コード例 #1
0
def suggest(
    new_ids,
    domain,
    trials,
    seed,
    warmup_cutoff=15,  # -- enough for mean & var stats
    n_buckshots=10000,
    n_finetunes=50,
    stop_at=None,
    plot_contours=None,
    gp_fit_method='ml2',
    failure_loss=None,
    max_ei_thresh=None,
):
    """
    Parameters
    ----------

    """
    # XXX would like to cache on domain, but
    #     fmin(fn, space) always rebuilds a new domain for given fn and space
    key = domain.expr
    try:
        dgp = _suggest_domain_cache[key]
    except KeyError:
        print 'CREATING GP_EI for', domain
        dgp = _suggest_domain_cache[key] = DomainGP_EI(domain)
    if len(trials.trials):
        X, y, var_y = dgp._X_y_var_y(trials, failure_loss=failure_loss)

    if len(trials.trials) <= warmup_cutoff:
        if len(trials.trials):
            dgp.gpr.prior_mean = np.mean(y)
            dgp.gpr.prior_var = np.var(y)
        return rand.suggest(new_ids, domain, trials, seed)

    if stop_at is not None and min(trials.losses()) < stop_at:
        return []

    dgp.fit_gpr(X, y, var_y, method=gp_fit_method)
    dgp.set_thresholds(y, var_y, max_ei_thresh=max_ei_thresh)
    dgp._cost_deriv_reuse_cholesky = 0

    print 'EI: Best after %i trials: %f' % (len(y), np.min(y))
    #dgp.gpr._params_list[0][:] = 0
    rng = np.random.RandomState(seed)
    t0 = time.time()
    best_pt = dgp.optimize_over_X(
        n_buckshots=n_buckshots,
        n_finetunes=n_finetunes,
        rng=rng,
    )
    t1 = time.time()
    print 'optimizing surrogate took', (t1 - t0)
    if plot_contours:
        plot_contours(dgp, 2, dgp._lbound, best_pt)
    new_id, = new_ids
    #print 'REI: Best pt', best_pt
    return SuggestBest(domain, trials, seed, best_pt)(new_id)
コード例 #2
0
ファイル: hpsuggest_ei.py プロジェクト: x75/hyperopt-gpsmbo
def suggest(new_ids, domain, trials, seed,
            warmup_cutoff=15, # -- enough for mean & var stats
            n_buckshots=10000,
            n_finetunes=50,
            stop_at=None,
            plot_contours=None,
            gp_fit_method='ml2',
            failure_loss=None,
            max_ei_thresh=None,
            ):
    """
    Parameters
    ----------

    """
    # XXX would like to cache on domain, but
    #     fmin(fn, space) always rebuilds a new domain for given fn and space
    key = domain.expr
    try:
        dgp = _suggest_domain_cache[key]
    except KeyError:
        print  'CREATING GP_EI for', domain
        dgp = _suggest_domain_cache[key] = DomainGP_EI(domain)
    if len(trials.trials):
        X, y, var_y = dgp._X_y_var_y(trials, failure_loss=failure_loss)

    if len(trials.trials) <= warmup_cutoff:
        if len(trials.trials):
            dgp.gpr.prior_mean = np.mean(y)
            dgp.gpr.prior_var = np.var(y)
        return rand.suggest(new_ids, domain, trials, seed)

    if stop_at is not None and min(trials.losses()) < stop_at:
        return []

    dgp.fit_gpr(X, y, var_y, method=gp_fit_method)
    dgp.set_thresholds(y, var_y, max_ei_thresh=max_ei_thresh)
    dgp._cost_deriv_reuse_cholesky = 0

    print 'EI: Best after %i trials: %f' % ( len(y), np.min(y))
    #dgp.gpr._params_list[0][:] = 0
    rng = np.random.RandomState(seed)
    t0 = time.time()
    best_pt = dgp.optimize_over_X(
        n_buckshots=n_buckshots,
        n_finetunes=n_finetunes,
        rng=rng,
        )
    t1 = time.time()
    print 'optimizing surrogate took', (t1 - t0)
    if plot_contours:
        # plot_contours(dgp, 2, dgp._lbound, best_pt)
        plot_contours(dgp, 2, best_pt)
    new_id, = new_ids
    #print 'REI: Best pt', best_pt
    return SuggestBest(domain, trials, seed, best_pt)(new_id)
コード例 #3
0
ファイル: scrap.py プロジェクト: afcarl/hyperopt-gpsmbo
def suggest(new_ids, domain, trials, seed,
            warmup_cutoff=1,
            n_buckshots=10000,
            n_finetunes=50,
            best_possible=-np.inf,
            #best_headroom=1.0,
            stop_at=None,
            plot_contours=None,
            ):
    """
    Parameters
    ----------

    """
    if stop_at is not None and stop_at < best_possible:
        raise ValueError(
            ('If stop_at is specified'
             ', it (%f) must be greater than best_possible (%f)') % (
                 stop_at, best_possible))

    if len(trials.trials) <= warmup_cutoff:
        return rand.suggest(new_ids, domain, trials, seed)

    try:
        dgp = _suggest_domain_cache[domain]
    except KeyError:
        dgp = _suggest_domain_cache[domain] = DomainGP_LUCB(domain)

    if stop_at is not None and min(trials.losses()) < stop_at:
        return []

    X, y, var_y = dgp._X_y_var_y(trials)
    dgp.fit_gpr(X, y, var_y)
    dgp._optimism = 1.0 #0.5 * dgp._optimism
    dgp._ubound = np.min(y)
    dgp._lbound = best_possible

    #yy = y + np.sqrt(np.maximum(var_y, dgp.gpr.s_var_min.eval()))
    #dgp._ubound = np.min(yy)
        #max(opt_lbound,  - best_headroom)
    #print 'LUCB interval:', dgp._lbound, dgp._ubound

    print 'LUCB: Best after %i trials: %f' % ( len(y), np.min(y))
    #dgp.gpr._params_list[0][:] = 0
    rng = np.random.RandomState(seed)
    best_pt = dgp.optimize_over_X(
        n_buckshots=n_buckshots,
        n_finetunes=n_finetunes,
        rng=rng,
        )
    if plot_contours:
        plot_contours(dgp, 2, dgp._lbound, best_pt)
    new_id, = new_ids
    #print 'LUCB: Best pt', best_pt
    return SuggestBest(domain, trials, seed, best_pt)(new_id)
コード例 #4
0
ファイル: test_rand.py プロジェクト: xttx123/hyperopt
    def test_seeding(self):
        # -- assert that the seeding works a particular way

        domain = coin_flip()
        docs = rand.suggest(list(range(10)), domain, Trials(), seed=123)
        trials = trials_from_docs(docs)
        idxs, vals = miscs_to_idxs_vals(trials.miscs)

        # Passes Nov 8 / 2013
        self.assertEqual(list(idxs["flip"]), list(range(10)))
        self.assertEqual(list(vals["flip"]), [0, 1, 0, 0, 0, 0, 0, 1, 1, 0])
コード例 #5
0
ファイル: test_rand.py プロジェクト: AiTeamUSTC/GPE
    def test_seeding(self):
        # -- assert that the seeding works a particular way

        domain = coin_flip()
        docs = rand.suggest(range(10), domain, Trials(), seed=123)
        trials = trials_from_docs(docs)
        idxs, vals = miscs_to_idxs_vals(trials.miscs)

        # Passes Nov 8 / 2013 
        self.assertEqual(list(idxs['flip']), range(10))
        self.assertEqual(list(vals['flip']), [0, 1, 0, 0, 0, 0, 0, 1, 1, 0])
コード例 #6
0
def suggest(
    new_ids,
    domain,
    trials,
    seed,
    warmup_cutoff=15,
    n_buckshots=10000,
    n_finetunes=50,
    stop_at=None,
    plot_contours=None,
):
    """
    Parameters
    ----------

    """
    if len(trials.trials) <= warmup_cutoff:
        return rand.suggest(new_ids, domain, trials, seed)

    # XXX would like to cache on domain, but
    #     fmin(fn, space) always rebuilds a new domain for given fn and space
    key = domain.expr
    try:
        dgp = _suggest_domain_cache[key]
    except KeyError:
        dgp = _suggest_domain_cache[key] = DomainGP_UCB(domain)

    if stop_at is not None and min(trials.losses()) < stop_at:
        return []

    X, y, var_y = dgp._X_y_var_y(trials)
    dgp.fit_gpr(X, y, var_y)
    print 'Fit ->', dgp.gpr._params_list[0]
    dgp._ucb_z = 0.2
    # XXX: radius should depend on dimensionality?
    #     1e-8 worked for branin in case current one doesn't
    dgp._K_thresh = (1 - 1e-5)  # / (1000 + len(y) ** 2))

    print 'UCB: Best after %i trials: %f' % (len(y), np.min(y))
    #dgp.gpr._params_list[0][:] = 0
    rng = np.random.RandomState(seed)
    best_pt = dgp.optimize_over_X(
        n_buckshots=n_buckshots,
        n_finetunes=n_finetunes,
        rng=rng,
    )
    if plot_contours:
        plot_contours(dgp, 2, dgp._lbound, best_pt)
    new_id, = new_ids
    #print 'REI: Best pt', best_pt
    return SuggestBest(domain, trials, seed, best_pt)(new_id)
コード例 #7
0
def suggest(new_ids, domain, trials, seed,
            warmup_cutoff=15,
            n_buckshots=10000,
            n_finetunes=50,
            stop_at=None,
            plot_contours=None,
            ):
    """
    Parameters
    ----------

    """
    if len(trials.trials) <= warmup_cutoff:
        return rand.suggest(new_ids, domain, trials, seed)

    # XXX would like to cache on domain, but
    #     fmin(fn, space) always rebuilds a new domain for given fn and space
    key = domain.expr
    try:
        dgp = _suggest_domain_cache[key]
    except KeyError:
        dgp = _suggest_domain_cache[key] = DomainGP_UCB(domain)

    if stop_at is not None and min(trials.losses()) < stop_at:
        return []

    X, y, var_y = dgp._X_y_var_y(trials)
    dgp.fit_gpr(X, y, var_y)
    print 'Fit ->', dgp.gpr._params_list[0]
    dgp._ucb_z = 0.2
    # XXX: radius should depend on dimensionality?
    #     1e-8 worked for branin in case current one doesn't
    dgp._K_thresh =  (1 - 1e-5) # / (1000 + len(y) ** 2))

    print 'UCB: Best after %i trials: %f' % ( len(y), np.min(y))
    #dgp.gpr._params_list[0][:] = 0
    rng = np.random.RandomState(seed)
    best_pt = dgp.optimize_over_X(
        n_buckshots=n_buckshots,
        n_finetunes=n_finetunes,
        rng=rng,
        )
    if plot_contours:
        plot_contours(dgp, 2, dgp._lbound, best_pt)
    new_id, = new_ids
    #print 'REI: Best pt', best_pt
    return SuggestBest(domain, trials, seed, best_pt)(new_id)
コード例 #8
0
def suggest(new_ids, domain, trials, seed, samples_count=200, maxlog=8, rand_iters=3,
            create_regressor=lambda: GaussianProcessRegressor(alpha=1e-6)):
    rand_iters = max(1, rand_iters)
    if len(trials) < rand_iters:
        return rand.suggest(new_ids, domain, trials, seed)

    rng = np.random.RandomState(seed)
    rval = []
    for ii, new_id in enumerate(new_ids):
        # -- sample new specs, idxs, vals
        idxs, vals = get_best_eval(new_id, domain, trials, rng, samples_count, maxlog, create_regressor)
        new_result = domain.new_result()
        new_misc = dict(tid=new_id, cmd=domain.cmd, workdir=domain.workdir)
        miscs_update_idxs_vals([new_misc], idxs, vals)
        rval.extend(trials.new_trial_docs([new_id],
                    [None], [new_result], [new_misc]))
    return rval
コード例 #9
0
 def suggest(a, b, c):
     seed = int(time.time())
     return rand.suggest(a, b, c, seed=seed)
コード例 #10
0
    def search(self, run_name, store, context, hp_records, runs):
        
        def make_trial(tid, arg_dict, loss_value):
            trial = {"book_time": None, "exp_key": None, "owner": None, "refresh_time": None, "spec": None, "state": 0, "tid": tid, "version": 0}
            #trial["result"] = {"status": "New"}
            misc = {}
            trial["misc"] = misc

            misc["cmd"] = ("domain_attachment", "FMinIter_Domain")
            misc["idxs"] = {key: [tid] for key in arg_dict.keys()}
            misc["tid"] = tid
            misc["vals"] = arg_dict

            trial["state"] = 2   # done
            trial["result"] = {"loss": loss_value, "status": "ok"}
            #trial["refresh_time"] = coarse_utcnow()

            return trial

        dummy_loss = lambda x: None
        param_space = {r["name"]: r["space_func"] for r in hp_records} 
        domain = base.Domain(dummy_loss, param_space)

        rstate = np.random.RandomState()

        # convert runs to Trials
        trial_list = []

        for run in runs:
            # don't trip over inappropriate runs
            if (not "run_name" in run) or (not "hparams" in run) or (not context.primary_metric in run):
                continue

            run_name = run["run_name"]
            arg_dict = run["hparams"]

            loss_value = run[context.primary_metric]
            if context.maximize_metric:
                loss_value = -loss_value

            # extract a unique int from run_name   (parent.childnum)
            tid = run_helper.get_int_from_run_name(run_name)

            trial = make_trial(tid, arg_dict, loss_value)
            trial_list.append(trial)

        # finally, add our trial_list to trials
        trials = Trials()
        trials.insert_trial_docs(trial_list)
        trials.refresh()

        # get next suggested hyperparameter values from TPE algorithm
        tid = run_helper.get_int_from_run_name(run_name)

        min_trials = 3      # before this, just do rand sampling
        seed =  rstate.randint(2 ** 31 - 1)

        if len(trials) < min_trials:
            new_trials = rand.suggest([tid], domain, trials, seed)
        else:
            new_trials = tpe.suggest([tid], domain, trials, seed)

        # apply the suggested hparam values
        trial = new_trials[0]
        arg_dict = trial["misc"]["vals"]
        arg_dict = self.fixup_hyperopt_hparams(param_space, arg_dict)

        return arg_dict