str(len(data)) + ' Stars with ages'
    if apply_corrections == True:
        #martig1 = np.genfromtxt(catpath+'martig2016_table1.txt', dtype=None, names=True, skip_header=2)
        martig1 = fits.open(catpath + 'martig_table1.fits')
        fit = lowess(np.log10(martig1['Age_out']), np.log10(martig1['Age_in']))
        xs = np.linspace(-0.3, 1.2, 100)
        xsinterpolate = interp1d(xs, xs)
        fys = fit[:, 0] - xsinterpolate(fit[:, 1])
        interp = UnivariateSpline(fit[:, 1], fys)
        corr_age = np.log10(data['Age']) + (interp(np.log10(data['Age'])))
        corr_age = 10**corr_age
        data['Age'] = corr_age
    return data
コード例 #33
0
ファイル: make_rcsample.py プロジェクト: NatalieP-J/apogee
def make_rcsample(parser):
    options,args= parser.parse_args()
    savefilename= options.savefilename
    if savefilename is None:
        #Create savefilename if not given
        savefilename= os.path.join(appath._APOGEE_DATA,
                                   'rcsample_'+appath._APOGEE_REDUX+'.fits')
        print("Saving to %s ..." % savefilename)
    #Read the base-sample
    data= apread.allStar(adddist=_ADDHAYDENDIST,rmdups=options.rmdups)
    #Remove a bunch of fields that we do not want to keep
    data= esutil.numpy_util.remove_fields(data,
                                          ['TARGET_ID',
                                           'FILE',
                                           'AK_WISE',
                                           'SFD_EBV',
                                           'SYNTHVHELIO_AVG',
                                           'SYNTHVSCATTER',
                                           'SYNTHVERR',
                                           'SYNTHVERR_MED',
                                           'RV_TEFF',
                                           'RV_LOGG',
                                           'RV_FEH',
                                           'RV_ALPHA',
                                           'RV_CARB',
                                           'RV_CCFWHM',
                                           'RV_AUTOFWHM',
                                           'SYNTHSCATTER',
                                           'STABLERV_CHI2',
                                           'STABLERV_RCHI2',
                                           'STABLERV_CHI2_PROB',
                                           'CHI2_THRESHOLD',
                                           'APSTAR_VERSION',
                                           'ASPCAP_VERSION',
                                           'RESULTS_VERSION',
                                           'WASH_M',
                                           'WASH_M_ERR',
                                           'WASH_T2',
                                           'WASH_T2_ERR',
                                           'DDO51',
                                           'DDO51_ERR',
                                           'IRAC_3_6',
                                           'IRAC_3_6_ERR',
                                           'IRAC_4_5',
                                           'IRAC_4_5_ERR',
                                           'IRAC_5_8',
                                           'IRAC_5_8_ERR',
                                           'IRAC_8_0',
                                           'IRAC_8_0_ERR',
                                           'WISE_4_5',
                                           'WISE_4_5_ERR',
                                           'TARG_4_5',
                                           'TARG_4_5_ERR',
                                           'WASH_DDO51_GIANT_FLAG',
                                           'WASH_DDO51_STAR_FLAG',
                                           'REDUCTION_ID',
                                           'SRC_H',
                                           'PM_SRC'])
    if not appath._APOGEE_REDUX.lower() == 'current' \
            and not 'l30' in appath._APOGEE_REDUX \
            and int(appath._APOGEE_REDUX[1:]) < 500:
        data= esutil.numpy_util.remove_fields(data,
                                              ['ELEM'])
    #Select red-clump stars
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    if 'l30' in appath._APOGEE_REDUX:
        logg= data['LOGG']
    elif appath._APOGEE_REDUX.lower() == 'current' \
            or int(appath._APOGEE_REDUX[1:]) > 600:
        from apogee.tools import paramIndx
        if False:
            #Use my custom logg calibration that's correct for the RC
            logg= (1.-0.042)*data['FPARAM'][:,paramIndx('logg')]-0.213
            lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1.
            logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.255
            hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8
            logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.3726
        else:
            #Use my custom logg calibration that's correct on average
            logg= (1.+0.03)*data['FPARAM'][:,paramIndx('logg')]-0.37
            lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1.
            logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.34
            hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8
            logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.256
    else:
        logg= data['LOGG']
    indx= (jk < 0.8)*(jk >= 0.5)\
        *(z <= 0.06)\
        *(z <= rcmodel.jkzcut(jk,upper=True))\
        *(z >= rcmodel.jkzcut(jk))\
        *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\
        *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
    data= data[indx]
    #Add more aggressive flag cut
    data= esutil.numpy_util.add_fields(data,[('ADDL_LOGG_CUT',numpy.int32)])
    data['ADDL_LOGG_CUT']= ((data['TEFF']-4800.)/1000.+2.75) > data['LOGG']
    if options.loggcut:
        data= data[data['ADDL_LOGG_CUT'] == 1]
    print("Making catalog of %i objects ..." % len(data))
    #Add distances
    data= esutil.numpy_util.add_fields(data,[('RC_DIST', float),
                                             ('RC_DM', float),
                                             ('RC_GALR', float),
                                             ('RC_GALPHI', float),
                                             ('RC_GALZ', float)])
    rcd= rcmodel.rcdist()
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    data['RC_DIST']= rcd(jk,z,appmag=data['K0'])*options.distfac
    data['RC_DM']= 5.*numpy.log10(data['RC_DIST'])+10.
    XYZ= bovy_coords.lbd_to_XYZ(data['GLON'],
                                data['GLAT'],
                                data['RC_DIST'],
                                degree=True)
    R,phi,Z= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],
                                          XYZ[:,1],
                                          XYZ[:,2],
                                          Xsun=8.,Zsun=0.025)
    data['RC_GALR']= R
    data['RC_GALPHI']= phi
    data['RC_GALZ']= Z
    #Save
    fitsio.write(savefilename,data,clobber=True)
    # Add Tycho-2 matches
    if options.tyc2:
        data= esutil.numpy_util.add_fields(data,[('TYC2MATCH',numpy.int32),
                                                 ('TYC1',numpy.int32),
                                                 ('TYC2',numpy.int32),
                                                 ('TYC3',numpy.int32)])
        data['TYC2MATCH']= 0
        data['TYC1']= -1
        data['TYC2']= -1
        data['TYC3']= -1
        # Write positions
        posfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        resultfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        with open(posfilename,'w') as csvfile:
            wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA','DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'],data[ii]['DEC']])
        # Send to CDS for matching
        result= open(resultfilename,'w')
        try:
            subprocess.check_call(['curl',
                                   '-X','POST',
                                   '-F','request=xmatch',
                                   '-F','distMaxArcsec=2',
                                   '-F','RESPONSEFORMAT=csv',
                                   '-F','cat1=@%s' % os.path.basename(posfilename),
                                   '-F','colRA1=RA',
                                   '-F','colDec1=DEC',
                                   '-F','cat2=vizier:Tycho2',
                                   'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Directly match on input RA
        ma= numpy.loadtxt(resultfilename,delimiter=',',skiprows=1,
                          usecols=(1,2,7,8,9))
        iis= numpy.arange(len(data))
        mai= [iis[data['RA'] == ma[ii,0]][0] for ii in range(len(ma))]
        data['TYC2MATCH'][mai]= 1
        data['TYC1'][mai]= ma[:,2]
        data['TYC2'][mai]= ma[:,3]
        data['TYC3'][mai]= ma[:,4]
        os.remove(posfilename)
        os.remove(resultfilename)
    if not options.nostat:
        #Determine statistical sample and add flag
        apo= apogee.select.apogeeSelect()
        statIndx= apo.determine_statistical(data)
        mainIndx= apread.mainIndx(data)
        data= esutil.numpy_util.add_fields(data,[('STAT',numpy.int32),
                                                 ('INVSF',float)])
        data['STAT']= 0
        data['STAT'][statIndx*mainIndx]= 1
        for ii in range(len(data)):
            if (statIndx*mainIndx)[ii]:
                data['INVSF'][ii]= 1./apo(data['LOCATION_ID'][ii],
                                          data['H'][ii])
            else:
                data['INVSF'][ii]= -1.
    if options.nopm:
        fitsio.write(savefilename,data,clobber=True)       
        return None
    #Get proper motions, in a somewhat roundabout way
    pmfile= savefilename.split('.')[0]+'_pms.fits'
    if os.path.exists(pmfile):
        pmdata= fitsio.read(pmfile,1)
    else:
        pmdata= numpy.recarray(len(data),
                               formats=['f8','f8','f8','f8','f8','f8','i4'],
                               names=['RA','DEC','PMRA','PMDEC',
                                      'PMRA_ERR','PMDEC_ERR','PMMATCH'])
        # Write positions, again ...
        posfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        resultfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        with open(posfilename,'w') as csvfile:
            wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA','DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'],data[ii]['DEC']])
        # Send to CDS for matching
        result= open(resultfilename,'w')
        try:
            subprocess.check_call(['curl',
                                   '-X','POST',
                                   '-F','request=xmatch',
                                   '-F','distMaxArcsec=4',
                                   '-F','RESPONSEFORMAT=csv',
                                   '-F','cat1=@%s' % os.path.basename(posfilename),
                                   '-F','colRA1=RA',
                                   '-F','colDec1=DEC',
                                   '-F','cat2=vizier:UCAC4',
                                   'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma= numpy.loadtxt(resultfilename,delimiter=',',skiprows=1,
                          converters={15: lambda s: float(s.strip() or -9999),
                                      16: lambda s: float(s.strip() or -9999),
                                      17: lambda s: float(s.strip() or -9999),
                                      18: lambda s: float(s.strip() or -9999)},
                          usecols=(4,5,15,16,17,18))
        h=esutil.htm.HTM()
        m1,m2,d12 = h.match(data['RA'],data['DEC'],
                            ma[:,0],ma[:,1],4./3600.,maxmatch=1)
        pmdata['PMMATCH']= 0
        pmdata['RA']= data['RA']
        pmdata['DEC']= data['DEC']
        pmdata['PMMATCH'][m1]= 1
        pmdata['PMRA'][m1]= ma[m2,2]
        pmdata['PMDEC'][m1]= ma[m2,3]
        pmdata['PMRA_ERR'][m1]= ma[m2,4]
        pmdata['PMDEC_ERR'][m1]= ma[m2,5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitsio.write(pmfile,pmdata,clobber=True)
        #To make sure we're using the same format below
        pmdata= fitsio.read(pmfile,1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions
    try: #These already exist currently, but may not always exist
        data= esutil.numpy_util.remove_fields(data,['PMRA','PMDEC'])
    except ValueError:
        pass
    data= esutil.numpy_util.add_fields(data,[('PMRA', numpy.float),
                                             ('PMDEC', numpy.float),
                                             ('PMRA_ERR', numpy.float),
                                             ('PMDEC_ERR', numpy.float),
                                             ('PMMATCH',numpy.int32)])
    data['PMMATCH']= 0
    h=esutil.htm.HTM()
    m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'],
                        data['RA'],data['DEC'],
                        2./3600.,maxmatch=1)
    data['PMRA'][m2]= pmdata['PMRA'][m1]
    data['PMDEC'][m2]= pmdata['PMDEC'][m1]
    data['PMRA_ERR'][m2]= pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR'][m2]= pmdata['PMDEC_ERR'][m1]
    data['PMMATCH'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx= data['PMMATCH'] == 1
    data['PMRA'][True-pmindx]= -9999.99
    data['PMDEC'][True-pmindx]= -9999.99
    data['PMRA_ERR'][True-pmindx]= -9999.99
    data['PMDEC_ERR'][True-pmindx]= -9999.99
    #Calculate Galactocentric velocities
    data= esutil.numpy_util.add_fields(data,[('GALVR', numpy.float),
                                             ('GALVT', numpy.float),
                                             ('GALVZ', numpy.float)])
    lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True)
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],data['PMDEC'],
                                                data['RA'],data['DEC'],
                                                degree=True)
    vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                             pmllpmbb[:,0],
                                             pmllpmbb[:,1],
                                             lb[:,0],lb[:,1],data['RC_DIST'],
                                             degree=True)
    vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0],
                                                vxvyvz[:,1],
                                                vxvyvz[:,2],
                                                8.-XYZ[:,0],
                                                XYZ[:,1],
                                                XYZ[:,2]+0.025,
                                                vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR']= vR
    data['GALVT']= vT
    data['GALVZ']= vZ
    data['GALVR'][True-pmindx]= -9999.99
    data['GALVT'][True-pmindx]= -9999.99
    data['GALVZ'][True-pmindx]= -9999.99
    #Get PPMXL proper motions, in a somewhat roundabout way
    pmfile= savefilename.split('.')[0]+'_pms_ppmxl.fits'
    if os.path.exists(pmfile):
        pmdata= fitsio.read(pmfile,1)
    else:
        pmdata= numpy.recarray(len(data),
                               formats=['f8','f8','f8','f8','f8','f8','i4'],
                               names=['RA','DEC','PMRA','PMDEC',
                                      'PMRA_ERR','PMDEC_ERR','PMMATCH'])
        # Write positions, again ...
        posfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        resultfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        with open(posfilename,'w') as csvfile:
            wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA','DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'],data[ii]['DEC']])
        # Send to CDS for matching
        result= open(resultfilename,'w')
        try:
            subprocess.check_call(['curl',
                                   '-X','POST',
                                   '-F','request=xmatch',
                                   '-F','distMaxArcsec=4',
                                   '-F','RESPONSEFORMAT=csv',
                                   '-F','cat1=@%s' % os.path.basename(posfilename),
                                   '-F','colRA1=RA',
                                   '-F','colDec1=DEC',
                                   '-F','cat2=vizier:PPMXL',
                                   'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma= numpy.loadtxt(resultfilename,delimiter=',',skiprows=1,
                          converters={15: lambda s: float(s.strip() or -9999),
                                      16: lambda s: float(s.strip() or -9999),
                                      17: lambda s: float(s.strip() or -9999),
                                      18: lambda s: float(s.strip() or -9999)},
                          usecols=(4,5,15,16,19,20))
        h=esutil.htm.HTM()
        m1,m2,d12 = h.match(data['RA'],data['DEC'],
                            ma[:,0],ma[:,1],4./3600.,maxmatch=1)
        pmdata['PMMATCH']= 0
        pmdata['RA']= data['RA']
        pmdata['DEC']= data['DEC']
        pmdata['PMMATCH'][m1]= 1
        pmdata['PMRA'][m1]= ma[m2,2]
        pmdata['PMDEC'][m1]= ma[m2,3]
        pmdata['PMRA_ERR'][m1]= ma[m2,4]
        pmdata['PMDEC_ERR'][m1]= ma[m2,5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitsio.write(pmfile,pmdata,clobber=True)
        #To make sure we're using the same format below
        pmdata= fitsio.read(pmfile,1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions to ppmxl
    data= esutil.numpy_util.add_fields(data,[('PMRA_PPMXL', numpy.float),
                                             ('PMDEC_PPMXL', numpy.float),
                                             ('PMRA_ERR_PPMXL', numpy.float),
                                             ('PMDEC_ERR_PPMXL', numpy.float),
                                             ('PMMATCH_PPMXL',numpy.int32)])
    data['PMMATCH_PPMXL']= 0
    h=esutil.htm.HTM()
    m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'],
                        data['RA'],data['DEC'],
                        2./3600.,maxmatch=1)
    data['PMRA_PPMXL'][m2]= pmdata['PMRA'][m1]
    data['PMDEC_PPMXL'][m2]= pmdata['PMDEC'][m1]
    data['PMRA_ERR_PPMXL'][m2]= pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR_PPMXL'][m2]= pmdata['PMDEC_ERR'][m1]
    data['PMMATCH_PPMXL'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx= data['PMMATCH_PPMXL'] == 1
    data['PMRA_PPMXL'][True-pmindx]= -9999.99
    data['PMDEC_PPMXL'][True-pmindx]= -9999.99
    data['PMRA_ERR_PPMXL'][True-pmindx]= -9999.99
    data['PMDEC_ERR_PPMXL'][True-pmindx]= -9999.99
    #Calculate Galactocentric velocities
    data= esutil.numpy_util.add_fields(data,[('GALVR_PPMXL', numpy.float),
                                             ('GALVT_PPMXL', numpy.float),
                                             ('GALVZ_PPMXL', numpy.float)])
    lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True)
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_PPMXL'],
                                                data['PMDEC_PPMXL'],
                                                data['RA'],data['DEC'],
                                                degree=True)
    vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                             pmllpmbb[:,0],
                                             pmllpmbb[:,1],
                                             lb[:,0],lb[:,1],data['RC_DIST'],
                                             degree=True)
    vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0],
                                                vxvyvz[:,1],
                                                vxvyvz[:,2],
                                                8.-XYZ[:,0],
                                                XYZ[:,1],
                                                XYZ[:,2]+0.025,
                                                vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR_PPMXL']= vR
    data['GALVT_PPMXL']= vT
    data['GALVZ_PPMXL']= vZ
    data['GALVR_PPMXL'][True-pmindx]= -9999.99
    data['GALVT_PPMXL'][True-pmindx]= -9999.99
    data['GALVZ_PPMXL'][True-pmindx]= -9999.99
    #Save
    fitsio.write(savefilename,data,clobber=True)
    return None
コード例 #34
0
def calc_normalisation(params,
                       nbin,
                       iso_grid,
                       fehbin=[-0.1, 0.0],
                       agebin=[1., 3.],
                       loggcut=[1.8, 3.0],
                       teffcut=[4000, 5000],
                       type='brokenexpflare',
                       verbose=True,
                       fitIndx=None,
                       weights='padova',
                       distance_cut=False,
                       lowermass=None):
    #first get the values necessary from the isochrone grid
    #make a mask for giant stars (+ J-K cut)
    if teffcut == None:
        giants = (iso_grid[:, 3] >= loggcut[0]) & (
            iso_grid[:, 3] < loggcut[1]) & (iso_grid[:, 5] > 0.5)
    else:
        giants = (iso_grid[:, 3] >= loggcut[0]) & (
            iso_grid[:, 3] < loggcut[1]) & (iso_grid[:, 5] > 0.5) & (
                10**iso_grid[:, 7] >= teffcut[0]) & (10**iso_grid[:, 7] <
                                                     teffcut[1])
    #make a mask for the age and feh bin
    if agebin == None:
        bin = (10**iso_grid[:,0] >= 0.)&(10**iso_grid[:,0] < 13.)&\
             (Z2FEH(iso_grid[:,1]) >= fehbin[0])&(Z2FEH(iso_grid[:,1]) < fehbin[1])
    else:
        bin = (10**iso_grid[:,0] >= agebin[0])&(10**iso_grid[:,0] < agebin[1])&\
             (Z2FEH(iso_grid[:,1]) >= fehbin[0])&(Z2FEH(iso_grid[:,1]) < fehbin[1])

    if lowermass != None:
        giants *= iso_grid[:, 2] >= lowermass
        bin *= iso_grid[:, 2] >= lowermass
    if len(iso_grid[:, 0][bin]) < 1:
        fehs = np.unique(Z2FEH(iso_grid[:, 1]))
        cfehbin = fehbin[0] + ((fehbin[1] - fehbin[0]) / 2)
        feh_offsets = np.fabs(fehs - cfehbin)
        ind = np.argmin(feh_offsets)
        cfeh = fehs[ind]
        bin = (10**iso_grid[:,0] >= agebin[0])&(10**iso_grid[:,0] < agebin[1])&\
          (Z2FEH(iso_grid[:,1]) == cfeh)
    #find the average giant mass
    mass = iso_grid[:, 2]
    if weights == 'padova':
        weight = iso_grid[:, 6] * (10**iso_grid[:, 0] / iso_grid[:, 1])
    if weights == 'basti':
        weight = iso_grid[:, 6]
    av_mass = np.sum(mass[giants & bin] * weight[giants & bin]) / np.sum(
        weight[giants & bin])
    #find the ratio between giants and the total stellar pop. for this bin
    mass_total = mass[bin]
    weight_total = weight[bin]
    mass_bin = mass[giants & bin]
    weight_bin = weight[giants & bin]
    m_ratio = np.sum(mass_bin * weight_bin) / np.sum(mass_total * weight_total)
    #now compute and sum the rate for this density function
    #load the raw selection function
    selectFile = '../savs/selfunc-nospdata.sav'
    if os.path.exists(selectFile):
        with open(selectFile, 'rb') as savefile:
            apo = pickle.load(savefile)
    #load the effective selection function
        if agebin == None:
            with open(
                    '../essf/maps/essf_rgb_green15_modelmh_feh' +
                    str(round(fehbin[0], 1)) + '.sav', 'rb') as savefile:
                locations = pickle.load(savefile)
                effsel = pickle.load(savefile)
                distmods = pickle.load(savefile)
            with open(
                    '../essf/maps/essf_rgb_marshall06_modelmh_feh' +
                    str(round(fehbin[0], 1)) + '.sav', 'rb') as savefile:
                mlocations = pickle.load(savefile)
                meffsel = pickle.load(savefile)
                mdistmods = pickle.load(savefile)
    if agebin != None:
        if agebin[0] < 1.:
            with open(
                    '../essf/maps/essf_rgb_green15_modelmh_feh' +
                    str(round(fehbin[0], 1)) + '_age' + str(round(1.0, 1)) +
                    '.sav', 'rb') as savefile:
                locations = pickle.load(savefile)
                effsel = pickle.load(savefile)
                distmods = pickle.load(savefile)
            with open(
                    '../essf/maps/essf_rgb_marshall06_modelmh_feh' +
                    str(round(fehbin[0], 1)) + '_age' + str(round(1.0, 1)) +
                    '.sav', 'rb') as savefile:
                mlocations = pickle.load(savefile)
                meffsel = pickle.load(savefile)
                mdistmods = pickle.load(savefile)
        if agebin[0] > 0.9:
            with open(
                    '../essf/maps/essf_rgb_green15_modelmh_feh' +
                    str(round(fehbin[0], 1)) + '_age' +
                    str(round(agebin[0], 1)) + '.sav', 'rb') as savefile:
                locations = pickle.load(savefile)
                effsel = pickle.load(savefile)
                distmods = pickle.load(savefile)
            with open(
                    '../essf/maps/essf_rgb_marshall06_modelmh_feh' +
                    str(round(fehbin[0], 1)) + '_age' +
                    str(round(agebin[0], 1)) + '.sav', 'rb') as savefile:
                mlocations = pickle.load(savefile)
                meffsel = pickle.load(savefile)
                mdistmods = pickle.load(savefile)

    # Fill in regions not covered by Marshall map
    meffsel[meffsel < -0.5] = effsel[meffsel < -0.5]
    if fitIndx is None:
        fitIndx = numpy.ones(len(mlocations), dtype='bool')  #True-betwDiskIndx
    locations, effsel, distmods = np.array(mlocations)[fitIndx], np.array(
        meffsel)[fitIndx], mdistmods
    #get the density function and set it up to find the normalisation (surfdens=True)
    rdensfunc = _setup_densfunc(type)
    densfunc = lambda x: rdensfunc(x, None, None, params=params, surfdens=True)
    #evaluate surface density at R0 for the density normalisation (always 1. if R_b > R0)
    R0 = densprofiles._R0
    Rb = np.exp(params[3])
    dens_norm = densfunc(densprofiles._R0)
    #set up the density function again with surfdens=False for the rate calculation
    rdensfunc = _setup_densfunc(type)
    densfunc = lambda x, y, z: rdensfunc(
        x, y, z, params=params, surfdens=False)
    ds = 10.**(distmods / 5. - 2.)
    #imply the distance cut if distance_cut == True
    if distance_cut == True:
        distmods = distmods[ds <= 3.]
        ds = ds[ds <= 3.]
        effsel = effsel[:, :len(ds)]
    #Compute the grid of R, phi and Z for each location
    Rgrid, phigrid, zgrid = [], [], []
    for loc in locations:
        lcen, bcen = apo.glonGlat(loc)
        XYZ = bovy_coords.lbd_to_XYZ(lcen * numpy.ones_like(ds),
                                     bcen * numpy.ones_like(ds),
                                     ds,
                                     degree=True)
        Rphiz = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0],
                                             XYZ[:, 1],
                                             XYZ[:, 2],
                                             Xsun=define_rgbsample._R0,
                                             Zsun=define_rgbsample._Z0)
        Rgrid.append(Rphiz[:, 0])
        phigrid.append(Rphiz[:, 1])
        zgrid.append(Rphiz[:, 2])
    Rgrid = numpy.array(Rgrid)
    phigrid = numpy.array(phigrid)
    zgrid = numpy.array(zgrid)
    # Now compute rate(R) for each location and combine
    effsel *= numpy.tile(
        ds**2. * (distmods[1] - distmods[0]) * (ds * np.log(10) / 5.),
        (effsel.shape[0], 1))
    tdens = densfunc(Rgrid, phigrid, zgrid) / dens_norm
    rate = tdens * effsel
    sumrate = np.sum(rate)
    #calculate normalisation N(R0)
    norm = (nbin / sumrate)
    #convert units (Kpc^2 > pc^2, deg > rad etc)
    norm *= 1e-6 * (180 / np.pi)**2
    #compute mass in bin using values from isochrones
    bin_mass = (norm * av_mass) / m_ratio
    if verbose == True:
        print bin_mass
    return bin_mass, norm, m_ratio, (av_mass * 1e-6 *
                                     (180 / np.pi)**2) / (sumrate * m_ratio)
コード例 #35
0
def predict_spacedist(params,
                      locations,effsel,distmods,
                      type='exp',
                      coord='Z'):
    """
    NAME:
       predict_spacedist
    PURPOSE:
       predict the spatial distribution
    INPUT:
       params - parameters of the density profile
       locations - locations of the APOGEE effective selection function to consider
       effsel - array (nloc,nD) of the effective selection function, includes area of the field
       distmods - grid of distance moduli on which the effective selection function is pre-computed
       type= ('exp') type of density profile to fit      
       coord= ('dm', 'X', or 'Z')
    OUTPUT:
       (R,model(R))
    HISTORY:
       2015-03-26 - Written - Bovy (IAS)
    """
    if coord.lower() == 'x':
        # Grid in X
        Xs= numpy.linspace(0.,20.,301)
    elif coord.lower() == 'z':
        # Grid in X
        Xs= numpy.linspace(0.,20.,301)
    elif coord.lower() == 'dm':
        # Grid in X
        Xs= numpy.linspace(7.,15.5,301)
    # Setup the density function
    rdensfunc= _setup_densfunc(type)
    densfunc= lambda x,y,z: rdensfunc(x,y,z,params=params)
    # Restore the APOGEE selection function (assumed pre-computed)
    selectFile= '../savs/selfunc-nospdata.sav'
    if os.path.exists(selectFile):
        with open(selectFile,'rb') as savefile:
            apo= pickle.load(savefile)
    # Now compute the necessary coordinate transformations
    ds= 10.**(distmods/5-2.)
    Rgrid, phigrid, zgrid, Xgrid= [], [], [], []
    for loc in locations:
        lcen, bcen= apo.glonGlat(loc)
        XYZ= bovy_coords.lbd_to_XYZ(lcen*numpy.ones_like(ds),
                                    bcen*numpy.ones_like(ds),
                                    ds,
                                    degree=True)
        Rphiz= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],XYZ[:,1],XYZ[:,2],
                                            Xsun=define_rcsample._R0,
                                            Ysun=0.,
                                            Zsun=define_rcsample._Z0)
        Rgrid.append(Rphiz[0])
        phigrid.append(Rphiz[1])
        zgrid.append(Rphiz[2])
        Xgrid.append(Rphiz[0]*numpy.cos(Rphiz[1]))
    Rgrid= numpy.array(Rgrid)
    phigrid= numpy.array(phigrid)
    zgrid= numpy.array(zgrid)
    Xgrid= numpy.array(Xgrid)
    # Now compute rate(R) for each location and combine
    effsel*= numpy.tile(ds**3.*(distmods[1]-distmods[0]),(effsel.shape[0],1))
    tdens= densfunc(Rgrid,phigrid,zgrid)
    rate= tdens*effsel
    out= numpy.zeros((len(locations),len(Xs)))
    for ii in range(len(locations)):
        if coord.lower() == 'x':
            # Jacobian
            tjac= numpy.fabs((numpy.roll(distmods,-1)-distmods)/\
                                 (numpy.roll(Xgrid[ii],-1)-Xgrid[ii]))
            tjac[-1]= tjac[-2]
            tXs= Xgrid[ii,rate[ii] > 0.]
        elif coord.lower() == 'z':
            # Jacobian
            tjac= numpy.fabs((numpy.roll(distmods,-1)-distmods)/\
                                 (numpy.roll(zgrid[ii],-1)-zgrid[ii]))
            tjac[-1]= tjac[-2]
            tXs= zgrid[ii,rate[ii] > 0.]
        elif coord.lower() == 'dm':
            # Jacobian
            tjac= numpy.ones_like(Xs)
            tXs= distmods[rate[ii] > 0.]
        sindx= numpy.argsort(tXs)
        tXs= tXs[sindx]
        trate= rate[ii,rate[ii] > 0.][sindx]
        tjac= tjac[rate[ii] > 0.][sindx]
        ipthis= numpy.log(trate*tjac+10.**-8.)
        baseline= numpy.polynomial.Polynomial.fit(tXs,ipthis,4)
        ipthis= ipthis/baseline(tXs)
        sp= interpolate.InterpolatedUnivariateSpline(tXs,ipthis,k=3)
        tindx= (Xs >= numpy.amin(tXs))\
            *(Xs <= numpy.amax(tXs))
        out[ii,tindx]= (numpy.exp(sp(Xs[tindx])*baseline(Xs[tindx]))-10.**-8.)
    out[numpy.isinf(out)]= 0.
    return (Xs,out.sum(axis=0))
コード例 #36
0
def _add_proper_motions_gaia(data):
    from gaia_tools import xmatch
    gaia2_matches, matches_indx = xmatch.cds(data,
                                             colRA='RA',
                                             colDec='DEC',
                                             xcat='vizier:I/345/gaia2')
    # Add matches
    try:  #These already exist currently, but may not always exist
        data = esutil.numpy_util.remove_fields(data, ['PMRA', 'PMDEC'])
    except ValueError:
        pass
    data = esutil.numpy_util.add_fields(data, [('PLX', numpy.float),
                                               ('PMRA', numpy.float),
                                               ('PMDEC', numpy.float),
                                               ('PLX_ERR', numpy.float),
                                               ('PMRA_ERR', numpy.float),
                                               ('PMDEC_ERR', numpy.float),
                                               ('PMMATCH', numpy.int32)])
    data['PMMATCH'] = 0
    data['PMMATCH'][matches_indx] = 1
    data['PLX'][matches_indx] = gaia2_matches['parallax']
    data['PMRA'][matches_indx] = gaia2_matches['pmra']
    data['PMDEC'][matches_indx] = gaia2_matches['pmdec']
    data['PLX_ERR'][matches_indx] = gaia2_matches['parallax_error']
    data['PMRA_ERR'][matches_indx] = gaia2_matches['pmra_error']
    data['PMDEC_ERR'][matches_indx] = gaia2_matches['pmdec_error']
    # Set values for those without match to -999
    pmindx = data['PMMATCH'] == 1
    data['PLX'][True ^ pmindx] = -9999.99
    data['PMRA'][True ^ pmindx] = -9999.99
    data['PMDEC'][True ^ pmindx] = -9999.99
    data['PLX_ERR'][True ^ pmindx] = -9999.99
    data['PMRA_ERR'][True ^ pmindx] = -9999.99
    data['PMDEC_ERR'][True ^ pmindx] = -9999.99
    #Calculate Galactocentric velocities
    data = esutil.numpy_util.add_fields(data, [('GALVR', numpy.float),
                                               ('GALVT', numpy.float),
                                               ('GALVZ', numpy.float)])
    lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True)
    XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0],
                                 lb[:, 1],
                                 data['RC_DIST'],
                                 degree=True)
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],
                                                 data['PMDEC'],
                                                 data['RA'],
                                                 data['DEC'],
                                                 degree=True)
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              lb[:, 0],
                                              lb[:, 1],
                                              data['RC_DIST'],
                                              degree=True)
    vRvTvZ = bovy_coords.vxvyvz_to_galcencyl(
        vxvyvz[:, 0],
        vxvyvz[:, 1],
        vxvyvz[:, 2],
        8. - XYZ[:, 0],
        XYZ[:, 1],
        XYZ[:, 2] + 0.0208,
        vsun=[-11.1, 30.24 * 8.15, 7.25]
    )  #Assumes proper motion of Sgr A* and R0=8.15 kpc, zo= 20.8 pc (Bennett & Bovy 2019)
    data['GALVR'] = vRvTvZ[:, 0]
    data['GALVT'] = vRvTvZ[:, 1]
    data['GALVZ'] = vRvTvZ[:, 2]
    data['GALVR'][True ^ pmindx] = -9999.99
    data['GALVT'][True ^ pmindx] = -9999.99
    data['GALVZ'][True ^ pmindx] = -9999.99
    return data
コード例 #37
0
ファイル: fakeDFData.py プロジェクト: jobovy/segue-maps
def fakeDFData(binned,qdf,ii,params,fehs,afes,options,
               rmin,rmax,
               platelb,
               grmin,grmax,
               fehrange,
               colordist,
               fehdist,feh,sf,
               mapfehs,mapafes,
               ro=None,vo=None,
               ndata=None,#If set, supersedes binned, only to be used w/ returnlist=True
               returnlist=False): #last one useful for pixelFitDF normintstuff
    if ro is None:
        ro= get_ro(params,options)
    if vo is None:
        vo= get_vo(params,options,len(fehs))
    thishr= qdf.estimate_hr(1.,z=0.125)*_REFR0*ro #qdf._hr*_REFR0*ro
    thishz= qdf.estimate_hz(1.,z=0.125)*_REFR0*ro
    if thishr < 0.: thishr= 10. #Probably close to flat
    if thishz  < 0.1: thishz= 0.2
    thissr= qdf._sr*_REFV0*vo
    thissz= qdf._sz*_REFV0*vo
    thishsr= qdf._hsr*_REFR0*ro
    thishsz= qdf._hsz*_REFR0*ro
    if True:
        if options.aAmethod.lower() == 'staeckel':
            #Make everything 10% larger
            thishr*= 1.2
            thishz*= 1.2
            thishsr*= 1.2
            thishsz*= 1.2
            thissr*= 2.
            thissz*= 2.
        else:
            #Make everything 20% larger
            thishr*= 1.2
            thishz*= 1.2
            thishsr*= 1.2
            thishsz*= 1.2
            thissr*= 2.
            thissz*= 2.
    #Find nearest mono-abundance bin that has a measurement
    abindx= numpy.argmin((fehs[ii]-mapfehs)**2./0.01 \
                             +(afes[ii]-mapafes)**2./0.0025)
    #Calculate the r-distribution for each plate
    nrs= 1001
    ngr, nfeh= 11, 11 #BOVY: INCREASE?
    tgrs= numpy.linspace(grmin,grmax,ngr)
    tfehs= numpy.linspace(fehrange[0]+0.00001,fehrange[1]-0.00001,nfeh)
    #Calcuate FeH and gr distriutions
    fehdists= numpy.zeros(nfeh)
    for jj in range(nfeh): fehdists[jj]= fehdist(tfehs[jj])
    fehdists= numpy.cumsum(fehdists)
    fehdists/= fehdists[-1]
    colordists= numpy.zeros(ngr)
    for jj in range(ngr): colordists[jj]= colordist(tgrs[jj])
    colordists= numpy.cumsum(colordists)
    colordists/= colordists[-1]
    rs= numpy.linspace(rmin,rmax,nrs)
    rdists= numpy.zeros((len(sf.plates),nrs,ngr,nfeh))
    #outlier model that we want to sample (not the one to aid in the sampling)
    srhalo= _SRHALO/vo/_REFV0
    sphihalo= _SPHIHALO/vo/_REFV0
    szhalo= _SZHALO/vo/_REFV0
    logoutfrac= numpy.log(get_outfrac(params,ii,options))
    loghalodens= numpy.log(ro*outDens(1.,0.,None))
    #Calculate surface(R=1.) for relative outlier normalization
    logoutfrac+= numpy.log(qdf.surfacemass_z(1.,ngl=options.ngl))
    if options.mcout:
        fidoutfrac= get_outfrac(params,ii,options)
        rdistsout= numpy.zeros((len(sf.plates),nrs,ngr,nfeh))
    lagoutfrac= 0.15 #.0000000000000000000000001 #seems good
    #Setup density model
    use_real_dens= True
    if use_real_dens:
        #nrs, nzs= 101, 101
        nrs, nzs= 64, 64
        thisRmin, thisRmax= 4./_REFR0, 15./_REFR0
        thiszmin, thiszmax= 0., .8
        Rgrid= numpy.linspace(thisRmin,thisRmax,nrs)
        zgrid= numpy.linspace(thiszmin,thiszmax,nzs)
        surfgrid= numpy.empty((nrs,nzs))
        for ll in range(nrs):
            for jj in range(nzs):
                sys.stdout.write('\r'+"Working on grid-point %i/%i" % (jj+ll*nzs+1,nzs*nrs))
                sys.stdout.flush()
                surfgrid[ll,jj]= qdf.density(Rgrid[ll],zgrid[jj],
                                             nmc=options.nmcv,
                                             ngl=options.ngl)
        sys.stdout.write('\r'+_ERASESTR+'\r')
        sys.stdout.flush()
        if _SURFSUBTRACTEXPON:
            Rs= numpy.tile(Rgrid,(nzs,1)).T
            Zs= numpy.tile(zgrid,(nrs,1))
            ehr= qdf.estimate_hr(1.,z=0.125)
#            ehz= qdf.estimate_hz(1.,zmin=0.5,zmax=0.7)#Get large z behavior right
            ehz= qdf.estimate_hz(1.,z=0.125)
            surfInterp= interpolate.RectBivariateSpline(Rgrid,zgrid,
                                                        numpy.log(surfgrid)
                                                        +Rs/ehr+numpy.fabs(Zs)/ehz,
                                                        kx=3,ky=3,
                                                        s=0.)
#                                                        s=10.*float(nzs*nrs))
        else:
            surfInterp= interpolate.RectBivariateSpline(Rgrid,zgrid,
                                                        numpy.log(surfgrid),
                                                        kx=3,ky=3,
                                                        s=0.)
#                                                        s=10.*float(nzs*nrs))
        if _SURFSUBTRACTEXPON:
            compare_func= lambda x,y,du: numpy.exp(surfInterp.ev(x/ro/_REFR0,numpy.fabs(y)/ro/_REFR0)-x/ro/_REFR0/ehr-numpy.fabs(y)/ehz/ro/_REFR0)
        else:
            compare_func= lambda x,y,du: numpy.exp(surfInterp.ev(x/ro/_REFR0,numpy.fabs(y)/ro/_REFR0))
    else:
        compare_func= lambda x,y,z: fidDens(x,y,thishr,thishz,z)
    for jj in range(len(sf.plates)):
        p= sf.plates[jj]
        sys.stdout.write('\r'+"Working on plate %i (%i/%i)" % (p,jj+1,len(sf.plates)))
        sys.stdout.flush()
        rdists[jj,:,:,:]= _predict_rdist_plate(rs,
                                               compare_func,
                                               None,rmin,rmax,
                                               platelb[jj,0],platelb[jj,1],
                                               grmin,grmax,
                                               fehrange[0],fehrange[1],feh,
                                               colordist,
                                               fehdist,sf,sf.plates[jj],
                                               dontmarginalizecolorfeh=True,
                                               ngr=ngr,nfeh=nfeh)
        if options.mcout:
            rdistsout[jj,:,:,:]= _predict_rdist_plate(rs,
                                                      lambda x,y,z: outDens(x,y,z),
                                                      None,rmin,rmax,
                                                      platelb[jj,0],platelb[jj,1],
                                                      grmin,grmax,
                                                      fehrange[0],fehrange[1],feh,
                                                      colordist,
                                                      fehdist,sf,sf.plates[jj],
                                                      dontmarginalizecolorfeh=True,
                                                      ngr=ngr,nfeh=nfeh)
    sys.stdout.write('\r'+_ERASESTR+'\r')
    sys.stdout.flush()
    numbers= numpy.sum(rdists,axis=3)
    numbers= numpy.sum(numbers,axis=2)
    numbers= numpy.sum(numbers,axis=1)
    numbers= numpy.cumsum(numbers)
    if options.mcout:
        totfid= numbers[-1]
    numbers/= numbers[-1]
    rdists= numpy.cumsum(rdists,axis=1)
    for ll in range(len(sf.plates)):
        for jj in range(ngr):
            for kk in range(nfeh):
                rdists[ll,:,jj,kk]/= rdists[ll,-1,jj,kk]
    if options.mcout:
        numbersout= numpy.sum(rdistsout,axis=3)
        numbersout= numpy.sum(numbersout,axis=2)
        numbersout= numpy.sum(numbersout,axis=1)
        numbersout= numpy.cumsum(numbersout)
        totout= fidoutfrac*numbersout[-1]
        totnumbers= totfid+totout
        totfid/= totnumbers
        totout/= totnumbers
        if _DEBUG:
            print totfid, totout
        numbersout/= numbersout[-1]
        rdistsout= numpy.cumsum(rdistsout,axis=1)
        for ll in range(len(sf.plates)):
            for jj in range(ngr):
                for kk in range(nfeh):
                    rdistsout[ll,:,jj,kk]/= rdistsout[ll,-1,jj,kk]
    #Now sample
    thisout= []
    newrs= []
    newls= []
    newbs= []
    newplate= []
    newgr= []
    newfeh= []
    newds= []
    newzs= []
    newvas= []
    newRs= []
    newphi= []
    newvr= []
    newvt= []
    newvz= []
    newlogratio= []
    newfideval= []
    newqdfeval= []
    newpropeval= []
    if ndata is None:
        thisdata= binned(fehs[ii],afes[ii])
        thisdataIndx= binned.callIndx(fehs[ii],afes[ii])
        ndata= len(thisdata)
    #First sample from spatial density
    for ll in range(ndata):
        #First sample a plate
        ran= numpy.random.uniform()
        kk= 0
        while numbers[kk] < ran: kk+= 1
        #Also sample a FeH and a color
        ran= numpy.random.uniform()
        ff= 0
        while fehdists[ff] < ran: ff+= 1
        ran= numpy.random.uniform()
        cc= 0
        while colordists[cc] < ran: cc+= 1
        #plate==kk, feh=ff,color=cc; now sample from the rdist of this plate
        ran= numpy.random.uniform()
        jj= 0
        if options.mcout and numpy.random.uniform() < totout: #outlier
            while rdistsout[kk,jj,cc,ff] < ran: jj+= 1
            thisoutlier= True
        else:
            while rdists[kk,jj,cc,ff] < ran: jj+= 1
            thisoutlier= False
        #r=jj
        newrs.append(rs[jj])
        newls.append(platelb[kk,0])
        newbs.append(platelb[kk,1])
        newplate.append(sf.plates[kk])
        newgr.append(tgrs[cc])
        newfeh.append(tfehs[ff])
        dist= _ivezic_dist(tgrs[cc],rs[jj],tfehs[ff])
        newds.append(dist)
        #calculate R,z
        XYZ= bovy_coords.lbd_to_XYZ(platelb[kk,0],platelb[kk,1],
                                    dist,degree=True)
        R= ((_REFR0-XYZ[0])**2.+XYZ[1]**2.)**(0.5)
        newRs.append(R)
        phi= numpy.arcsin(XYZ[1]/R)
        if (_REFR0-XYZ[0]) < 0.:
            phi= numpy.pi-phi
        newphi.append(phi)
        z= XYZ[2]+_ZSUN
        newzs.append(z)
    newrs= numpy.array(newrs)
    newls= numpy.array(newls)
    newbs= numpy.array(newbs)
    newplate= numpy.array(newplate)
    newgr= numpy.array(newgr)
    newfeh= numpy.array(newfeh)
    newds= numpy.array(newds)
    newRs= numpy.array(newRs)
    newzs= numpy.array(newzs)
    newphi= numpy.array(newphi)
    #Add mock velocities
    newvr= numpy.empty_like(newrs)
    newvt= numpy.empty_like(newrs)
    newvz= numpy.empty_like(newrs)
    use_sampleV= True
    if use_sampleV:
        for kk in range(ndata):
            newv= qdf.sampleV(newRs[kk]/_REFR0,newzs[kk]/_REFR0,n=1)
            newvr[kk]= newv[0,0]*_REFV0*vo
            newvt[kk]= newv[0,1]*_REFV0*vo
            newvz[kk]= newv[0,2]*_REFV0*vo
    else:
        accept_v= numpy.zeros(ndata,dtype='bool')
        naccept= numpy.sum(accept_v)
        sigz= thissz*numpy.exp(-(newRs-_REFR0)/thishsz)
        sigr= thissr*numpy.exp(-(newRs-_REFR0)/thishsr)
        va= numpy.empty_like(newrs)
        sigphi= numpy.empty_like(newrs)
        maxqdf= numpy.empty_like(newrs)
        nvt= 101
        tvt= numpy.linspace(0.1,1.2,nvt)
        for kk in range(ndata):
            #evaluate qdf for vt
            pvt= qdf(newRs[kk]/ro/_REFR0+numpy.zeros(nvt),
                     numpy.zeros(nvt),
                     tvt,
                     newzs[kk]/ro/_REFR0+numpy.zeros(nvt),
                     numpy.zeros(nvt),log=True)
            pvt_maxindx= numpy.argmax(pvt)
            va[kk]= (1.-tvt[pvt_maxindx])*_REFV0*vo
            if options.aAmethod.lower() == 'adiabaticgrid' and options.flatten >= 0.9:
                maxqdf[kk]= pvt[pvt_maxindx]+numpy.log(250.)
            elif options.aAmethod.lower() == 'adiabaticgrid' and options.flatten >= 0.8:
                maxqdf[kk]= pvt[pvt_maxindx]+numpy.log(250.)
            else:
                maxqdf[kk]= pvt[pvt_maxindx]+numpy.log(40.)
            sigphi[kk]= _REFV0*vo*4.*numpy.sqrt(numpy.sum(numpy.exp(pvt)*tvt**2.)/numpy.sum(numpy.exp(pvt))-(numpy.sum(numpy.exp(pvt)*tvt)/numpy.sum(numpy.exp(pvt)))**2.)
        ntries= 0
        ngtr1= 0
        while naccept < ndata:
            sys.stdout.write('\r %i %i %i \r' % (ntries,naccept,ndata))
            sys.stdout.flush()
            #print ntries, naccept, ndata
            ntries+= 1
            accept_v_comp= True-accept_v
            prop_vr= numpy.random.normal(size=ndata)*sigr
            prop_vt= numpy.random.normal(size=ndata)*sigphi+vo*_REFV0-va
            prop_vz= numpy.random.normal(size=ndata)*sigz
            qoverp= numpy.zeros(ndata)-numpy.finfo(numpy.dtype(numpy.float64)).max
            qoverp[accept_v_comp]= (qdf(newRs[accept_v_comp]/ro/_REFR0,
                                        prop_vr[accept_v_comp]/vo/_REFV0,
                                        prop_vt[accept_v_comp]/vo/_REFV0,
                                        newzs[accept_v_comp]/ro/_REFR0,
                                        prop_vz[accept_v_comp]/vo/_REFV0,log=True)
                                    -maxqdf[accept_v_comp] #normalize max to 1
                                    -(-0.5*(prop_vr[accept_v_comp]**2./sigr[accept_v_comp]**2.+prop_vz[accept_v_comp]**2./sigz[accept_v_comp]**2.+(prop_vt[accept_v_comp]-_REFV0*vo+va[accept_v_comp])**2./sigphi[accept_v_comp]**2.)))
            if numpy.any(qoverp > 0.):
                ngtr1+= numpy.sum((qoverp > 0.))
                if ngtr1 > 5:
                    qindx= (qoverp > 0.)
                    print naccept, ndata, newRs[qindx], newzs[qindx], prop_vr[qindx], va[qindx], sigphi[qindx], prop_vt[qindx], prop_vz[qindx], qoverp[qindx]
                    raise RuntimeError("max qoverp = %f > 1, but shouldn't be" % (numpy.exp(numpy.amax(qoverp))))
            accept_these= numpy.log(numpy.random.uniform(size=ndata))
            #print accept_these, (accept_these < qoverp)
            accept_these= (accept_these < qoverp)        
            newvr[accept_these]= prop_vr[accept_these]
            newvt[accept_these]= prop_vt[accept_these]
            newvz[accept_these]= prop_vz[accept_these]
            accept_v[accept_these]= True
            naccept= numpy.sum(accept_v)
        sys.stdout.write('\r'+_ERASESTR+'\r')
        sys.stdout.flush()
    """
    ntot= 0
    nsamples= 0
    itt= 0
    fracsuccess= 0.
    fraccomplete= 0.
    while fraccomplete < 1.:
        if itt == 0:
            nthis= numpy.amax([ndata,_NMIN])
        else:
            nthis= int(numpy.ceil((1-fraccomplete)/fracsuccess*ndata))
        itt+= 1
        count= 0
        while count < nthis:
            count+= 1
            sigz= thissz*numpy.exp(-(R-_REFR0)/thishsz)
            sigr= thissr*numpy.exp(-(R-_REFR0)/thishsr)
            sigphi= sigr #/numpy.sqrt(2.) #BOVY: FOR NOW
            #Estimate asymmetric drift
            va= sigr**2./2./_REFV0/vo\
                *(-.5+R*(1./thishr+2./thishsr))+10.*numpy.fabs(z)
            newvas.append(va)
            if options.mcout and thisoutlier:
                #Sample from outlier gaussian
                newvz.append(numpy.random.normal()*_SZHALOFAKE*2.)
                newvr.append(numpy.random.normal()*_SRHALOFAKE*2.)
                newvt.append(numpy.random.normal()*_SPHIHALOFAKE*2.)
            elif numpy.random.uniform() < lagoutfrac:
                #Sample from lagging gaussian
                newvz.append(numpy.random.normal()*_SZHALOFAKE)
                newvr.append(numpy.random.normal()*_SRHALOFAKE)
                newvt.append(numpy.random.normal()*_SPHIHALOFAKE*2.+_REFV0*vo/4.)
            else:
                #Sample from disk gaussian
                newvz.append(numpy.random.normal()*sigz)
                newvr.append(numpy.random.normal()*sigr)
                newvt.append(numpy.random.normal()*sigphi+_REFV0*vo-va)
            newlogratio= list(newlogratio)
            fidlogeval= numpy.log(1.-lagoutfrac)\
                     -numpy.log(sigr)-numpy.log(sigphi)-numpy.log(sigz)-0.5*(newvr[-1]**2./sigr**2.+newvz[-1]**2./sigz**2.+(newvt[-1]-_REFV0*vo+va)**2./sigphi**2.)
            lagoutlogeval= numpy.log(lagoutfrac)\
                     -numpy.log(_SRHALOFAKE)\
                     -numpy.log(_SPHIHALOFAKE*2.)\
                     -numpy.log(_SZHALOFAKE)\
                     -0.5*(newvr[-1]**2./_SRHALOFAKE**2.+newvz[-1]**2./_SZHALOFAKE**2.+(newvt[-1]-_REFV0*vo/4.)**2./_SPHIHALOFAKE**2./4.)
            if use_real_dens:
                fidlogeval+= numpy.log(compare_func(R,z,None)[0])
                lagoutlogeval+= numpy.log(compare_func(R,z,None)[0])
            else:
                fidlogeval+= numpy.log(fidDens(R,z,thishr,thishz,None))
                lagoutlogeval+= numpy.log(fidDens(R,z,thishr,thishz,None))
            newfideval.append(fidlogeval)
            if options.mcout:
                fidoutlogeval= numpy.log(fidoutfrac)\
                    +numpy.log(outDens(R,z,None))\
                    -numpy.log(_SRHALOFAKE*2.)\
                    -numpy.log(_SPHIHALOFAKE*2.)\
                    -numpy.log(_SZHALOFAKE*2.)\
                    -0.5*(newvr[-1]**2./_SRHALOFAKE**2./4.+newvz[-1]**2./_SZHALOFAKE**2./4.+newvt[-1]**2./_SPHIHALOFAKE**2./4.)
                newpropeval.append(logsumexp([fidoutlogeval,fidlogeval,
                                              lagoutlogeval]))
            else:
                newpropeval.append(logsumexp([lagoutlogeval,fidlogeval]))
            qdflogeval= qdf(R/ro/_REFR0,newvr[-1]/vo/_REFV0,newvt[-1]/vo/_REFV0,z/ro/_REFR0,newvz[-1]/vo/_REFV0,log=True)
            if isinstance(qdflogeval,(list,numpy.ndarray)):
                qdflogeval= qdflogeval[0]
            if options.mcout:
                outlogeval= logoutfrac+loghalodens\
                    -numpy.log(srhalo)-numpy.log(sphihalo)-numpy.log(szhalo)\
                    -0.5*((newvr[-1]/vo/_REFV0)**2./srhalo**2.+(newvz[-1]/vo/_REFV0)**2./szhalo**2.+(newvt[-1]/vo/_REFV0)**2./sphihalo**2.)\
                    -1.5*numpy.log(2.*numpy.pi)
                newqdfeval.append(logsumexp([qdflogeval,outlogeval]))
            else:
                newqdfeval.append(qdflogeval)
            newlogratio.append(qdflogeval
                               -newpropeval[-1])#logsumexp([fidlogeval,fidoutlogeval]))
        newlogratio= numpy.array(newlogratio)
        thisnewlogratio= copy.copy(newlogratio)
        maxnewlogratio= numpy.amax(thisnewlogratio)
        if False:
            argsort_thisnewlogratio= numpy.argsort(thisnewlogratio)[::-1]
            thisnewlogratio-= thisnewlogratio[argsort_thisnewlogratio[2]] #3rd largest
        else:
            thisnewlogratio-= numpy.amax(thisnewlogratio)
        thisnewratio= numpy.exp(thisnewlogratio)
        if len(thisnewratio.shape) > 1 and thisnewratio.shape[1] == 1:
            thisnewratio= numpy.reshape(thisnewratio,(thisnewratio.shape[0]))
        #Rejection sample
        accept= numpy.random.uniform(size=len(thisnewratio))
        accept= (accept < thisnewratio)
        fraccomplete= float(numpy.sum(accept))/ndata
        fracsuccess= float(numpy.sum(accept))/len(thisnewratio)
        if _DEBUG:
            print fraccomplete, fracsuccess, ndata
            print numpy.histogram(thisnewratio,bins=16)
            indx= numpy.argmax(thisnewratio)
            print numpy.array(newvr)[indx], \
                numpy.array(newvt)[indx], \
                numpy.array(newvz)[indx], \
                numpy.array(newrs)[indx], \
                numpy.array(newds)[indx], \
                numpy.array(newls)[indx], \
                numpy.array(newbs)[indx], \
                numpy.array(newfideval)[indx]
            bovy_plot.bovy_print()
            bovy_plot.bovy_plot(numpy.array(newvt),
                                numpy.exp(numpy.array(newqdfeval)),'b,',
                                xrange=[-300.,500.],yrange=[0.,1.])
            bovy_plot.bovy_plot(newvt,
                                numpy.exp(numpy.array(newpropeval+maxnewlogratio)),
                                'g,',
                                overplot=True)
            bovy_plot.bovy_plot(numpy.array(newvt),
                                numpy.exp(numpy.array(newlogratio-maxnewlogratio)),
                                'b,',
                                xrange=[-300.,500.],
                                #                            xrange=[0.,20.],
                                #                            xrange=[0.,3.],
                                #                            xrange=[6.,9.],
                                yrange=[0.001,1.],semilogy=True)
            bovy_plot.bovy_end_print('/home/bovy/public_html/segue-local/test.png')
    #Now collect the samples
    newrs= numpy.array(newrs)[accept][0:ndata]
    newls= numpy.array(newls)[accept][0:ndata]
    newbs= numpy.array(newbs)[accept][0:ndata]
    newplate= numpy.array(newplate)[accept][0:ndata]
    newgr= numpy.array(newgr)[accept][0:ndata]
    newfeh= numpy.array(newfeh)[accept][0:ndata]
    newvr= numpy.array(newvr)[accept][0:ndata]
    newvt= numpy.array(newvt)[accept][0:ndata]
    newvz= numpy.array(newvz)[accept][0:ndata]
    newphi= numpy.array(newphi)[accept][0:ndata]
    newds= numpy.array(newds)[accept][0:ndata]
    newqdfeval= numpy.array(newqdfeval)[accept][0:ndata]
    """
    vx, vy, vz= bovy_coords.galcencyl_to_vxvyvz(newvr,newvt,newvz,newphi,
                                                vsun=[_VRSUN,_VTSUN,_VZSUN])
    vrpmllpmbb= bovy_coords.vxvyvz_to_vrpmllpmbb(vx,vy,vz,newls,newbs,newds,
                                                 XYZ=False,degree=True)
    pmrapmdec= bovy_coords.pmllpmbb_to_pmrapmdec(vrpmllpmbb[:,1],
                                                 vrpmllpmbb[:,2],
                                                 newls,newbs,
                                                 degree=True)
    #Dump everything for debugging the coordinate transformation
    from galpy.util import save_pickles
    save_pickles('dump.sav',
                 newds,newls,newbs,newphi,
                 newvr,newvt,newvz,
                 vx, vy, vz,
                 vrpmllpmbb,
                 pmrapmdec)
    if returnlist:
        out= []
        for ii in range(ndata):
            out.append([newrs[ii],
                        newgr[ii],
                        newfeh[ii],
                        newls[ii],
                        newbs[ii],
                        newplate[ii],
                        newds[ii],
                        False, #outlier?
                        vrpmllpmbb[ii,0],
                        vrpmllpmbb[ii,1],
                        vrpmllpmbb[ii,2]])#,
#                        newqdfeval[ii]])
        return out
    #Load into data
    binned.data.feh[thisdataIndx]= newfeh
    oldgr= thisdata.dered_g-thisdata.dered_r
    oldr= thisdata.dered_r
    if options.noerrs:
        binned.data.dered_r[thisdataIndx]= newrs
    else:
        binned.data.dered_r[thisdataIndx]= newrs\
            +numpy.random.normal(size=numpy.sum(thisdataIndx))\
            *ivezic_dist_gr(oldgr,0., #g-r is all that counts
                            binned.data.feh[thisdataIndx],
                            dg=binned.data[thisdataIndx].g_err,
                            dr=binned.data[thisdataIndx].r_err,
                            dfeh=binned.data[thisdataIndx].feh_err,
                            return_error=True,
                            _returndmr=True)
    binned.data.dered_r[(binned.data.dered_r >= rmax)]= rmax #tweak to make sure everything stays within the observed range
    if False:
        binned.data.dered_r[(binned.data.dered_r <= rmin)]= rmin
    binned.data.dered_g[thisdataIndx]= oldgr+binned.data[thisdataIndx].dered_r
    #Also change plate and l and b
    binned.data.plate[thisdataIndx]= newplate
    radec= bovy_coords.lb_to_radec(newls,newbs,degree=True)
    binned.data.ra[thisdataIndx]= radec[:,0]
    binned.data.dec[thisdataIndx]= radec[:,1]
    binned.data.l[thisdataIndx]= newls
    binned.data.b[thisdataIndx]= newbs
    if options.noerrs:
        binned.data.vr[thisdataIndx]= vrpmllpmbb[:,0]
        binned.data.pmra[thisdataIndx]= pmrapmdec[:,0]
        binned.data.pmdec[thisdataIndx]= pmrapmdec[:,1]
    else:
        binned.data.vr[thisdataIndx]= vrpmllpmbb[:,0]+numpy.random.normal(size=numpy.sum(thisdataIndx))*binned.data.vr_err[thisdataIndx]
        binned.data.pmra[thisdataIndx]= pmrapmdec[:,0]+numpy.random.normal(size=numpy.sum(thisdataIndx))*binned.data.pmra_err[thisdataIndx]
        binned.data.pmdec[thisdataIndx]= pmrapmdec[:,1]+numpy.random.normal(size=numpy.sum(thisdataIndx))*binned.data.pmdec_err[thisdataIndx]
    return binned
コード例 #38
0
def _add_proper_motions_pregaia(data, savefilename):
    #Get proper motions, in a somewhat roundabout way
    pmfile = savefilename.split('.')[0] + '_pms.fits'
    if os.path.exists(pmfile):
        pmdata = fitsread(pmfile, 1)
    else:
        pmdata = numpy.recarray(
            len(data),
            formats=['f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'i4'],
            names=[
                'RA', 'DEC', 'PMRA', 'PMDEC', 'PMRA_ERR', 'PMDEC_ERR',
                'PMMATCH'
            ])
        # Write positions, again ...
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=4', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:UCAC4',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           converters={
                               15: lambda s: float(s.strip() or -9999),
                               16: lambda s: float(s.strip() or -9999),
                               17: lambda s: float(s.strip() or -9999),
                               18: lambda s: float(s.strip() or -9999)
                           },
                           usecols=(4, 5, 15, 16, 17, 18))
        h = esutil.htm.HTM()
        m1, m2, d12 = h.match(data['RA'],
                              data['DEC'],
                              ma[:, 0],
                              ma[:, 1],
                              4. / 3600.,
                              maxmatch=1)
        pmdata['PMMATCH'] = 0
        pmdata['RA'] = data['RA']
        pmdata['DEC'] = data['DEC']
        pmdata['PMMATCH'][m1] = 1
        pmdata['PMRA'][m1] = ma[m2, 2]
        pmdata['PMDEC'][m1] = ma[m2, 3]
        pmdata['PMRA_ERR'][m1] = ma[m2, 4]
        pmdata['PMDEC_ERR'][m1] = ma[m2, 5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitswrite(pmfile, pmdata, clobber=True)
        #To make sure we're using the same format below
        pmdata = fitsread(pmfile, 1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions
    try:  #These already exist currently, but may not always exist
        data = esutil.numpy_util.remove_fields(data, ['PMRA', 'PMDEC'])
    except ValueError:
        pass
    data = esutil.numpy_util.add_fields(data, [('PMRA', numpy.float),
                                               ('PMDEC', numpy.float),
                                               ('PMRA_ERR', numpy.float),
                                               ('PMDEC_ERR', numpy.float),
                                               ('PMMATCH', numpy.int32)])
    data['PMMATCH'] = 0
    h = esutil.htm.HTM()
    m1, m2, d12 = h.match(pmdata['RA'],
                          pmdata['DEC'],
                          data['RA'],
                          data['DEC'],
                          2. / 3600.,
                          maxmatch=1)
    data['PMRA'][m2] = pmdata['PMRA'][m1]
    data['PMDEC'][m2] = pmdata['PMDEC'][m1]
    data['PMRA_ERR'][m2] = pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR'][m2] = pmdata['PMDEC_ERR'][m1]
    data['PMMATCH'][m2] = pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx = data['PMMATCH'] == 1
    data['PMRA'][True ^ pmindx] = -9999.99
    data['PMDEC'][True ^ pmindx] = -9999.99
    data['PMRA_ERR'][True ^ pmindx] = -9999.99
    data['PMDEC_ERR'][True ^ pmindx] = -9999.99
    #Calculate Galactocentric velocities
    data = esutil.numpy_util.add_fields(data, [('GALVR', numpy.float),
                                               ('GALVT', numpy.float),
                                               ('GALVZ', numpy.float)])
    lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True)
    XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0],
                                 lb[:, 1],
                                 data['RC_DIST'],
                                 degree=True)
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],
                                                 data['PMDEC'],
                                                 data['RA'],
                                                 data['DEC'],
                                                 degree=True)
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              lb[:, 0],
                                              lb[:, 1],
                                              data['RC_DIST'],
                                              degree=True)
    vRvTvZ = bovy_coords.vxvyvz_to_galcencyl(
        vxvyvz[:, 0],
        vxvyvz[:, 1],
        vxvyvz[:, 2],
        8. - XYZ[:, 0],
        XYZ[:, 1],
        XYZ[:, 2] + 0.025,
        vsun=[-11.1, 30.24 * 8.,
              7.25])  #Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR'] = vRvTvZ[:, 0]
    data['GALVT'] = vRvTvZ[:, 1]
    data['GALVZ'] = vRvTvZ[:, 2]
    data['GALVR'][True ^ pmindx] = -9999.99
    data['GALVT'][True ^ pmindx] = -9999.99
    data['GALVZ'][True ^ pmindx] = -9999.99
    #Get HSOY proper motions, in a somewhat roundabout way
    pmfile = savefilename.split('.')[0] + '_pms_ppmxl.fits'
    if os.path.exists(pmfile):
        pmdata = fitsread(pmfile, 1)
    else:
        pmdata = numpy.recarray(
            len(data),
            formats=['f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'i4'],
            names=[
                'RA', 'DEC', 'PMRA', 'PMDEC', 'PMRA_ERR', 'PMDEC_ERR',
                'PMMATCH'
            ])
        # Write positions, again ...
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=4', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:I/339/hsoy',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           converters={
                               12: lambda s: float(s.strip() or -9999),
                               13: lambda s: float(s.strip() or -9999),
                               14: lambda s: float(s.strip() or -9999),
                               15: lambda s: float(s.strip() or -9999)
                           },
                           usecols=(3, 4, 12, 13, 14, 15))
        h = esutil.htm.HTM()
        m1, m2, d12 = h.match(data['RA'],
                              data['DEC'],
                              ma[:, 0],
                              ma[:, 1],
                              4. / 3600.,
                              maxmatch=1)
        pmdata['PMMATCH'] = 0
        pmdata['RA'] = data['RA']
        pmdata['DEC'] = data['DEC']
        pmdata['PMMATCH'][m1] = 1
        pmdata['PMRA'][m1] = ma[m2, 2]
        pmdata['PMDEC'][m1] = ma[m2, 3]
        pmdata['PMRA_ERR'][m1] = ma[m2, 4]
        pmdata['PMDEC_ERR'][m1] = ma[m2, 5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitswrite(pmfile, pmdata, clobber=True)
        #To make sure we're using the same format below
        pmdata = fitsread(pmfile, 1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions to ppmxl/HSOY
    data = esutil.numpy_util.add_fields(data, [('PMRA_HSOY', numpy.float),
                                               ('PMDEC_HSOY', numpy.float),
                                               ('PMRA_ERR_HSOY', numpy.float),
                                               ('PMDEC_ERR_HSOY', numpy.float),
                                               ('PMMATCH_HSOY', numpy.int32)])
    data['PMMATCH_HSOY'] = 0
    h = esutil.htm.HTM()
    m1, m2, d12 = h.match(pmdata['RA'],
                          pmdata['DEC'],
                          data['RA'],
                          data['DEC'],
                          2. / 3600.,
                          maxmatch=1)
    data['PMRA_HSOY'][m2] = pmdata['PMRA'][m1]
    data['PMDEC_HSOY'][m2] = pmdata['PMDEC'][m1]
    data['PMRA_ERR_HSOY'][m2] = pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR_HSOY'][m2] = pmdata['PMDEC_ERR'][m1]
    data['PMMATCH_HSOY'][m2] = pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx = data['PMMATCH_HSOY'] == 1
    data['PMRA_HSOY'][True ^ pmindx] = -9999.99
    data['PMDEC_HSOY'][True ^ pmindx] = -9999.99
    data['PMRA_ERR_HSOY'][True ^ pmindx] = -9999.99
    data['PMDEC_ERR_HSOY'][True ^ pmindx] = -9999.99
    #Calculate Galactocentric velocities
    data = esutil.numpy_util.add_fields(data, [('GALVR_HSOY', numpy.float),
                                               ('GALVT_HSOY', numpy.float),
                                               ('GALVZ_HSOY', numpy.float)])
    lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True)
    XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0],
                                 lb[:, 1],
                                 data['RC_DIST'],
                                 degree=True)
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_HSOY'],
                                                 data['PMDEC_HSOY'],
                                                 data['RA'],
                                                 data['DEC'],
                                                 degree=True)
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              lb[:, 0],
                                              lb[:, 1],
                                              data['RC_DIST'],
                                              degree=True)
    vRvTvZ = bovy_coords.vxvyvz_to_galcencyl(
        vxvyvz[:, 0],
        vxvyvz[:, 1],
        vxvyvz[:, 2],
        8. - XYZ[:, 0],
        XYZ[:, 1],
        XYZ[:, 2] + 0.025,
        vsun=[-11.1, 30.24 * 8.,
              7.25])  #Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR_HSOY'] = vRvTvZ[:, 0]
    data['GALVT_HSOY'] = vRvTvZ[:, 1]
    data['GALVZ_HSOY'] = vRvTvZ[:, 2]
    data['GALVR_HSOY'][True ^ pmindx] = -9999.99
    data['GALVT_HSOY'][True ^ pmindx] = -9999.99
    data['GALVZ_HSOY'][True ^ pmindx] = -9999.99
    #Return
    return data
    return None
コード例 #39
0
def lbd_to_galcencyl(l,b,d,degree=True):   
    xyz=bovy_coords.lbd_to_XYZ(l,b,d,degree=degree) ## These are in physical units, DUMB DUMB DUMB!!!
    Rphiz=bovy_coords.XYZ_to_galcencyl(xyz[:,0]/ro,xyz[:,1]/ro,xyz[:,2]/ro,Xsun=1.,Zsun=0.) 
    return (Rphiz[:,0]*ro,Rphiz[:,1],Rphiz[:,2]*ro)
コード例 #40
0
def scatterData(options,args):
    if options.png: ext= 'png'
    else: ext= 'ps'
    #Load sf
    sf= segueSelect.segueSelect(sample=options.sample,sn=True,
                                type_bright='sharprcut',
                                type_faint='sharprcut')
    if options.fake:
        fakefile= open(options.fakefile,'rb')
        fakedata= pickle.load(fakefile)
        fakefile.close()
        #Calculate distance
        ds, ls, bs, rs, grs, fehs= [], [], [], [], [], []
        for ii in range(len(fakedata)):
            ds.append(_ivezic_dist(fakedata[ii][1],fakedata[ii][0],fakedata[ii][2]))
            ls.append(fakedata[ii][3]+(2*numpy.random.uniform()-1.)\
                          *1.49)
            bs.append(fakedata[ii][4]+(2*numpy.random.uniform()-1.)\
                          *1.49)
            rs.append(fakedata[ii][0])
            grs.append(fakedata[ii][1])
            fehs.append(fakedata[ii][2])
        ds= numpy.array(ds)
        ls= numpy.array(ls)
        bs= numpy.array(bs)
        rs= numpy.array(rs)
        grs= numpy.array(grs)
        fehs= numpy.array(fehs)
        XYZ= bovy_coords.lbd_to_XYZ(ls,bs,ds,degree=True)                      
    else:
        #Load data
        XYZ,vxvyvz,cov_vxvyvz,data= readData(metal=options.metal,
                                             select=options.select,
                                             sample=options.sample)
        #Cut out bright stars on faint plates and vice versa
        indx= []
        for ii in range(len(data.feh)):
            if sf.platebright[str(data[ii].plate)] and data[ii].dered_r >= 17.8:
                indx.append(False)
            elif not sf.platebright[str(data[ii].plate)] and data[ii].dered_r < 17.8:
                indx.append(False)
            else:
                indx.append(True)
        indx= numpy.array(indx,dtype='bool')
        data= data[indx]
        XYZ= XYZ[indx,:]
        vxvyvz= vxvyvz[indx,:]
        cov_vxvyvz= cov_vxvyvz[indx,:]
    R= ((8.-XYZ[:,0])**2.+XYZ[:,1]**2.)**0.5
    bovy_plot.bovy_print()
    if options.type.lower() == 'dataxy':
        bovy_plot.bovy_plot(XYZ[:,0],XYZ[:,1],'k,',
                            xlabel=r'$X\ [\mathrm{kpc}]$',
                            ylabel=r'$Y\ [\mathrm{kpc}]$',
                            xrange=[5,-5],yrange=[5,-5],
                            onedhists=True)
    elif options.type.lower() == 'datarz':
        bovy_plot.bovy_plot(R,XYZ[:,2],'k,',
                            xlabel=r'$R\ [\mathrm{kpc}]$',
                            ylabel=r'$Z\ [\mathrm{kpc}]$',
                            xrange=[5,14],
                            yrange=[-4,4],
                            onedhists=True)
    if options.fake:
        bovy_plot.bovy_end_print(os.path.join(args[0],options.type+'_'
                                              +'fake_'+
                                              options.sample+'_'+
                                              options.metal+'.'+ext))
    else:
        bovy_plot.bovy_end_print(os.path.join(args[0],options.type+'_'
                                              +options.sample+'_'+
                                              options.metal+'.'+ext))
コード例 #41
0
ファイル: tgasSelect.py プロジェクト: rferrerc/gaia_tools
 def volume(self,
            vol_func,
            xyz=False,
            MJ=None,
            JK=None,
            ndists=101,
            linearDist=False,
            relative=False,
            ncpu=None):
     """
     NAME:
        volume
     PURPOSE:
        Compute the effective volume of a spatial volume under this effective selection function
     INPUT:
        vol_func - function of 
                      (a) (ra/deg,dec/deg,dist/kpc)
                      (b) heliocentric Galactic X,Y,Z if xyz
                   that returns 1. inside the spatial volume under consideration and 0. outside of it, should be able to take array input of a certain shape and return an array with the same shape
        xyz= (False) if True, vol_func is a function of X,Y,Z (see above)
        MJ= (object-wide default) absolute magnitude in J or an array of samples of absolute  magnitudes in J for the tracer population
        JK= (object-wide default) J-Ks color or an array of samples of the J-Ks color 
        relative= (False) if True, compute the effective volume completeness = effective volume / true volume; computed using the same integration grid, so will be more robust against integration errors (especially due to the finite HEALPix grid for the angular integration). For simple volumes, a more precise effective volume can be computed by using relative=True and multiplying in the correct true volume
        ndists= (101) number of distances to use in the distance integration
        linearDist= (False) if True, integrate in distance rather than distance modulus
        ncpu= (None) if set to an integer, use this many CPUs to compute the effective selection function (only for non-zero extinction)
     OUTPUT
        effective volume
     HISTORY:
        2017-01-18 - Written - Bovy (UofT/CCA)
     """
     # Pre-compute coordinates for integrand evaluation
     if not hasattr(self,'_ra_cen_4vol') or \
             (hasattr(self,'_ndists_4vol') and
              (ndists != self._ndists_4vol or
               linearDist != self._linearDist_4vol)):
         theta,phi= healpy.pix2ang(\
             _BASE_NSIDE,numpy.arange(_BASE_NPIX)\
                 [True^self._tgasSel._exclude_mask_skyonly],nest=True)
         self._ra_cen_4vol = 180. / numpy.pi * phi
         self._dec_cen_4vol = 90. - 180. / numpy.pi * theta
         if linearDist:
             dists = numpy.linspace(0.001, 10., ndists)
             dms = 5. * numpy.log10(dists) + 10.
             self._deltadm_4vol = dists[1] - dists[0]
         else:
             dms = numpy.linspace(0., 18., ndists)
             self._deltadm_4vol = (dms[1] - dms[0]) * numpy.log(10.) / 5.
         self._dists_4vol = 10.**(0.2 * dms - 2.)
         self._tiled_dists3_4vol= numpy.tile(\
             self._dists_4vol**(3.-linearDist),(len(self._ra_cen_4vol),1))
         self._tiled_ra_cen_4vol = numpy.tile(self._ra_cen_4vol,
                                              (len(self._dists_4vol), 1)).T
         self._tiled_dec_cen_4vol = numpy.tile(self._dec_cen_4vol,
                                               (len(self._dists_4vol), 1)).T
         lb = bovy_coords.radec_to_lb(phi, numpy.pi / 2. - theta)
         l = numpy.tile(lb[:, 0], (len(self._dists_4vol), 1)).T.flatten()
         b = numpy.tile(lb[:, 1], (len(self._dists_4vol), 1)).T.flatten()
         XYZ_4vol= \
             bovy_coords.lbd_to_XYZ(l,b,
                numpy.tile(self._dists_4vol,
                           (len(self._ra_cen_4vol),1)).flatten())
         self._X_4vol = numpy.reshape(
             XYZ_4vol[:,
                      0], (len(self._ra_cen_4vol), len(self._dists_4vol)))
         self._Y_4vol = numpy.reshape(
             XYZ_4vol[:,
                      1], (len(self._ra_cen_4vol), len(self._dists_4vol)))
         self._Z_4vol = numpy.reshape(
             XYZ_4vol[:,
                      2], (len(self._ra_cen_4vol), len(self._dists_4vol)))
     # Cache effective-selection function
     MJ, JK = self._parse_mj_jk(MJ, JK)
     new_hash = hashlib.md5(numpy.array([MJ, JK])).hexdigest()
     if not hasattr(self,'_vol_MJ_hash') or new_hash != self._vol_MJ_hash \
          or (hasattr(self,'_ndists_4vol') and
              (ndists != self._ndists_4vol or
               linearDist != self._linearDist_4vol)):
         # Need to update the effective-selection function
         if isinstance(self._dmap3d, mwdust.Zero):  #easy bc same everywhere
             effsel_4vol = self(self._dists_4vol,
                                self._ra_cen_4vol[0],
                                self._dec_cen_4vol[0],
                                MJ=MJ,
                                JK=JK)
             self._effsel_4vol = numpy.tile(effsel_4vol,
                                            (len(self._ra_cen_4vol), 1))
         else:  # Need to treat each los separately
             if ncpu is None:
                 self._effsel_4vol = numpy.empty(
                     (len(self._ra_cen_4vol), len(self._dists_4vol)))
                 for ii,(ra_cen, dec_cen) \
                         in enumerate(tqdm.tqdm(zip(self._ra_cen_4vol,
                                                    self._dec_cen_4vol))):
                     self._effsel_4vol[ii] = self(self._dists_4vol,
                                                  ra_cen,
                                                  dec_cen,
                                                  MJ=MJ,
                                                  JK=JK)
             else:
                 multiOut= multi.parallel_map(\
                     lambda x: self(self._dists_4vol,
                                    self._ra_cen_4vol[x],
                                    self._dec_cen_4vol[x],MJ=MJ,JK=JK),
                     range(len(self._ra_cen_4vol)),
                     numcores=ncpu)
                 self._effsel_4vol = numpy.array(multiOut)
         self._vol_MJ_hash = new_hash
         self._ndists_4vol = ndists
         self._linearDist_4vol = linearDist
     out = 0.
     if xyz:
         out= numpy.sum(\
             self._effsel_4vol\
                 *vol_func(self._X_4vol,self._Y_4vol,self._Z_4vol)\
                 *self._tiled_dists3_4vol)
     else:
         out= numpy.sum(\
             self._effsel_4vol\
                 *vol_func(self._ra_cen_4vol,self._dec_cen_4vol,
                           self._dists_4vol)\
                 *self._tiled_dists3_4vol)
     if relative:
         if not hasattr(self, '_tgasEffSelUniform'):
             tgasSelUniform = tgasSelectUniform(comp=1.)
             self._tgasEffSelUniform = tgasEffectiveSelect(tgasSelUniform)
         true_volume = self._tgasEffSelUniform.volume(vol_func,
                                                      xyz=xyz,
                                                      ndists=ndists,
                                                      linearDist=linearDist,
                                                      relative=False)
     else:
         true_volume = 1.
     return out*healpy.nside2pixarea(_BASE_NSIDE)*self._deltadm_4vol\
         /true_volume
コード例 #42
0
def make_rcsample(parser):
    options, args = parser.parse_args()
    savefilename = options.savefilename
    if savefilename is None:
        #Create savefilename if not given
        savefilename = os.path.join(
            appath._APOGEE_DATA, 'rcsample_' + appath._APOGEE_REDUX + '.fits')
        print("Saving to %s ..." % savefilename)
    #Read the base-sample
    data = apread.allStar(adddist=_ADDHAYDENDIST, rmdups=options.rmdups)
    #Remove a bunch of fields that we do not want to keep
    data = esutil.numpy_util.remove_fields(data, [
        'TARGET_ID', 'FILE', 'AK_WISE', 'SFD_EBV', 'SYNTHVHELIO_AVG',
        'SYNTHVSCATTER', 'SYNTHVERR', 'SYNTHVERR_MED', 'RV_TEFF', 'RV_LOGG',
        'RV_FEH', 'RV_ALPHA', 'RV_CARB', 'RV_CCFWHM', 'RV_AUTOFWHM',
        'SYNTHSCATTER', 'STABLERV_CHI2', 'STABLERV_RCHI2',
        'STABLERV_CHI2_PROB', 'CHI2_THRESHOLD', 'APSTAR_VERSION',
        'ASPCAP_VERSION', 'RESULTS_VERSION', 'WASH_M', 'WASH_M_ERR', 'WASH_T2',
        'WASH_T2_ERR', 'DDO51', 'DDO51_ERR', 'IRAC_3_6', 'IRAC_3_6_ERR',
        'IRAC_4_5', 'IRAC_4_5_ERR', 'IRAC_5_8', 'IRAC_5_8_ERR', 'IRAC_8_0',
        'IRAC_8_0_ERR', 'WISE_4_5', 'WISE_4_5_ERR', 'TARG_4_5', 'TARG_4_5_ERR',
        'WASH_DDO51_GIANT_FLAG', 'WASH_DDO51_STAR_FLAG', 'REDUCTION_ID',
        'SRC_H', 'PM_SRC'
    ])
    # More
    if appath._APOGEE_REDUX.lower() == 'l33':
        data = esutil.numpy_util.remove_fields(data, [
            'GAIA_SOURCE_ID', 'GAIA_PARALLAX', 'GAIA_PARALLAX_ERROR',
            'GAIA_PMRA', 'GAIA_PMRA_ERROR', 'GAIA_PMDEC', 'GAIA_PMDEC_ERROR',
            'GAIA_PHOT_G_MEAN_MAG', 'GAIA_PHOT_BP_MEAN_MAG',
            'GAIA_PHOT_RP_MEAN_MAG', 'GAIA_RADIAL_VELOCITY',
            'GAIA_RADIAL_VELOCITY_ERROR', 'GAIA_R_EST', 'GAIA_R_LO',
            'GAIA_R_HI', 'TEFF_SPEC', 'LOGG_SPEC'
        ])
    if not appath._APOGEE_REDUX.lower() == 'current' \
            and not 'l3' in appath._APOGEE_REDUX \
            and int(appath._APOGEE_REDUX[1:]) < 500:
        data = esutil.numpy_util.remove_fields(data, ['ELEM'])
    #Select red-clump stars
    jk = data['J0'] - data['K0']
    z = isodist.FEH2Z(data['METALS'], zsolar=0.017)
    if 'l31' in appath._APOGEE_REDUX:
        logg = data['LOGG']
    elif 'l30' in appath._APOGEE_REDUX:
        logg = data['LOGG']
    elif appath._APOGEE_REDUX.lower() == 'current' \
            or int(appath._APOGEE_REDUX[1:]) > 600:
        if False:
            #Use my custom logg calibration that's correct for the RC
            logg = (1. - 0.042) * data['FPARAM'][:, paramIndx('logg')] - 0.213
            lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1.
            logg[lowloggindx] = data['FPARAM'][lowloggindx,
                                               paramIndx('logg')] - 0.255
            hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8
            logg[hiloggindx] = data['FPARAM'][hiloggindx,
                                              paramIndx('logg')] - 0.3726
        else:
            #Use my custom logg calibration that's correct on average
            logg = (1. + 0.03) * data['FPARAM'][:, paramIndx('logg')] - 0.37
            lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1.
            logg[lowloggindx] = data['FPARAM'][lowloggindx,
                                               paramIndx('logg')] - 0.34
            hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8
            logg[hiloggindx] = data['FPARAM'][hiloggindx,
                                              paramIndx('logg')] - 0.256
    else:
        logg = data['LOGG']
    indx= (jk < 0.8)*(jk >= 0.5)\
        *(z <= 0.06)\
        *(z <= rcmodel.jkzcut(jk,upper=True))\
        *(z >= rcmodel.jkzcut(jk))\
        *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\
        *(logg+0.1*('l31' in appath._APOGEE_REDUX
                    or 'l33' in appath._APOGEE_REDUX) \
              <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
    data = data[indx]
    #Add more aggressive flag cut
    data = esutil.numpy_util.add_fields(data, [('ADDL_LOGG_CUT', numpy.int32)])
    data['ADDL_LOGG_CUT'] = (
        (data['TEFF'] - 4800.) / 1000. + 2.75) > data['LOGG']
    if options.loggcut:
        data = data[data['ADDL_LOGG_CUT'] == 1]
    print("Making catalog of %i objects ..." % len(data))
    #Add distances
    data = esutil.numpy_util.add_fields(data, [('RC_DIST', float),
                                               ('RC_DM', float),
                                               ('RC_GALR', float),
                                               ('RC_GALPHI', float),
                                               ('RC_GALZ', float)])
    rcd = rcmodel.rcdist()
    jk = data['J0'] - data['K0']
    z = isodist.FEH2Z(data['METALS'], zsolar=0.017)
    data['RC_DIST'] = rcd(jk, z, appmag=data['K0']) * options.distfac
    data['RC_DM'] = 5. * numpy.log10(data['RC_DIST']) + 10.
    XYZ = bovy_coords.lbd_to_XYZ(data['GLON'],
                                 data['GLAT'],
                                 data['RC_DIST'],
                                 degree=True)
    RphiZ = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0],
                                         XYZ[:, 1],
                                         XYZ[:, 2],
                                         Xsun=8.15,
                                         Zsun=0.0208)
    R = RphiZ[:, 0]
    phi = RphiZ[:, 1]
    Z = RphiZ[:, 2]
    data['RC_GALR'] = R
    data['RC_GALPHI'] = phi
    data['RC_GALZ'] = Z
    #Save
    fitswrite(savefilename, data, clobber=True)
    # Add Tycho-2 matches
    if options.tyc2:
        data = esutil.numpy_util.add_fields(data, [('TYC2MATCH', numpy.int32),
                                                   ('TYC1', numpy.int32),
                                                   ('TYC2', numpy.int32),
                                                   ('TYC3', numpy.int32)])
        data['TYC2MATCH'] = 0
        data['TYC1'] = -1
        data['TYC2'] = -1
        data['TYC3'] = -1
        # Write positions
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=2', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:Tycho2',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Directly match on input RA
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           usecols=(1, 2, 7, 8, 9))
        iis = numpy.arange(len(data))
        mai = [iis[data['RA'] == ma[ii, 0]][0] for ii in range(len(ma))]
        data['TYC2MATCH'][mai] = 1
        data['TYC1'][mai] = ma[:, 2]
        data['TYC2'][mai] = ma[:, 3]
        data['TYC3'][mai] = ma[:, 4]
        os.remove(posfilename)
        os.remove(resultfilename)
    if not options.nostat:
        #Determine statistical sample and add flag
        apo = apogee.select.apogeeSelect()
        statIndx = apo.determine_statistical(data)
        mainIndx = apread.mainIndx(data)
        data = esutil.numpy_util.add_fields(data, [('STAT', numpy.int32),
                                                   ('INVSF', float)])
        data['STAT'] = 0
        data['STAT'][statIndx * mainIndx] = 1
        for ii in range(len(data)):
            if (statIndx * mainIndx)[ii]:
                data['INVSF'][ii] = 1. / apo(data['LOCATION_ID'][ii],
                                             data['H'][ii])
            else:
                data['INVSF'][ii] = -1.
    if options.nopm:
        fitswrite(savefilename, data, clobber=True)
        return None
    data = _add_proper_motions(data, savefilename)
    # Save
    fitswrite(savefilename, data, clobber=True)
    return None
コード例 #43
0
ファイル: Orbit.py プロジェクト: ritabanc/galpy
    def __init__(self,vxvv=None,uvw=False,lb=False,
                 radec=False,vo=235.,ro=8.5,zo=0.025,
                 solarmotion='hogg'):
        """
        NAME:

           __init__

        PURPOSE:

           Initialize an Orbit instance

        INPUT:

           vxvv - initial conditions 
                  3D can be either

              1) in Galactocentric cylindrical coordinates [R,vR,vT(,z,vz,phi)]

              2) [ra,dec,d,mu_ra, mu_dec,vlos] in [deg,deg,kpc,mas/yr,mas/yr,km/s] (all J2000.0; mu_ra = mu_ra * cos dec)

              3) [ra,dec,d,U,V,W] in [deg,deg,kpc,km/s,km/s,kms]

              4) (l,b,d,mu_l, mu_b, vlos) in [deg,deg,kpc,mas/yr,mas/yr,km/s) (all J2000.0; mu_l = mu_l * cos b)

              5) [l,b,d,U,V,W] in [deg,deg,kpc,km/s,km/s,kms]

           4) and 5) also work when leaving out b and mu_b/W

        OPTIONAL INPUTS:

           radec - if True, input is 2) (or 3) above

           uvw - if True, velocities are UVW

           lb - if True, input is 4) or 5) above

           vo - circular velocity at ro

           ro - distance from vantage point to GC (kpc)

           zo - offset toward the NGP of the Sun wrt the plane (kpc)

           solarmotion - 'hogg' or 'dehnen', or 'schoenrich', or value in 
           [-U,V,W]

        OUTPUT:

           instance

        HISTORY:

           2010-07-20 - Written - Bovy (NYU)

        """
        if isinstance(solarmotion,str) and solarmotion.lower() == 'hogg':
            vsolar= nu.array([-10.1,4.0,6.7])/vo
        elif isinstance(solarmotion,str) and solarmotion.lower() == 'dehnen':
            vsolar= nu.array([-10.,5.25,7.17])/vo
        elif isinstance(solarmotion,str) \
                and solarmotion.lower() == 'schoenrich':
            vsolar= nu.array([-11.1,12.24,7.25])/vo
        else:
            vsolar= nu.array(solarmotion)/vo           
        if radec or lb:
            if radec:
                l,b= coords.radec_to_lb(vxvv[0],vxvv[1],degree=True)
            elif len(vxvv) == 4:
                l, b= vxvv[0], 0.
            else:
                l,b= vxvv[0],vxvv[1]
            if uvw:
                X,Y,Z= coords.lbd_to_XYZ(l,b,vxvv[2],degree=True)
                vx= vxvv[3]
                vy= vxvv[4]
                vz= vxvv[5]
            else:
                if radec:
                    pmll, pmbb= coords.pmrapmdec_to_pmllpmbb(vxvv[3],vxvv[4],
                                                             vxvv[0],vxvv[1],
                                                             degree=True)
                    d, vlos= vxvv[2], vxvv[5]
                elif len(vxvv) == 4:
                    pmll, pmbb= vxvv[2], 0.
                    d, vlos= vxvv[1], vxvv[3]
                else:
                    pmll, pmbb= vxvv[3], vxvv[4]
                    d, vlos= vxvv[2], vxvv[5]
                X,Y,Z,vx,vy,vz= coords.sphergal_to_rectgal(l,b,d,
                                                           vlos,pmll, pmbb,
                                                           degree=True)
            X/= ro
            Y/= ro
            Z/= ro
            vx/= vo
            vy/= vo
            vz/= vo
            vsun= nu.array([0.,1.,0.,])+vsolar
            R, phi, z= coords.XYZ_to_galcencyl(X,Y,Z,Zsun=zo/ro)
            vR, vT,vz= coords.vxvyvz_to_galcencyl(vx,vy,vz,
                                                  R,phi,z,
                                                  vsun=vsun,galcen=True)
            if lb and len(vxvv) == 4: vxvv= [R,vR,vT,phi]
            else: vxvv= [R,vR,vT,z,vz,phi]
        self.vxvv= vxvv
        if len(vxvv) == 2:
            self._orb= linearOrbit(vxvv=vxvv)
        elif len(vxvv) == 3:
            self._orb= planarROrbit(vxvv=vxvv)
        elif len(vxvv) == 4:
            self._orb= planarOrbit(vxvv=vxvv)
        elif len(vxvv) == 5:
            self._orb= RZOrbit(vxvv=vxvv)
        elif len(vxvv) == 6:
            self._orb= FullOrbit(vxvv=vxvv)
コード例 #44
0
def calc_actions(ra_deg, dec_deg, d_kpc, pm_ra_masyr, pm_dec_masyr, v_los_kms):
    ra_rad = ra_deg * (np.pi / 180.)  # RA [rad]
    dec_rad = dec_deg * (np.pi / 180.)  # dec [rad]

    # Galactocentric position of the Sun:
    X_gc_sun_kpc = 8.  # [kpc]
    Z_gc_sun_kpc = 0.025  # [kpc]

    # Galactocentric velocity of the Sun:
    vX_gc_sun_kms = -9.58  # = -U              [kms]
    vY_gc_sun_kms = 10.52 + 220.  # = V+v_circ(R_Sun) [kms]
    vZ_gc_sun_kms = 7.01  # = W               [kms]

    # a. convert spatial coordinates (ra,dec,d) to (R,z,phi)

    # (ra,dec) --> Galactic coordinates (l,b):
    lb = bovy_coords.radec_to_lb(ra_rad, dec_rad, degree=False, epoch=2000.0)
    l_rad = lb[:, 0]
    b_rad = lb[:, 1]

    # (l,b,d) --> Galactocentric cartesian coordinates (x,y,z):
    xyz = bovy_coords.lbd_to_XYZ(l_rad, b_rad, d_kpc, degree=False)
    x_kpc = xyz[:, 0]
    y_kpc = xyz[:, 1]
    z_kpc = xyz[:, 2]

    # (x,y,z) --> Galactocentric cylindrical coordinates (R,z,phi):
    Rzphi = bovy_coords.XYZ_to_galcencyl(x_kpc,
                                         y_kpc,
                                         z_kpc,
                                         Xsun=X_gc_sun_kpc,
                                         Zsun=Z_gc_sun_kpc)
    R_kpc = Rzphi[:, 0]
    phi_rad = Rzphi[:, 1]
    z_kpc = Rzphi[:, 2]

    # b. convert velocities (pm_ra,pm_dec,vlos) to (vR,vz,vT)

    # (pm_ra,pm_dec) --> (pm_l,pm_b):
    pmlpmb = bovy_coords.pmrapmdec_to_pmllpmbb(pm_ra_masyr,
                                               pm_dec_masyr,
                                               ra_rad,
                                               dec_rad,
                                               degree=False,
                                               epoch=2000.0)
    pml_masyr = pmlpmb[:, 0]
    pmb_masyr = pmlpmb[:, 1]

    # (v_los,pm_l,pm_b) & (l,b,d) --> (vx,vy,vz):
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(v_los_kms,
                                              pml_masyr,
                                              pmb_masyr,
                                              l_rad,
                                              b_rad,
                                              d_kpc,
                                              XYZ=False,
                                              degree=False)
    vx_kms = vxvyvz[:, 0]
    vy_kms = vxvyvz[:, 1]
    vz_kms = vxvyvz[:, 2]

    # (vx,vy,vz) & (x,y,z) --> (vR,vT,vz):
    vRvTvZ = bovy_coords.vxvyvz_to_galcencyl(
        vx_kms,
        vy_kms,
        vz_kms,
        R_kpc,
        phi_rad,
        z_kpc,
        vsun=[vX_gc_sun_kms, vY_gc_sun_kms, vZ_gc_sun_kms],
        galcen=True)
    vR_kms = vRvTvZ[:, 0]
    vT_kms = vRvTvZ[:, 1]
    vz_kms = vRvTvZ[:, 2]

    print("R = ", R_kpc, "\t kpc")
    print("phi = ", phi_rad, "\t rad")
    print("z = ", z_kpc, "\t kpc")
    print("v_R = ", vR_kms, "\t km/s")
    print("v_T = ", vT_kms, "\t km/s")
    print("v_z = ", vz_kms, "\t km/s")
    return vz_kms
コード例 #45
0
ファイル: bush_coords.py プロジェクト: jlbush23/NASA_LCs
def comove_coords(t, lit_gaia):
    ###could add other outputs like Vr, pred, in addition to sep,sep3d,and Vtan off
    ra = t.target_df.squeeze()['ra'] * u.deg
    dec = t.target_df.squeeze()['dec'] * u.deg
    distance = (1000.0 / t.target_df.squeeze()['parallax']) * u.pc
    radvel = t.target_df.squeeze(
    )['dr2_radial_velocity'] * u.kilometer / u.second
    pmra = t.target_df.squeeze()['pmra'] * u.mas / u.year
    pmdec = t.target_df.squeeze()['pmdec'] * u.mas / u.year



    Pcoord = SkyCoord( ra=ra, dec=dec, \
                      distance=distance, frame='icrs' , \
                      radial_velocity=radvel , \
                      pm_ra_cosdec= pmra , pm_dec= pmdec )

    # # Query Gaia with search radius and parallax cut
    # # Note, a cut on parallax_error was added because searches at low galactic latitude
    # # return an overwhelming number of noisy sources that scatter into the search volume - ALK 20210325
    # print('Querying Gaia for neighbors')
    # if (searchradpc < Pcoord.distance):
    #     sqltext = "SELECT * FROM gaiaedr3.gaia_source WHERE CONTAINS( \
    #         POINT('ICRS',gaiaedr3.gaia_source.ra,gaiaedr3.gaia_source.dec), \
    #         CIRCLE('ICRS'," + str(Pcoord.ra.value) +","+ str(Pcoord.dec.value) +","+ str(searchraddeg.value) +"))\
    #         =1 AND parallax>" + str(minpar.value) + " AND parallax_error<0.5;"
    # if (searchradpc >= Pcoord.distance):
    #     sqltext = "SELECT * FROM gaiaedr3.gaia_source WHERE parallax>" + str(minpar.value) + " AND parallax_error<0.5;"
    #     print('Note, using all-sky search')
    # if verbose == True:
    #     print(sqltext)
    #     print()

    # job = Gaia.launch_job_async(sqltext , dump_to_file=False)
    # r = job.get_results()

    # if verbose == True: print('Number of records: ',len(r['ra']))

    # # Construct coordinates array for all stars returned in cone search

    # gaiacoord = SkyCoord( ra=r['ra'] , dec=r['dec'] , distance=(1000.0/r['parallax'])*u.parsec , \
    #                      frame='icrs' , \
    #                      pm_ra_cosdec=r['pmra'] , pm_dec=r['pmdec'] )

    lit_sc = SkyCoord(
        ra=lit_gaia.ra.to_numpy(dtype='float') * u.deg,
        dec=lit_gaia.dec.to_numpy(dtype='float') * u.deg,
        pm_ra_cosdec=lit_gaia.pmra.to_numpy(dtype='float') * u.mas / u.yr,
        pm_dec=lit_gaia.pmdec.to_numpy(dtype='float') * u.mas / u.yr,
        distance=u.pc * (1000. / lit_gaia.parallax.to_numpy(dtype='float')))

    sep = lit_sc.separation(Pcoord)  #in degrees
    sep3d = lit_sc.separation_3d(Pcoord)  #in parsec

    Pllbb = bc.radec_to_lb(Pcoord.ra.value, Pcoord.dec.value, degree=True)
    Ppmllpmbb = bc.pmrapmdec_to_pmllpmbb( Pcoord.pm_ra_cosdec.value , Pcoord.pm_dec.value , \
                                         Pcoord.ra.value , Pcoord.dec.value , degree=True )
    Pvxvyvz   = bc.vrpmllpmbb_to_vxvyvz(Pcoord.radial_velocity.value , Ppmllpmbb[0] , Ppmllpmbb[1] , \
                                   Pllbb[0] , Pllbb[1] , Pcoord.distance.value/1000.0 , XYZ=False , degree=True)

    Gllbb = bc.radec_to_lb(lit_sc.ra.value, lit_sc.dec.value, degree=True)
    Gxyz = bc.lbd_to_XYZ(Gllbb[:, 0],
                         Gllbb[:, 1],
                         lit_sc.distance / 1000.0,
                         degree=True)
    Gvrpmllpmbb = bc.vxvyvz_to_vrpmllpmbb( \
                    Pvxvyvz[0]*np.ones(len(Gxyz[:,0])) , Pvxvyvz[1]*np.ones(len(Gxyz[:,1])) , Pvxvyvz[2]*np.ones(len(Gxyz[:,2])) , \
                    Gxyz[:,0] , Gxyz[:,1] , Gxyz[:,2] , XYZ=True)
    Gpmrapmdec = bc.pmllpmbb_to_pmrapmdec(Gvrpmllpmbb[:, 1],
                                          Gvrpmllpmbb[:, 2],
                                          Gllbb[:, 0],
                                          Gllbb[:, 1],
                                          degree=True)

    # Code in case I want to do chi^2 cuts someday
    Gvtanerr = 1.0 * np.ones(len(Gxyz[:, 0]))
    Gpmerr = Gvtanerr * 206265000.0 * 3.154e7 / (lit_sc.distance.value *
                                                 3.086e13)

    Gchi2 = ((Gpmrapmdec[:, 0] - lit_sc.pm_ra_cosdec.value)**2 +
             (Gpmrapmdec[:, 1] - lit_sc.pm_dec.value)**2)**0.5
    vtanoff = Gchi2 / Gpmerr  #this is reported Vtan,off(km/s)

    ##vr pred
    vr_pred = Gvrpmllpmbb[:, 0]

    #create results dataframe
    res = pd.DataFrame(
        data={
            'tic': lit_gaia.tic.to_numpy(dtype='str'),
            'designation': lit_gaia.designation.to_numpy(dtype='str'),
            'ra': lit_sc.ra.value,
            'dec': lit_sc.dec.value,
            'sep2D(deg)': sep.value,
            'sep3D(pc)': sep3d.value,
            'Vtan,off(km/s)': vtanoff,
            'Vr,pred(km/s)': vr_pred
        })

    return (res)
コード例 #46
0
ファイル: gaia_cut.py プロジェクト: jtbuch/darkdisk
    print("optical cut completed!")

    radeg = stars_categorized['ra']
    decdeg = stars_categorized['dec']
    pmra = stars_categorized['pmra']
    pmdec = stars_categorized['pmdec']

    pml, pmb = ProperMotionTransform(radeg, decdeg, pmra, pmdec)

    hipID = stars_categorized['hip']
    ldeg = stars_categorized['l']
    bdeg = stars_categorized['b']
    plx = stars_categorized['parallax']
    e_plx = stars_categorized['parallax_error']

    XYZ = bovy_coords.lbd_to_XYZ(ldeg, bdeg, 1. / plx, degree=True)
    z_cyl = XYZ[:, 2]
    z_pc = XYZ[:, 2] * 1000.

    zRangeList_upper = zRangeList + zStepWidth / 2
    zRangeList_lower = zRangeList - zStepWidth / 2
    evfs_weight = np.array([])
    for i, z_i in enumerate(z_cyl):
        zPosition = (z_i < zRangeList_upper) * (z_i >= zRangeList_lower)
        if np.sum(zPosition) == 0:
            print((z_i < zRangeList_upper), (z_i >= zRangeList_lower))
        evfs_weight = np.append(evfs_weight, 1. / evfs_out[zPosition])

    if len(evfs_weight) != len(z_cyl):
        print("Need a more inclusive evfs volumn! (larger z evfs range)")