コード例 #1
0
ファイル: projectc.py プロジェクト: patriotemeritus/LO-PHI
    def analysis_start(self):
        """
            Commands to execute when starting analysis.  Once this returns the
            analysis will wait for commands from the user.
            
            NOTE: Any threads will continue execute until a stop command is
                    received
        """

        # Analysis is done after this function returns
        self.CONTINUE_EXECUTION = True

        # Extract some important variables
        volatility_profile = self.machine.config.volatility_profile
        machine = self.machine

        # Create a queue and data handler
        # This enables us to do many to many data flows
        self.data_queue = multiprocessing.Queue()
        self.data_handler = DataHandler(self.data_queue)

        # RabbitMQ queue name
        self.rabbitmq = LOPHI_RabbitMQ_Producer(
            self.services_host,
            self.data_handler.new_queue(),
            G.RabbitMQ.SENSOR,
            exchange_type=G.RabbitMQ.TYPE_FANOUT,
            exchange=G.RabbitMQ.EXCHANGE_FANOUT)
        # Start data paths
        self.data_handler.start()
        self.rabbitmq.start()

        # Memory Analysis
        print "Starting memory analysis..."
        self.mem_analysis = MemoryAnalysisEngine(self.machine,
                                                 self.data_queue,
                                                 plugins=['pslist'])
        self.mem_analysis.start()

        # Disk analysis Analysis
        print "Starting disk analysis..."
        self.disk_analysis = DiskAnalysisEngine(self.machine, self.data_queue)
        self.disk_analysis.start()
コード例 #2
0
ファイル: projectc.py プロジェクト: c0ns0le/LO-PHI
 def analysis_start(self):
     """
         Commands to execute when starting analysis.  Once this returns the
         analysis will wait for commands from the user.
         
         NOTE: Any threads will continue execute until a stop command is
                 received
     """
     
     
     # Analysis is done after this function returns
     self.CONTINUE_EXECUTION = True
     
     # Extract some important variables
     volatility_profile = self.machine.config.volatility_profile
     machine = self.machine
     
     # Create a queue and data handler
     # This enables us to do many to many data flows
     self.data_queue = multiprocessing.Queue()
     self.data_handler = DataHandler(self.data_queue)
 
     # RabbitMQ queue name
     self.rabbitmq = LOPHI_RabbitMQ_Producer(self.services_host,
                             self.data_handler.new_queue(),
                             G.RabbitMQ.SENSOR,
                             exchange_type=G.RabbitMQ.TYPE_FANOUT,
                             exchange=G.RabbitMQ.EXCHANGE_FANOUT)
     # Start data paths
     self.data_handler.start()
     self.rabbitmq.start()
     
 
     # Memory Analysis 
     print "Starting memory analysis..."
     self.mem_analysis = MemoryAnalysisEngine(self.machine,
                                         self.data_queue,
                                         plugins=['pslist'])
     self.mem_analysis.start()
     
     # Disk analysis Analysis 
     print "Starting disk analysis..."
     self.disk_analysis = DiskAnalysisEngine(self.machine,
                                         self.data_queue)
     self.disk_analysis.start()
コード例 #3
0
ファイル: projectc.py プロジェクト: c0ns0le/LO-PHI
class GUIDemo(LophiAnalysis):
    """
        This is a sample of a LO-PHI analysis script.  This script will perform
        disk and memory analysis and report it over RabbitMQ until the user
        sends a command to terminate it.
    """

    # These are required to automatically find an appropriate machine for the
    # analysis
    NAME = "projectc"
    DESCRIPTION = "This analysis is used for demoing volatility and TSK modules"
    MACHINE_TYPE = G.MACHINE_TYPES.PHYSICAL
    VOLATILITY_PROFILE = "WinXPSP3x86"
    
 
    
    def analysis_start(self):
        """
            Commands to execute when starting analysis.  Once this returns the
            analysis will wait for commands from the user.
            
            NOTE: Any threads will continue execute until a stop command is
                    received
        """
        
        
        # Analysis is done after this function returns
        self.CONTINUE_EXECUTION = True
        
        # Extract some important variables
        volatility_profile = self.machine.config.volatility_profile
        machine = self.machine
        
        # Create a queue and data handler
        # This enables us to do many to many data flows
        self.data_queue = multiprocessing.Queue()
        self.data_handler = DataHandler(self.data_queue)
    
        # RabbitMQ queue name
        self.rabbitmq = LOPHI_RabbitMQ_Producer(self.services_host,
                                self.data_handler.new_queue(),
                                G.RabbitMQ.SENSOR,
                                exchange_type=G.RabbitMQ.TYPE_FANOUT,
                                exchange=G.RabbitMQ.EXCHANGE_FANOUT)
        # Start data paths
        self.data_handler.start()
        self.rabbitmq.start()
        
    
        # Memory Analysis 
        print "Starting memory analysis..."
        self.mem_analysis = MemoryAnalysisEngine(self.machine,
                                            self.data_queue,
                                            plugins=['pslist'])
        self.mem_analysis.start()
        
        # Disk analysis Analysis 
        print "Starting disk analysis..."
        self.disk_analysis = DiskAnalysisEngine(self.machine,
                                            self.data_queue)
        self.disk_analysis.start()
        
    def analysis_resume(self, args):
        self.mem_analysis.resume()
        self.disk_analysis.resume()
        
    def analysis_pause(self, args):
        self.mem_analysis.pause()
        self.disk_analysis.pause()
        
    def analysis_stop(self, args):
        
        # Stop our analysis
        self.mem_analysis.stop()
        del self.mem_analysis

        self.disk_analysis.stop()
        del self.disk_analysis

        # Then stop data handlers
        self.data_handler.stop()
        self.rabbitmq.stop()
コード例 #4
0
    def analysis_start(self):
        """
            Commands to execute when starting analysis.  Once this returns the
            analysis will wait for commands from the user.
            
            NOTE: Any threads will continue execute until a stop command is
                    received
        """

        # Analysis is done after this function returns
        self.CONTINUE_EXECUTION = True

        # Extract some important variables
        volatility_profile = self.lophi_command.volatility_profile
        lophi_command = self.lophi_command
        machine = self.machine
        sample_doc_id = lophi_command.sample_doc_id

        # Initialize our database
        DB_samples = DatastoreSamples(self.services_host)

        # Copy the sample to the ftp server temporarily so that the SUA can download it
        # store the temp directory name
        # 'sc stop rootkit','sc delete rootkit',
        setup_commands = ['start taskmgr']
        self.local_path = DB_samples.copy_sample_to_ftp(
            sample_doc_id, commands=setup_commands)
        remote_path = os.path.relpath(self.local_path, G.FTP_ROOT)
        lophi_command.ftp_info['dir'] = remote_path

        # Create a queue and data handler
        # This enables us to do many to many data flows
        self.data_queue = multiprocessing.Queue()
        self.data_handler = DataHandler(self.data_queue)

        # RabbitMQ queue name
        self.rabbitmq = LOPHI_RabbitMQ_Producer(
            self.services_host,
            self.data_handler.new_queue(),
            G.RabbitMQ.SENSOR,
            exchange_type=G.RabbitMQ.TYPE_FANOUT,
            exchange=G.RabbitMQ.EXCHANGE_FANOUT)
        # Start data paths
        self.data_handler.start()
        self.rabbitmq.start()

        # Memory Analysis
        print "Starting memory analysis..."
        self.mem_analysis = MemoryAnalysisEngine(self.machine,
                                                 self.data_queue,
                                                 plugins=['pslist', 'ssdt'])
        self.mem_analysis.start()

        # Memory Analysis
        print "Starting disk analysis..."
        self.disk_analysis = DiskAnalysisEngine(self.machine, self.data_queue)
        self.disk_analysis.start()

        # Send keypresses to download binary
        print "* Sending keypresses..."

        # Get our keypress generator
        kpg = machine.keypress_get_generator()

        # Check ftp info, and send commands to execute malware
        if lophi_command.ftp_info['ip'] is not None and lophi_command.ftp_info[
                'dir'] is not None:
            print "* Executing ftp commands..."
            ftp_script = kpg.get_ftp_script(volatility_profile,
                                            lophi_command.ftp_info)
            machine.keypress_send(ftp_script)
        else:
            print "** No ftp info given."
コード例 #5
0
class GUIDemo(LophiAnalysis):
    """
        This is a sample of a LO-PHI analysis script.  This script will perform
        disk and memory analysis and report it over RabbitMQ until the user
        sends a command to terminate it.
    """

    # These are required to automatically find an appropriate machine for the
    # analysis
    NAME = "gui_demo"
    DESCRIPTION = "This analysis is used for demoing volatility and TSK modules"
    MACHINE_TYPE = G.MACHINE_TYPES.PHYSICAL
    VOLATILITY_PROFILE = "WinXPSP3x86"

    def analysis_start(self):
        """
            Commands to execute when starting analysis.  Once this returns the
            analysis will wait for commands from the user.
            
            NOTE: Any threads will continue execute until a stop command is
                    received
        """

        # Analysis is done after this function returns
        self.CONTINUE_EXECUTION = True

        # Extract some important variables
        volatility_profile = self.lophi_command.volatility_profile
        lophi_command = self.lophi_command
        machine = self.machine
        sample_doc_id = lophi_command.sample_doc_id

        # Initialize our database
        DB_samples = DatastoreSamples(self.services_host)

        # Copy the sample to the ftp server temporarily so that the SUA can download it
        # store the temp directory name
        # 'sc stop rootkit','sc delete rootkit',
        setup_commands = ['start taskmgr']
        self.local_path = DB_samples.copy_sample_to_ftp(
            sample_doc_id, commands=setup_commands)
        remote_path = os.path.relpath(self.local_path, G.FTP_ROOT)
        lophi_command.ftp_info['dir'] = remote_path

        # Create a queue and data handler
        # This enables us to do many to many data flows
        self.data_queue = multiprocessing.Queue()
        self.data_handler = DataHandler(self.data_queue)

        # RabbitMQ queue name
        self.rabbitmq = LOPHI_RabbitMQ_Producer(
            self.services_host,
            self.data_handler.new_queue(),
            G.RabbitMQ.SENSOR,
            exchange_type=G.RabbitMQ.TYPE_FANOUT,
            exchange=G.RabbitMQ.EXCHANGE_FANOUT)
        # Start data paths
        self.data_handler.start()
        self.rabbitmq.start()

        # Memory Analysis
        print "Starting memory analysis..."
        self.mem_analysis = MemoryAnalysisEngine(self.machine,
                                                 self.data_queue,
                                                 plugins=['pslist', 'ssdt'])
        self.mem_analysis.start()

        # Memory Analysis
        print "Starting disk analysis..."
        self.disk_analysis = DiskAnalysisEngine(self.machine, self.data_queue)
        self.disk_analysis.start()

        # Send keypresses to download binary
        print "* Sending keypresses..."

        # Get our keypress generator
        kpg = machine.keypress_get_generator()

        # Check ftp info, and send commands to execute malware
        if lophi_command.ftp_info['ip'] is not None and lophi_command.ftp_info[
                'dir'] is not None:
            print "* Executing ftp commands..."
            ftp_script = kpg.get_ftp_script(volatility_profile,
                                            lophi_command.ftp_info)
            machine.keypress_send(ftp_script)
        else:
            print "** No ftp info given."

    def analysis_stop(self):

        G.dir_remove(self.local_path)

        # Stop our analysis
        self.mem_analysis.stop()
        del self.mem_analysis

        # Then stop data handlers
        self.data_handler.stop()
        self.rabbitmq.stop()
コード例 #6
0
ファイル: gui.py プロジェクト: c0ns0le/LO-PHI
 def analysis_start(self):
     """
         Commands to execute when starting analysis.  Once this returns the
         analysis will wait for commands from the user.
         
         NOTE: Any threads will continue execute until a stop command is
                 received
     """
     
     
     # Analysis is done after this function returns
     self.CONTINUE_EXECUTION = True
     
     # Extract some important variables
     volatility_profile = self.lophi_command.volatility_profile
     lophi_command = self.lophi_command
     machine = self.machine
     sample_doc_id = lophi_command.sample_doc_id
         
     # Initialize our database
     DB_samples = DatastoreSamples(self.services_host)
     
     # Copy the sample to the ftp server temporarily so that the SUA can download it
     # store the temp directory name
     # 'sc stop rootkit','sc delete rootkit',
     setup_commands=['start taskmgr']
     self.local_path = DB_samples.copy_sample_to_ftp(sample_doc_id,commands=setup_commands)
     remote_path = os.path.relpath(self.local_path, G.FTP_ROOT)
     lophi_command.ftp_info['dir'] = remote_path
     
     
     
     # Create a queue and data handler
     # This enables us to do many to many data flows
     self.data_queue = multiprocessing.Queue()
     self.data_handler = DataHandler(self.data_queue)
 
     # RabbitMQ queue name
     self.rabbitmq = LOPHI_RabbitMQ_Producer(self.services_host,
                             self.data_handler.new_queue(),
                             G.RabbitMQ.SENSOR,
                             exchange_type=G.RabbitMQ.TYPE_FANOUT,
                             exchange=G.RabbitMQ.EXCHANGE_FANOUT)
     # Start data paths
     self.data_handler.start()
     self.rabbitmq.start()
     
 
     # Memory Analysis 
     print "Starting memory analysis..."
     self.mem_analysis = MemoryAnalysisEngine(self.machine,
                                         self.data_queue,
                                         plugins=['pslist','ssdt'])
     self.mem_analysis.start()
     
     # Memory Analysis 
     print "Starting disk analysis..."
     self.disk_analysis = DiskAnalysisEngine(self.machine,
                                         self.data_queue)
     self.disk_analysis.start()
     
     
     # Send keypresses to download binary                     
     print "* Sending keypresses..."
     
     # Get our keypress generator
     kpg = machine.keypress_get_generator()
     
     # Check ftp info, and send commands to execute malware
     if lophi_command.ftp_info['ip'] is not None and lophi_command.ftp_info['dir'] is not None:
         print "* Executing ftp commands..."
         ftp_script = kpg.get_ftp_script(volatility_profile,
                                         lophi_command.ftp_info)
         machine.keypress_send(ftp_script)
     else:
         print "** No ftp info given."
コード例 #7
0
ファイル: gui.py プロジェクト: c0ns0le/LO-PHI
class GUIDemo(LophiAnalysis):
    """
        This is a sample of a LO-PHI analysis script.  This script will perform
        disk and memory analysis and report it over RabbitMQ until the user
        sends a command to terminate it.
    """

    # These are required to automatically find an appropriate machine for the
    # analysis
    NAME = "gui_demo"
    DESCRIPTION = "This analysis is used for demoing volatility and TSK modules"
    MACHINE_TYPE = G.MACHINE_TYPES.PHYSICAL
    VOLATILITY_PROFILE = "WinXPSP3x86"
    
 
    
    def analysis_start(self):
        """
            Commands to execute when starting analysis.  Once this returns the
            analysis will wait for commands from the user.
            
            NOTE: Any threads will continue execute until a stop command is
                    received
        """
        
        
        # Analysis is done after this function returns
        self.CONTINUE_EXECUTION = True
        
        # Extract some important variables
        volatility_profile = self.lophi_command.volatility_profile
        lophi_command = self.lophi_command
        machine = self.machine
        sample_doc_id = lophi_command.sample_doc_id
            
        # Initialize our database
        DB_samples = DatastoreSamples(self.services_host)
        
        # Copy the sample to the ftp server temporarily so that the SUA can download it
        # store the temp directory name
        # 'sc stop rootkit','sc delete rootkit',
        setup_commands=['start taskmgr']
        self.local_path = DB_samples.copy_sample_to_ftp(sample_doc_id,commands=setup_commands)
        remote_path = os.path.relpath(self.local_path, G.FTP_ROOT)
        lophi_command.ftp_info['dir'] = remote_path
        
        
        
        # Create a queue and data handler
        # This enables us to do many to many data flows
        self.data_queue = multiprocessing.Queue()
        self.data_handler = DataHandler(self.data_queue)
    
        # RabbitMQ queue name
        self.rabbitmq = LOPHI_RabbitMQ_Producer(self.services_host,
                                self.data_handler.new_queue(),
                                G.RabbitMQ.SENSOR,
                                exchange_type=G.RabbitMQ.TYPE_FANOUT,
                                exchange=G.RabbitMQ.EXCHANGE_FANOUT)
        # Start data paths
        self.data_handler.start()
        self.rabbitmq.start()
        
    
        # Memory Analysis 
        print "Starting memory analysis..."
        self.mem_analysis = MemoryAnalysisEngine(self.machine,
                                            self.data_queue,
                                            plugins=['pslist','ssdt'])
        self.mem_analysis.start()
        
        # Memory Analysis 
        print "Starting disk analysis..."
        self.disk_analysis = DiskAnalysisEngine(self.machine,
                                            self.data_queue)
        self.disk_analysis.start()
        
        
        # Send keypresses to download binary                     
        print "* Sending keypresses..."
        
        # Get our keypress generator
        kpg = machine.keypress_get_generator()
        
        # Check ftp info, and send commands to execute malware
        if lophi_command.ftp_info['ip'] is not None and lophi_command.ftp_info['dir'] is not None:
            print "* Executing ftp commands..."
            ftp_script = kpg.get_ftp_script(volatility_profile,
                                            lophi_command.ftp_info)
            machine.keypress_send(ftp_script)
        else:
            print "** No ftp info given."
        
        
    def analysis_stop(self):
        
        G.dir_remove(self.local_path)
        
        # Stop our analysis
        self.mem_analysis.stop()
        del self.mem_analysis


        # Then stop data handlers
        self.data_handler.stop()
        self.rabbitmq.stop()
コード例 #8
0
ファイル: projectc.py プロジェクト: patriotemeritus/LO-PHI
class GUIDemo(LophiAnalysis):
    """
        This is a sample of a LO-PHI analysis script.  This script will perform
        disk and memory analysis and report it over RabbitMQ until the user
        sends a command to terminate it.
    """

    # These are required to automatically find an appropriate machine for the
    # analysis
    NAME = "projectc"
    DESCRIPTION = "This analysis is used for demoing volatility and TSK modules"
    MACHINE_TYPE = G.MACHINE_TYPES.PHYSICAL
    VOLATILITY_PROFILE = "WinXPSP3x86"

    def analysis_start(self):
        """
            Commands to execute when starting analysis.  Once this returns the
            analysis will wait for commands from the user.
            
            NOTE: Any threads will continue execute until a stop command is
                    received
        """

        # Analysis is done after this function returns
        self.CONTINUE_EXECUTION = True

        # Extract some important variables
        volatility_profile = self.machine.config.volatility_profile
        machine = self.machine

        # Create a queue and data handler
        # This enables us to do many to many data flows
        self.data_queue = multiprocessing.Queue()
        self.data_handler = DataHandler(self.data_queue)

        # RabbitMQ queue name
        self.rabbitmq = LOPHI_RabbitMQ_Producer(
            self.services_host,
            self.data_handler.new_queue(),
            G.RabbitMQ.SENSOR,
            exchange_type=G.RabbitMQ.TYPE_FANOUT,
            exchange=G.RabbitMQ.EXCHANGE_FANOUT)
        # Start data paths
        self.data_handler.start()
        self.rabbitmq.start()

        # Memory Analysis
        print "Starting memory analysis..."
        self.mem_analysis = MemoryAnalysisEngine(self.machine,
                                                 self.data_queue,
                                                 plugins=['pslist'])
        self.mem_analysis.start()

        # Disk analysis Analysis
        print "Starting disk analysis..."
        self.disk_analysis = DiskAnalysisEngine(self.machine, self.data_queue)
        self.disk_analysis.start()

    def analysis_resume(self, args):
        self.mem_analysis.resume()
        self.disk_analysis.resume()

    def analysis_pause(self, args):
        self.mem_analysis.pause()
        self.disk_analysis.pause()

    def analysis_stop(self, args):

        # Stop our analysis
        self.mem_analysis.stop()
        del self.mem_analysis

        self.disk_analysis.stop()
        del self.disk_analysis

        # Then stop data handlers
        self.data_handler.stop()
        self.rabbitmq.stop()