コード例 #1
0
ファイル: spsim.py プロジェクト: wm8120/gem5-sp
def scriptCheckpoints(options, maxtick, cptdir):
    if options.at_instruction or options.simpoint:
        checkpoint_inst = options.take_checkpoints

        # maintain correct offset if we restored from some instruction
        if options.checkpoint_restore != None:
            checkpoint_inst += options.checkpoint_restore

        print "Creating checkpoint at inst:%d" % (checkpoint_inst)
        exit_event = m5.simulate()
        exit_cause = exit_event.getCause()
        print "exit cause = %s" % exit_cause

        # skip checkpoint instructions should they exist
        while exit_cause == "checkpoint":
            exit_event = m5.simulate()
            exit_cause = exit_event.getCause()

        if exit_cause == "a thread reached checkpoint inst number" or \
            exit_cause == "sp simulation reached the interval size":
            m5.checkpoint(joinpath(cptdir, "cpt.%s.%d" % \
                    (options.bench, checkpoint_inst)))
            print "Checkpoint written."

    else:
        when, period = options.take_checkpoints.split(",", 1)
        when = int(when)
        period = int(period)
        num_checkpoints = 0

        exit_event = m5.simulate(when - m5.curTick())
        exit_cause = exit_event.getCause()
        while exit_cause == "checkpoint":
            exit_event = m5.simulate(when - m5.curTick())
            exit_cause = exit_event.getCause()

        if exit_cause == "simulate() limit reached":
            m5.checkpoint(joinpath(cptdir, "cpt.%d"))
            num_checkpoints += 1

        sim_ticks = when
        max_checkpoints = options.max_checkpoints

        while num_checkpoints < max_checkpoints and \
                exit_cause == "simulate() limit reached":
            if (sim_ticks + period) > maxtick:
                exit_event = m5.simulate(maxtick - sim_ticks)
                exit_cause = exit_event.getCause()
                break
            else:
                exit_event = m5.simulate(period)
                exit_cause = exit_event.getCause()
                sim_ticks += period
                while exit_event.getCause() == "checkpoint":
                    exit_event = m5.simulate(sim_ticks - m5.curTick())
                if exit_event.getCause() == "simulate() limit reached":
                    m5.checkpoint(joinpath(cptdir, "cpt.%d"))
                    num_checkpoints += 1

    return exit_event
コード例 #2
0
ファイル: Simulation.py プロジェクト: alianmohammad/pd-gem5
def benchCheckpoints_sync(options, maxreltick, cptdir):

    import socket
    quantum,port,host = options.sync.split(',')
    sync_quantum = long(quantum)
    TCP_IP = host
    TCP_PORT = int(port)
    BUFFER_SIZE = 1
    pre_tick = m5.curTick()
    try:
        s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        s.connect((TCP_IP, TCP_PORT))

        exit_event = m5.simulate(sync_quantum)
        exit_cause = exit_event.getCause()
        total_tick_simulated = sync_quantum
        num_checkpoints = 0
        max_checkpoints = options.max_checkpoints
        s.send("R")
        data = s.recv(BUFFER_SIZE)
        while total_tick_simulated <= maxreltick and\
              (exit_cause == "simulate() limit reached" or\
               exit_cause == "checkpoint"):
            if exit_cause == "checkpoint":
                m5.simulate(pre_tick + sync_quantum - m5.curTick())
                # send "C" to barrier to notify that we should take a
                # checkpoint at the begining of next quantum
                s.send("C")
            else:
                s.send("R")
            data = s.recv(BUFFER_SIZE)
            pre_tick = m5.curTick()
            exit_event = m5.simulate(sync_quantum)
            total_tick_simulated += sync_quantum
            # if we receive a "C" from barrier, start to dump a checkpoint
            if data == "C" :
                m5.checkpoint(joinpath(cptdir, "cpt.%d"))
                num_checkpoints += 1
                if num_checkpoints == max_checkpoints:
                    exit_cause = "maximum %d checkpoints dropped"\
                                 % max_checkpoints
                    break
            exit_cause = exit_event.getCause()
    except KeyboardInterrupt:
        sys.exit()
    except Exception as ex:
        print "exception %s occured." %(ex.args[1])
        sys.exit()
    return exit_event
コード例 #3
0
ファイル: fs_bigLITTLE.py プロジェクト: een5afr-public/gem5
def run(checkpoint_dir=m5.options.outdir):
    # start simulation (and drop checkpoints when requested)
    while True:
        event = m5.simulate()
        exit_msg = event.getCause()
        if exit_msg == "checkpoint":
            print("Dropping checkpoint at tick %d" % m5.curTick())
            cpt_dir = os.path.join(checkpoint_dir, "cpt.%d" % m5.curTick())
            m5.checkpoint(cpt_dir)
            print("Checkpoint done.")
        else:
            print(exit_msg, " @ ", m5.curTick())
            break

    sys.exit(event.getCode())
コード例 #4
0
ファイル: run.py プロジェクト: powerjg/gem5
def run_test(root):
    """Default run_test implementations. Scripts can override it."""

    # instantiate configuration
    m5.instantiate()

    # simulate until program terminates
    exit_event = m5.simulate(maxtick)
    print('Exiting @ tick', m5.curTick(), 'because', exit_event.getCause())
コード例 #5
0
ファイル: starter_fs.py プロジェクト: lvzhengxu1987/gem5
def run(args):
    cptdir = m5.options.outdir
    if args.checkpoint:
        print "Checkpoint directory: %s" % cptdir

    while True:
        event = m5.simulate()
        exit_msg = event.getCause()
        if exit_msg == "checkpoint":
            print "Dropping checkpoint at tick %d" % m5.curTick()
            cpt_dir = os.path.join(m5.options.outdir, "cpt.%d" % m5.curTick())
            m5.checkpoint(os.path.join(cpt_dir))
            print "Checkpoint done."
        else:
            print exit_msg, " @ ", m5.curTick()
            break

    sys.exit(event.getCode())
コード例 #6
0
ファイル: Simulation.py プロジェクト: AMDmi3/gem5
def benchCheckpoints(options, maxtick, cptdir):
    exit_event = m5.simulate(maxtick - m5.curTick())
    exit_cause = exit_event.getCause()

    num_checkpoints = 0
    max_checkpoints = options.max_checkpoints

    while exit_cause == "checkpoint":
        m5.checkpoint(joinpath(cptdir, "cpt.%d"))
        num_checkpoints += 1
        if num_checkpoints == max_checkpoints:
            exit_cause = "maximum %d checkpoints dropped" % max_checkpoints
            break

        exit_event = m5.simulate(maxtick - m5.curTick())
        exit_cause = exit_event.getCause()

    return exit_event
コード例 #7
0
ファイル: Simulation.py プロジェクト: AMDmi3/gem5
def repeatSwitch(testsys, repeat_switch_cpu_list, maxtick, switch_freq):
    print "starting switch loop"
    while True:
        exit_event = m5.simulate(switch_freq)
        exit_cause = exit_event.getCause()

        if exit_cause != "simulate() limit reached":
            return exit_event

        m5.switchCpus(testsys, repeat_switch_cpu_list)

        tmp_cpu_list = []
        for old_cpu, new_cpu in repeat_switch_cpu_list:
            tmp_cpu_list.append((new_cpu, old_cpu))
        repeat_switch_cpu_list = tmp_cpu_list

        if (maxtick - m5.curTick()) <= switch_freq:
            exit_event = m5.simulate(maxtick - m5.curTick())
            return exit_event
コード例 #8
0
ファイル: gpu-ruby.py プロジェクト: AndrewScull/gem5
def run_test(root):
    """gpu test requires a specialized run_test implementation to set up the
    mmio space."""

    # instantiate configuration
    m5.instantiate()

    # Now that the system has been constructed, setup the mmio space
    root.system.cpu[0].workload[0].map(0x10000000, 0x200000000, 4096)

    # simulate until program terminates
    exit_event = m5.simulate(maxtick)
    print 'Exiting @ tick', m5.curTick(), 'because', exit_event.getCause()
コード例 #9
0
def handleEventPlayback(controller, options):
    if not options.playback_file: return

    from controller import playback
    # Use all non-empty colon-separated words as event names.
    events = filter(len, options.playback.split(':'))

    offset = options.playback_offset or m5.curTick()

    # The scheduleRecordedEvents() function uses m5.ticks.fromSeconds() which
    # needs a fixed simulator frequency. Because this function is called early
    # during M5 initialization the frequency is not yet fixed by M5 itself.
    m5.ticks.fixGlobalFrequency()

    playback.scheduleRecordedEvents(m5.event.mainq, controller, options.playback_file, events, 1.0/options.playback_speed, offset)
コード例 #10
0
ファイル: starter_se.py プロジェクト: powerjg/gem5
def main():
    parser = argparse.ArgumentParser(epilog=__doc__)

    parser.add_argument("commands_to_run", metavar="command(s)", nargs='*',
                        help="Command(s) to run")
    parser.add_argument("--cpu", type=str, choices=cpu_types.keys(),
                        default="atomic",
                        help="CPU model to use")
    parser.add_argument("--cpu-freq", type=str, default="4GHz")
    parser.add_argument("--num-cores", type=int, default=1,
                        help="Number of CPU cores")
    parser.add_argument("--mem-type", default="DDR3_1600_8x8",
                        choices=MemConfig.mem_names(),
                        help = "type of memory to use")
    parser.add_argument("--mem-channels", type=int, default=2,
                        help = "number of memory channels")
    parser.add_argument("--mem-ranks", type=int, default=None,
                        help = "number of memory ranks per channel")
    parser.add_argument("--mem-size", action="store", type=str,
                        default="2GB",
                        help="Specify the physical memory size")

    args = parser.parse_args()

    # Create a single root node for gem5's object hierarchy. There can
    # only exist one root node in the simulator at any given
    # time. Tell gem5 that we want to use syscall emulation mode
    # instead of full system mode.
    root = Root(full_system=False)

    # Populate the root node with a system. A system corresponds to a
    # single node with shared memory.
    root.system = create(args)

    # Instantiate the C++ object hierarchy. After this point,
    # SimObjects can't be instantiated anymore.
    m5.instantiate()

    # Start the simulator. This gives control to the C++ world and
    # starts the simulator. The returned event tells the simulation
    # script why the simulator exited.
    event = m5.simulate()

    # Print the reason for the simulation exit. Some exit codes are
    # requests for service (e.g., checkpoints) from the simulation
    # script. We'll just ignore them here and exit.
    print(event.getCause(), " @ ", m5.curTick())
    sys.exit(event.getCode())
コード例 #11
0
ファイル: hmctest.py プロジェクト: een5afr-public/gem5
def main():
    parser = argparse.ArgumentParser(description="Simple system using HMC as\
                                     main memory")
    HMC.add_options(parser)
    add_options(parser)
    options = parser.parse_args()
    # build the system
    root = build_system(options)
    # instantiate all of the objects we've created so far
    m5.instantiate()
    print("Beginning simulation!")
    event = m5.simulate(10000000000)
    m5.stats.dump()
    print('Exiting @ tick %i because %s (exit code is %i)' % (m5.curTick(),
                                                              event.getCause(),
                                                              event.getCode()))
    print("Done")
コード例 #12
0
ファイル: __init__.py プロジェクト: prodromou87/gem5
def dump():
    '''Dump all statistics data to the registered outputs'''

    from m5 import options

    curTick = m5.curTick()

    global lastDump
    assert lastDump <= curTick
    if lastDump == curTick:
        return
    lastDump = curTick

    internal.stats.processDumpQueue()

    prepare()

    # Prodromou: Based on a M5 flag, filter stats or not
    if options.use_stat_flags:

	stat_print_flags = [
			    "committedInsts",
			    "readReqs",
			    "writeReqs",
			    "system.mem_ctrls.avgQLat",
			    "microThreads",
			    "thinkingTime",
			    "readRowHitRate"
			    ]

	for output in outputList:
	    if output.valid():
		output.begin()
		for stat in stats_list:
		    for flag in stat_print_flags:
			if flag in stat.name:
			    output.visit(stat)
		output.end()
    else:
	for output in outputList:
            if output.valid():
                output.begin()
                for stat in stats_list:
		    output.visit(stat)
                output.end()
コード例 #13
0
ファイル: Simulation.py プロジェクト: AMDmi3/gem5
def restoreSimpointCheckpoint():
    exit_event = m5.simulate()
    exit_cause = exit_event.getCause()

    if exit_cause == "simpoint starting point found":
        print "Warmed up! Dumping and resetting stats!"
        m5.stats.dump()
        m5.stats.reset()

        exit_event = m5.simulate()
        exit_cause = exit_event.getCause()

        if exit_cause == "simpoint starting point found":
            print "Done running SimPoint!"
            sys.exit(exit_event.getCode())

    print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_cause)
    sys.exit(exit_event.getCode())
コード例 #14
0
def dump():
    '''Dump all statistics data to the registered outputs'''

    curTick = m5.curTick()

    global lastDump
    assert lastDump <= curTick
    if lastDump == curTick:
        return
    lastDump = curTick

    prepare()

    for output in outputList:
        if output.valid():
            output.begin()
            for stat in stats_list:
                output.visit(stat)
            output.end()
コード例 #15
0
ファイル: Simulation.py プロジェクト: AMDmi3/gem5
def takeSimpointCheckpoints(simpoints, interval_length, cptdir):
    num_checkpoints = 0
    index = 0
    last_chkpnt_inst_count = -1
    for simpoint in simpoints:
        interval, weight, starting_inst_count, actual_warmup_length = simpoint
        if starting_inst_count == last_chkpnt_inst_count:
            # checkpoint starting point same as last time
            # (when warmup period longer than starting point)
            exit_cause = "simpoint starting point found"
            code = 0
        else:
            exit_event = m5.simulate()

            # skip checkpoint instructions should they exist
            while exit_event.getCause() == "checkpoint":
                print "Found 'checkpoint' exit event...ignoring..."
                exit_event = m5.simulate()

            exit_cause = exit_event.getCause()
            code = exit_event.getCode()

        if exit_cause == "simpoint starting point found":
            m5.checkpoint(joinpath(cptdir,
                "cpt.simpoint_%02d_inst_%d_weight_%f_interval_%d_warmup_%d"
                % (index, starting_inst_count, weight, interval_length,
                actual_warmup_length)))
            print "Checkpoint #%d written. start inst:%d weight:%f" % \
                (num_checkpoints, starting_inst_count, weight)
            num_checkpoints += 1
            last_chkpnt_inst_count = starting_inst_count
        else:
            break
        index += 1

    print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_cause)
    print "%d checkpoints taken" % num_checkpoints
    sys.exit(code)
コード例 #16
0
ファイル: __init__.py プロジェクト: danielpalomino/gem5
def dump():
    '''Dump all statistics data to the registered outputs'''

    curTick = m5.curTick()

    global lastDump
    assert lastDump <= curTick
    if lastDump == curTick:
        return
    lastDump = curTick

    internal.stats.processDumpQueue()

    prepare()

    for output in outputList:
        if output.valid():
            output.begin()
            for stat in stats_list:
                output.visit(stat)
            output.end()

    for listener in dumpListeners:
        listener()
コード例 #17
0
ファイル: event.py プロジェクト: een5afr-public/gem5
 def __init__(self, eventq, period):
     super(ProgressEvent, self).__init__()
     self.period = int(period)
     self.eventq = eventq
     self.eventq.schedule(self, m5.curTick() + self.period)
コード例 #18
0
ファイル: se2.py プロジェクト: chrisjia6412/GEM5
        tmp_cpu_list = []
        for old_cpu, new_cpu in switch_cpu_list:
            tmp_cpu_list.append((new_cpu, old_cpu))
        switch_cpu_list = tmp_cpu_list
        m5.stats.reset()

        exit_event = m5.simulate()
        exit_cause = exit_event.getCause()
        if switch_cpu_list[0][0].type == 'DerivO3CPU':
            m5.stats.dump()
elif options.simpoint_mode == "checkpoint_gen":
    exit_event = m5.simulate()
    exit_cause = exit_event.getCause()

    checkpoint_points = simple_end_points[:]
    checkpoint_points.reverse()
    while exit_cause == "simpoint starting point found":
        point_inst = checkpoint_points.pop()
        m5.checkpoint(os.path.join(options.checkpoint_dir, "simpoint.ckpt.inst.%d" % point_inst))

        if not checkpoint_points:
            exit_cause = "final simpoint checkpoint created"
            break;

        exit_event = m5.simulate()
        exit_cause = exit_event.getCause()


print "Exiting @ tick %i because %s" % (m5.curTick(), exit_cause)

コード例 #19
0
import m5
from m5.objects import *

root = Root(full_system=False)

root.hello = HelloObject(time_to_wait='2us', number_of_fires=10)
root.hello.goodbye_object = GoodbyeObject(buffer_size='100B')

m5.instantiate()
print("begin")
exit_event = m5.simulate()
print('exit @ tick {} because {}'.format(m5.curTick(), exit_event.getCause()))
コード例 #20
0
def run(options, root, testsys, cpu_class):
    if options.maxtick:
        maxtick = options.maxtick
    elif options.maxtime:
        simtime = m5.ticks.seconds(simtime)
        print "simulating for: ", simtime
        maxtick = simtime
    else:
        maxtick = m5.MaxTick

    if options.checkpoint_dir:
        cptdir = options.checkpoint_dir
    elif m5.options.outdir:
        cptdir = m5.options.outdir
    else:
        cptdir = getcwd()

    if options.fast_forward and options.checkpoint_restore != None:
        fatal("Can't specify both --fast-forward and --checkpoint-restore")

    if options.standard_switch and not options.caches:
        fatal("Must specify --caches when using --standard-switch")

    np = options.num_cpus
    max_checkpoints = options.max_checkpoints
    new = None

    if options.prog_interval:
        for i in xrange(np):
            testsys.cpu[i].progress_interval = options.prog_interval

    if options.maxinsts:
        for i in xrange(np):
            testsys.cpu[i].max_insts_any_thread = options.maxinsts

    if cpu_class:
        new = [cpu_class(defer_registration=True, cpu_id=(np + i)) for i in xrange(np)]

        for i in xrange(np):
            if options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            new[i].system = testsys
            if not buildEnv["FULL_SYSTEM"]:
                new[i].workload = testsys.cpu[i].workload
            new[i].clock = testsys.cpu[0].clock
            # simulation period
            if options.maxinsts:
                new[i].max_insts_any_thread = options.maxinsts

        testsys.new = new
        switch_cpu_list = [(testsys.cpu[i], new[i]) for i in xrange(np)]

    if options.standard_switch:
        if not options.caches:
            # O3 CPU must have a cache to work.
            print "O3 CPU must be used with caches"
            sys.exit(1)

        new = [TimingSimpleCPU(defer_registration=True, cpu_id=(np + i)) for i in xrange(np)]
        new_1 = [DerivO3CPU(defer_registration=True, cpu_id=(2 * np + i)) for i in xrange(np)]

        for i in xrange(np):
            new[i].system = testsys
            new_1[i].system = testsys
            if not buildEnv["FULL_SYSTEM"]:
                new[i].workload = testsys.cpu[i].workload
                new_1[i].workload = testsys.cpu[i].workload
            new[i].clock = testsys.cpu[0].clock
            new_1[i].clock = testsys.cpu[0].clock

            # if restoring, make atomic cpu simulate only a few instructions
            if options.checkpoint_restore != None:
                testsys.cpu[i].max_insts_any_thread = 1
            # Fast forward to specified location if we are not restoring
            elif options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            # Fast forward to a simpoint (warning: time consuming)
            elif options.simpoint:
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal("simpoint not found")
                testsys.cpu[i].max_insts_any_thread = testsys.cpu[i].workload[0].simpoint
            # No distance specified, just switch
            else:
                testsys.cpu[i].max_insts_any_thread = 1

            # warmup period
            if options.warmup_insts:
                new[i].max_insts_any_thread = options.warmup_insts

            # simulation period
            if options.maxinsts:
                new_1[i].max_insts_any_thread = options.maxinsts

        testsys.new = new
        testsys.new_1 = new_1
        switch_cpu_list = [(testsys.cpu[i], new[i]) for i in xrange(np)]
        switch_cpu_list1 = [(new[i], new_1[i]) for i in xrange(np)]

    # set the checkpoint in the cpu before m5.instantiate is called
    if options.take_checkpoints != None and (options.simpoint or options.at_instruction):
        offset = int(options.take_checkpoints)
        # Set an instruction break point
        if options.simpoint:
            for i in xrange(np):
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal("no simpoint for testsys.cpu[%d].workload[0]", i)
                checkpoint_inst = int(testsys.cpu[i].workload[0].simpoint) + offset
                testsys.cpu[i].max_insts_any_thread = checkpoint_inst
                # used for output below
                options.take_checkpoints = checkpoint_inst
        else:
            options.take_checkpoints = offset
            # Set all test cpus with the right number of instructions
            # for the upcoming simulation
            for i in xrange(np):
                testsys.cpu[i].max_insts_any_thread = offset

    checkpoint_dir = None
    if options.checkpoint_restore != None:
        from os.path import isdir, exists
        from os import listdir
        import re

        if not isdir(cptdir):
            fatal("checkpoint dir %s does not exist!", cptdir)

        if options.at_instruction or options.simpoint:
            inst = options.checkpoint_restore
            if options.simpoint:
                # assume workload 0 has the simpoint
                if testsys.cpu[0].workload[0].simpoint == 0:
                    fatal("Unable to find simpoint")
                inst += int(testsys.cpu[0].workload[0].simpoint)

            checkpoint_dir = joinpath(cptdir, "cpt.%s.%s" % (options.bench, inst))
            if not exists(checkpoint_dir):
                fatal("Unable to find checkpoint directory %s", checkpoint_dir)
        else:
            dirs = listdir(cptdir)
            expr = re.compile("cpt\.([0-9]*)")
            cpts = []
            for dir in dirs:
                match = expr.match(dir)
                if match:
                    cpts.append(match.group(1))

            cpts.sort(lambda a, b: cmp(long(a), long(b)))

            cpt_num = options.checkpoint_restore

            if cpt_num > len(cpts):
                fatal("Checkpoint %d not found", cpt_num)

            ## Adjust max tick based on our starting tick
            maxtick = maxtick - int(cpts[cpt_num - 1])
            checkpoint_dir = joinpath(cptdir, "cpt.%s" % cpts[cpt_num - 1])

    m5.instantiate(checkpoint_dir)

    if options.standard_switch or cpu_class:
        if options.standard_switch:
            print "Switch at instruction count:%s" % str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        elif cpu_class and options.fast_forward:
            print "Switch at instruction count:%s" % str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        else:
            print "Switch at curTick count:%s" % str(10000)
            exit_event = m5.simulate(10000)
        print "Switched CPUS @ tick %s" % (m5.curTick())

        # when you change to Timing (or Atomic), you halt the system
        # given as argument.  When you are finished with the system
        # changes (including switchCpus), you must resume the system
        # manually.  You DON'T need to resume after just switching
        # CPUs if you haven't changed anything on the system level.

        m5.changeToTiming(testsys)
        m5.switchCpus(switch_cpu_list)
        m5.resume(testsys)

        if options.standard_switch:
            print "Switch at instruction count:%d" % (testsys.new[0].max_insts_any_thread)

            # warmup instruction count may have already been set
            if options.warmup_insts:
                exit_event = m5.simulate()
            else:
                exit_event = m5.simulate(options.warmup)
            print "Switching CPUS @ tick %s" % (m5.curTick())
            print "Simulation ends instruction count:%d" % (testsys.new_1[0].max_insts_any_thread)
            m5.drain(testsys)
            m5.switchCpus(switch_cpu_list1)
            m5.resume(testsys)

    num_checkpoints = 0
    exit_cause = ""

    # If we're taking and restoring checkpoints, use checkpoint_dir
    # option only for finding the checkpoints to restore from.  This
    # lets us test checkpointing by restoring from one set of
    # checkpoints, generating a second set, and then comparing them.
    if options.take_checkpoints and options.checkpoint_restore:
        if m5.options.outdir:
            cptdir = m5.options.outdir
        else:
            cptdir = getcwd()

    # Checkpoints being taken via the command line at <when> and at
    # subsequent periods of <period>.  Checkpoint instructions
    # received from the benchmark running are ignored and skipped in
    # favor of command line checkpoint instructions.
    if options.take_checkpoints != None:
        if options.at_instruction or options.simpoint:
            checkpoint_inst = int(options.take_checkpoints)

            # maintain correct offset if we restored from some instruction
            if options.checkpoint_restore != None:
                checkpoint_inst += options.checkpoint_restore

            print "Creating checkpoint at inst:%d" % (checkpoint_inst)
            exit_event = m5.simulate()
            print "exit cause = %s" % (exit_event.getCause())

            # skip checkpoint instructions should they exist
            while exit_event.getCause() == "checkpoint":
                exit_event = m5.simulate()

            if exit_event.getCause() == "a thread reached the max instruction count":
                m5.checkpoint(joinpath(cptdir, "cpt.%s.%d" % (options.bench, checkpoint_inst)))
                print "Checkpoint written."
                num_checkpoints += 1

            if exit_event.getCause() == "user interrupt received":
                exit_cause = exit_event.getCause()
        else:
            when, period = options.take_checkpoints.split(",", 1)
            when = int(when)
            period = int(period)

            exit_event = m5.simulate(when)
            while exit_event.getCause() == "checkpoint":
                exit_event = m5.simulate(when - m5.curTick())

            if exit_event.getCause() == "simulate() limit reached":
                m5.checkpoint(joinpath(cptdir, "cpt.%d"))
                num_checkpoints += 1

            sim_ticks = when
            exit_cause = "maximum %d checkpoints dropped" % max_checkpoints
            while num_checkpoints < max_checkpoints and exit_event.getCause() == "simulate() limit reached":
                if (sim_ticks + period) > maxtick:
                    exit_event = m5.simulate(maxtick - sim_ticks)
                    exit_cause = exit_event.getCause()
                    break
                else:
                    exit_event = m5.simulate(period)
                    sim_ticks += period
                    while exit_event.getCause() == "checkpoint":
                        exit_event = m5.simulate(sim_ticks - m5.curTick())
                    if exit_event.getCause() == "simulate() limit reached":
                        m5.checkpoint(joinpath(cptdir, "cpt.%d"))
                        num_checkpoints += 1

            if exit_event.getCause() != "simulate() limit reached":
                exit_cause = exit_event.getCause()

    else:  # no checkpoints being taken via this script
        if options.fast_forward:
            m5.stats.reset()
        print "**** REAL SIMULATION ****"
        exit_event = m5.simulate(maxtick)

        while exit_event.getCause() == "checkpoint":
            m5.checkpoint(joinpath(cptdir, "cpt.%d"))
            num_checkpoints += 1
            if num_checkpoints == max_checkpoints:
                exit_cause = "maximum %d checkpoints dropped" % max_checkpoints
                break

            exit_event = m5.simulate(maxtick - m5.curTick())
            exit_cause = exit_event.getCause()

    if exit_cause == "":
        exit_cause = exit_event.getCause()
    print "Exiting @ tick %i because %s" % (m5.curTick(), exit_cause)

    if options.checkpoint_at_end:
        m5.checkpoint(joinpath(cptdir, "cpt.%d"))
コード例 #21
0
ファイル: fs_bigLITTLE.py プロジェクト: ChengYanJin/gem5
def main():
    parser = argparse.ArgumentParser(
        description="Generic ARM big.LITTLE configuration")

    parser.add_argument("--restore-from", type=str, default=None,
                        help="Restore from checkpoint")
    parser.add_argument("--dtb", type=str, default=default_dtb,
                        help="DTB file to load")
    parser.add_argument("--kernel", type=str, default=default_kernel,
                        help="Linux kernel")
    parser.add_argument("--disk", action="append", type=str, default=[],
                        help="Disks to instantiate")
    parser.add_argument("--bootscript", type=str, default=default_rcs,
                        help="Linux bootscript")
    parser.add_argument("--atomic", action="store_true", default=False,
                        help="Use atomic CPUs")
    parser.add_argument("--kernel-init", type=str, default="/sbin/init",
                        help="Override init")
    parser.add_argument("--big-cpus", type=int, default=1,
                        help="Number of big CPUs to instantiate")
    parser.add_argument("--little-cpus", type=int, default=1,
                        help="Number of little CPUs to instantiate")
    parser.add_argument("--caches", action="store_true", default=False,
                        help="Instantiate caches")
    parser.add_argument("--last-cache-level", type=int, default=2,
                        help="Last level of caches (e.g. 3 for L3)")
    parser.add_argument("--big-cpu-clock", type=str, default="2GHz",
                        help="Big CPU clock frequency")
    parser.add_argument("--little-cpu-clock", type=str, default="1GHz",
                        help="Little CPU clock frequency")

    m5.ticks.fixGlobalFrequency()

    options = parser.parse_args()

    if options.atomic:
        cpu_config = { 'cpu' : AtomicSimpleCPU }
        big_cpu_config, little_cpu_config = cpu_config, cpu_config
    else:
        big_cpu_config = { 'cpu' : CpuConfig.get("arm_detailed"),
                           'l1i' : devices.L1I,
                           'l1d' : devices.L1D,
                           'wcache' : devices.WalkCache,
                           'l2' : devices.L2 }
        little_cpu_config = { 'cpu' : MinorCPU,
                              'l1i' : devices.L1I,
                              'l1d' : devices.L1D,
                              'wcache' : devices.WalkCache,
                              'l2' : devices.L2 }

    big_cpu_class = big_cpu_config['cpu']
    little_cpu_class = little_cpu_config['cpu']

    kernel_cmd = [
        "earlyprintk=pl011,0x1c090000",
        "console=ttyAMA0",
        "lpj=19988480",
        "norandmaps",
        "loglevel=8",
        "mem=%s" % default_mem_size,
        "root=/dev/vda1",
        "rw",
        "init=%s" % options.kernel_init,
        "vmalloc=768MB",
    ]

    root = Root(full_system=True)

    assert big_cpu_class.memory_mode() == little_cpu_class.memory_mode()
    disks = default_disk if len(options.disk) == 0 else options.disk
    system = createSystem(options.kernel, big_cpu_class.memory_mode(),
                          options.bootscript, disks=disks)

    root.system = system
    system.boot_osflags = " ".join(kernel_cmd)

    # big cluster
    if options.big_cpus > 0:
        system.bigCluster = CpuCluster()
        system.bigCluster.addCPUs(big_cpu_config, options.big_cpus,
                                  options.big_cpu_clock)


    # LITTLE cluster
    if options.little_cpus > 0:
        system.littleCluster = CpuCluster()
        system.littleCluster.addCPUs(little_cpu_config, options.little_cpus,
                                     options.little_cpu_clock)

    # add caches
    if options.caches:
        cluster_mem_bus = addCaches(system, options.last_cache_level)
    else:
        if big_cpu_class.require_caches():
            m5.util.panic("CPU model %s requires caches" % str(big_cpu_class))
        if little_cpu_class.require_caches():
            m5.util.panic("CPU model %s requires caches" %
                          str(little_cpu_class))
        cluster_mem_bus = system.membus

    # connect each cluster to the memory hierarchy
    for cluster in system._clusters:
        cluster.connectMemSide(cluster_mem_bus)

    # Linux device tree
    system.dtb_filename = SysPaths.binary(options.dtb)

    # Get and load from the chkpt or simpoint checkpoint
    if options.restore_from is not None:
        m5.instantiate(options.restore_from)
    else:
        m5.instantiate()

    # start simulation (and drop checkpoints when requested)
    while True:
        event = m5.simulate()
        exit_msg = event.getCause()
        if exit_msg == "checkpoint":
            print "Dropping checkpoint at tick %d" % m5.curTick()
            cpt_dir = os.path.join(m5.options.outdir, "cpt.%d" % m5.curTick())
            m5.checkpoint(os.path.join(cpt_dir))
            print "Checkpoint done."
        else:
            print exit_msg, " @ ", m5.curTick()
            break

    sys.exit(event.getCode())
コード例 #22
0
ファイル: Simulation.py プロジェクト: rishad09/primesoton
def run(options, root, testsys, cpu_class):
    if options.maxtick:
        maxtick = options.maxtick
    elif options.maxtime:
        simtime = m5.ticks.seconds(simtime)
        print "simulating for: ", simtime
        maxtick = simtime
    else:
        maxtick = m5.MaxTick

    if options.checkpoint_dir:
        cptdir = options.checkpoint_dir
    elif m5.options.outdir:
        cptdir = m5.options.outdir
    else:
        cptdir = getcwd()

    if options.fast_forward and options.checkpoint_restore != None:
        fatal("Can't specify both --fast-forward and --checkpoint-restore")

    if options.standard_switch and not options.caches:
        fatal("Must specify --caches when using --standard-switch")

    if options.standard_switch and options.repeat_switch:
        fatal("Can't specify both --standard-switch and --repeat-switch")

    if options.repeat_switch and options.take_checkpoints:
        fatal("Can't specify both --repeat-switch and --take-checkpoints")

    np = options.num_cpus
    switch_cpus = None

    if options.prog_interval:
        for i in xrange(np):
            testsys.cpu[i].progress_interval = options.prog_interval

    if options.maxinsts:
        for i in xrange(np):
            testsys.cpu[i].max_insts_any_thread = options.maxinsts

    if cpu_class:
        switch_cpus = [cpu_class(switched_out=True, cpu_id=(i))
                       for i in xrange(np)]

        for i in xrange(np):
            if options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            switch_cpus[i].system =  testsys
            switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clock = testsys.cpu[i].clock
            # simulation period
            if options.maxinsts:
                switch_cpus[i].max_insts_any_thread = options.maxinsts
            # Add checker cpu if selected
            if options.checker:
                switch_cpus[i].addCheckerCpu()

        testsys.switch_cpus = switch_cpus
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i]) for i in xrange(np)]

    if options.repeat_switch:
        switch_class = getCPUClass(options.cpu_type)[0]
        if switch_class.require_caches() and \
                not options.caches:
            print "%s: Must be used with caches" % str(switch_class)
            sys.exit(1)
        if not switch_class.support_take_over():
            print "%s: CPU switching not supported" % str(switch_class)
            sys.exit(1)

        repeat_switch_cpus = [switch_class(switched_out=True, \
                                               cpu_id=(i)) for i in xrange(np)]

        for i in xrange(np):
            repeat_switch_cpus[i].system = testsys
            repeat_switch_cpus[i].workload = testsys.cpu[i].workload
            repeat_switch_cpus[i].clock = testsys.cpu[i].clock

            if options.maxinsts:
                repeat_switch_cpus[i].max_insts_any_thread = options.maxinsts

            if options.checker:
                repeat_switch_cpus[i].addCheckerCpu()

        testsys.repeat_switch_cpus = repeat_switch_cpus

        if cpu_class:
            repeat_switch_cpu_list = [(switch_cpus[i], repeat_switch_cpus[i])
                                      for i in xrange(np)]
        else:
            repeat_switch_cpu_list = [(testsys.cpu[i], repeat_switch_cpus[i])
                                      for i in xrange(np)]

    if options.standard_switch:
        switch_cpus = [TimingSimpleCPU(switched_out=True, cpu_id=(i))
                       for i in xrange(np)]
        switch_cpus_1 = [DerivO3CPU(switched_out=True, cpu_id=(i))
                        for i in xrange(np)]

        for i in xrange(np):
            switch_cpus[i].system =  testsys
            switch_cpus_1[i].system =  testsys
            switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus_1[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clock = testsys.cpu[i].clock
            switch_cpus_1[i].clock = testsys.cpu[i].clock

            # if restoring, make atomic cpu simulate only a few instructions
            if options.checkpoint_restore != None:
                testsys.cpu[i].max_insts_any_thread = 1
            # Fast forward to specified location if we are not restoring
            elif options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            # Fast forward to a simpoint (warning: time consuming)
            elif options.simpoint:
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('simpoint not found')
                testsys.cpu[i].max_insts_any_thread = \
                    testsys.cpu[i].workload[0].simpoint
            # No distance specified, just switch
            else:
                testsys.cpu[i].max_insts_any_thread = 1

            # warmup period
            if options.warmup_insts:
                switch_cpus[i].max_insts_any_thread =  options.warmup_insts

            # simulation period
            if options.maxinsts:
                switch_cpus_1[i].max_insts_any_thread = options.maxinsts

            # attach the checker cpu if selected
            if options.checker:
                switch_cpus[i].addCheckerCpu()
                switch_cpus_1[i].addCheckerCpu()

        testsys.switch_cpus = switch_cpus
        testsys.switch_cpus_1 = switch_cpus_1
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i]) for i in xrange(np)]
        switch_cpu_list1 = [(switch_cpus[i], switch_cpus_1[i]) for i in xrange(np)]

    # set the checkpoint in the cpu before m5.instantiate is called
    if options.take_checkpoints != None and \
           (options.simpoint or options.at_instruction):
        offset = int(options.take_checkpoints)
        # Set an instruction break point
        if options.simpoint:
            for i in xrange(np):
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('no simpoint for testsys.cpu[%d].workload[0]', i)
                checkpoint_inst = int(testsys.cpu[i].workload[0].simpoint) + offset
                testsys.cpu[i].max_insts_any_thread = checkpoint_inst
                # used for output below
                options.take_checkpoints = checkpoint_inst
        else:
            options.take_checkpoints = offset
            # Set all test cpus with the right number of instructions
            # for the upcoming simulation
            for i in xrange(np):
                testsys.cpu[i].max_insts_any_thread = offset

    checkpoint_dir = None
    if options.checkpoint_restore != None:
        maxtick, checkpoint_dir = findCptDir(options, maxtick, cptdir, testsys)
    m5.instantiate(checkpoint_dir)

    if options.standard_switch or cpu_class:
        if options.standard_switch:
            print "Switch at instruction count:%s" % \
                    str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        elif cpu_class and options.fast_forward:
            print "Switch at instruction count:%s" % \
                    str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        else:
            print "Switch at curTick count:%s" % str(10000)
            exit_event = m5.simulate(10000)
        print "Switched CPUS @ tick %s" % (m5.curTick())

        m5.switchCpus(testsys, switch_cpu_list)

        if options.standard_switch:
            print "Switch at instruction count:%d" % \
                    (testsys.switch_cpus[0].max_insts_any_thread)

            #warmup instruction count may have already been set
            if options.warmup_insts:
                exit_event = m5.simulate()
            else:
                exit_event = m5.simulate(options.standard_switch)
            print "Switching CPUS @ tick %s" % (m5.curTick())
            print "Simulation ends instruction count:%d" % \
                    (testsys.switch_cpus_1[0].max_insts_any_thread)
            m5.switchCpus(testsys, switch_cpu_list1)

    # If we're taking and restoring checkpoints, use checkpoint_dir
    # option only for finding the checkpoints to restore from.  This
    # lets us test checkpointing by restoring from one set of
    # checkpoints, generating a second set, and then comparing them.
    if options.take_checkpoints and options.checkpoint_restore:
        if m5.options.outdir:
            cptdir = m5.options.outdir
        else:
            cptdir = getcwd()

    if options.take_checkpoints != None :
        # Checkpoints being taken via the command line at <when> and at
        # subsequent periods of <period>.  Checkpoint instructions
        # received from the benchmark running are ignored and skipped in
        # favor of command line checkpoint instructions.
        exit_event = scriptCheckpoints(options, maxtick, cptdir)
    else:
        if options.fast_forward:
            m5.stats.reset()
        print "**** REAL SIMULATION ****"

        # If checkpoints are being taken, then the checkpoint instruction
        # will occur in the benchmark code it self.
        if options.repeat_switch and maxtick > options.repeat_switch:
            exit_event = repeatSwitch(testsys, repeat_switch_cpu_list,
                                      maxtick, options.repeat_switch)
        else:
            exit_event = benchCheckpoints(options, maxtick, cptdir)

    print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_event.getCause())
    if options.checkpoint_at_end:
        m5.checkpoint(joinpath(cptdir, "cpt.%d"))

    if not m5.options.interactive:
        sys.exit(exit_event.getCode())
コード例 #23
0
def run(options, root, testsys, cpu_class):
    if options.checkpoint_dir:
        cptdir = options.checkpoint_dir
    elif m5.options.outdir:
        cptdir = m5.options.outdir
    else:
        cptdir = getcwd()

    if options.fast_forward and options.checkpoint_restore != None:
        fatal("Can't specify both --fast-forward and --checkpoint-restore")

    if options.standard_switch and not options.caches:
        fatal("Must specify --caches when using --standard-switch")

    if options.standard_switch and options.repeat_switch:
        fatal("Can't specify both --standard-switch and --repeat-switch")

    if options.repeat_switch and options.take_checkpoints:
        fatal("Can't specify both --repeat-switch and --take-checkpoints")

    np = options.num_cpus
    switch_cpus = None

    if options.prog_interval:
        for i in range(np):
            testsys.cpu[i].progress_interval = options.prog_interval

    if options.maxinsts:
        for i in range(np):
            testsys.cpu[i].max_insts_any_thread = options.maxinsts

    if cpu_class:
        switch_cpus = [
            cpu_class(switched_out=True, cpu_id=(i)) for i in range(np)
        ]

        for i in range(np):
            if options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            switch_cpus[i].system = testsys
            switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clk_domain = testsys.cpu[i].clk_domain
            switch_cpus[i].progress_interval = \
                testsys.cpu[i].progress_interval
            switch_cpus[i].isa = testsys.cpu[i].isa
            # simulation period
            if options.maxinsts:
                switch_cpus[i].max_insts_any_thread = options.maxinsts
            # Add checker cpu if selected
            if options.checker:
                switch_cpus[i].addCheckerCpu()
            if options.bp_type:
                bpClass = ObjectList.bp_list.get(options.bp_type)
                switch_cpus[i].branchPred = bpClass()
            if options.indirect_bp_type:
                IndirectBPClass = ObjectList.indirect_bp_list.get(
                    options.indirect_bp_type)
                switch_cpus[i].branchPred.indirectBranchPred = \
                    IndirectBPClass()

        # If elastic tracing is enabled attach the elastic trace probe
        # to the switch CPUs
        if options.elastic_trace_en:
            CpuConfig.config_etrace(cpu_class, switch_cpus, options)

        testsys.switch_cpus = switch_cpus
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i]) for i in range(np)]

    if options.repeat_switch:
        switch_class = getCPUClass(options.cpu_type)[0]
        if switch_class.require_caches() and \
                not options.caches:
            print("%s: Must be used with caches" % str(switch_class))
            sys.exit(1)
        if not switch_class.support_take_over():
            print("%s: CPU switching not supported" % str(switch_class))
            sys.exit(1)

        repeat_switch_cpus = [switch_class(switched_out=True, \
                                               cpu_id=(i)) for i in range(np)]

        for i in range(np):
            repeat_switch_cpus[i].system = testsys
            repeat_switch_cpus[i].workload = testsys.cpu[i].workload
            repeat_switch_cpus[i].clk_domain = testsys.cpu[i].clk_domain
            repeat_switch_cpus[i].isa = testsys.cpu[i].isa

            if options.maxinsts:
                repeat_switch_cpus[i].max_insts_any_thread = options.maxinsts

            if options.checker:
                repeat_switch_cpus[i].addCheckerCpu()

        testsys.repeat_switch_cpus = repeat_switch_cpus

        if cpu_class:
            repeat_switch_cpu_list = [(switch_cpus[i], repeat_switch_cpus[i])
                                      for i in range(np)]
        else:
            repeat_switch_cpu_list = [(testsys.cpu[i], repeat_switch_cpus[i])
                                      for i in range(np)]

    if options.standard_switch:
        switch_cpus = [
            TimingSimpleCPU(switched_out=True, cpu_id=(i)) for i in range(np)
        ]
        switch_cpus_1 = [
            DerivO3CPU(switched_out=True, cpu_id=(i)) for i in range(np)
        ]

        for i in range(np):
            switch_cpus[i].system = testsys
            switch_cpus_1[i].system = testsys
            switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus_1[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clk_domain = testsys.cpu[i].clk_domain
            switch_cpus_1[i].clk_domain = testsys.cpu[i].clk_domain
            switch_cpus[i].isa = testsys.cpu[i].isa
            switch_cpus_1[i].isa = testsys.cpu[i].isa

            # if restoring, make atomic cpu simulate only a few instructions
            if options.checkpoint_restore != None:
                testsys.cpu[i].max_insts_any_thread = 1
            # Fast forward to specified location if we are not restoring
            elif options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            # Fast forward to a simpoint (warning: time consuming)
            elif options.simpoint:
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('simpoint not found')
                testsys.cpu[i].max_insts_any_thread = \
                    testsys.cpu[i].workload[0].simpoint
            # No distance specified, just switch
            else:
                testsys.cpu[i].max_insts_any_thread = 1

            # warmup period
            if options.warmup_insts:
                switch_cpus[i].max_insts_any_thread = options.warmup_insts

            # simulation period
            if options.maxinsts:
                switch_cpus_1[i].max_insts_any_thread = options.maxinsts

            # attach the checker cpu if selected
            if options.checker:
                switch_cpus[i].addCheckerCpu()
                switch_cpus_1[i].addCheckerCpu()

        testsys.switch_cpus = switch_cpus
        testsys.switch_cpus_1 = switch_cpus_1
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i]) for i in range(np)]
        switch_cpu_list1 = [(switch_cpus[i], switch_cpus_1[i])
                            for i in range(np)]

    # set the checkpoint in the cpu before m5.instantiate is called
    if options.take_checkpoints != None and \
           (options.simpoint or options.at_instruction):
        offset = int(options.take_checkpoints)
        # Set an instruction break point
        if options.simpoint:
            for i in range(np):
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('no simpoint for testsys.cpu[%d].workload[0]', i)
                checkpoint_inst = int(
                    testsys.cpu[i].workload[0].simpoint) + offset
                testsys.cpu[i].max_insts_any_thread = checkpoint_inst
                # used for output below
                options.take_checkpoints = checkpoint_inst
        else:
            options.take_checkpoints = offset
            # Set all test cpus with the right number of instructions
            # for the upcoming simulation
            for i in range(np):
                testsys.cpu[i].max_insts_any_thread = offset

    if options.take_simpoint_checkpoints != None:
        simpoints, interval_length = parseSimpointAnalysisFile(
            options, testsys)

    checkpoint_dir = None
    if options.checkpoint_restore:
        cpt_starttick, checkpoint_dir = findCptDir(options, cptdir, testsys)
    root.apply_config(options.param)
    m5.instantiate(checkpoint_dir)

    # Initialization is complete.  If we're not in control of simulation
    # (that is, if we're a slave simulator acting as a component in another
    #  'master' simulator) then we're done here.  The other simulator will
    # call simulate() directly. --initialize-only is used to indicate this.
    if options.initialize_only:
        return

    # Handle the max tick settings now that tick frequency was resolved
    # during system instantiation
    # NOTE: the maxtick variable here is in absolute ticks, so it must
    # include any simulated ticks before a checkpoint
    explicit_maxticks = 0
    maxtick_from_abs = m5.MaxTick
    maxtick_from_rel = m5.MaxTick
    maxtick_from_maxtime = m5.MaxTick
    if options.abs_max_tick:
        maxtick_from_abs = options.abs_max_tick
        explicit_maxticks += 1
    if options.rel_max_tick:
        maxtick_from_rel = options.rel_max_tick
        if options.checkpoint_restore:
            # NOTE: this may need to be updated if checkpoints ever store
            # the ticks per simulated second
            maxtick_from_rel += cpt_starttick
            if options.at_instruction or options.simpoint:
                warn("Relative max tick specified with --at-instruction or" \
                     " --simpoint\n      These options don't specify the " \
                     "checkpoint start tick, so assuming\n      you mean " \
                     "absolute max tick")
        explicit_maxticks += 1
    if options.maxtime:
        maxtick_from_maxtime = m5.ticks.fromSeconds(options.maxtime)
        explicit_maxticks += 1
    if explicit_maxticks > 1:
        warn("Specified multiple of --abs-max-tick, --rel-max-tick, --maxtime."\
             " Using least")
    maxtick = min([maxtick_from_abs, maxtick_from_rel, maxtick_from_maxtime])

    if options.checkpoint_restore != None and maxtick < cpt_starttick:
        fatal("Bad maxtick (%d) specified: " \
              "Checkpoint starts starts from tick: %d", maxtick, cpt_starttick)

    if options.standard_switch or cpu_class:
        if options.standard_switch:
            print("Switch at instruction count:%s" %
                  str(testsys.cpu[0].max_insts_any_thread))
            exit_event = m5.simulate()
        elif cpu_class and options.fast_forward:
            print("Switch at instruction count:%s" %
                  str(testsys.cpu[0].max_insts_any_thread))
            exit_event = m5.simulate()
        else:
            print("Switch at curTick count:%s" % str(10000))
            exit_event = m5.simulate(10000)
        print("Switched CPUS @ tick %s" % (m5.curTick()))

        m5.switchCpus(testsys, switch_cpu_list)

        if options.standard_switch:
            print("Switch at instruction count:%d" %
                  (testsys.switch_cpus[0].max_insts_any_thread))

            #warmup instruction count may have already been set
            if options.warmup_insts:
                exit_event = m5.simulate()
            else:
                exit_event = m5.simulate(options.standard_switch)
            print("Switching CPUS @ tick %s" % (m5.curTick()))
            print("Simulation ends instruction count:%d" %
                  (testsys.switch_cpus_1[0].max_insts_any_thread))
            m5.switchCpus(testsys, switch_cpu_list1)

    # If we're taking and restoring checkpoints, use checkpoint_dir
    # option only for finding the checkpoints to restore from.  This
    # lets us test checkpointing by restoring from one set of
    # checkpoints, generating a second set, and then comparing them.
    if (options.take_checkpoints or options.take_simpoint_checkpoints) \
        and options.checkpoint_restore:

        if m5.options.outdir:
            cptdir = m5.options.outdir
        else:
            cptdir = getcwd()

    if options.take_checkpoints != None:
        # Checkpoints being taken via the command line at <when> and at
        # subsequent periods of <period>.  Checkpoint instructions
        # received from the benchmark running are ignored and skipped in
        # favor of command line checkpoint instructions.
        exit_event = scriptCheckpoints(options, maxtick, cptdir)

    # Take SimPoint checkpoints
    elif options.take_simpoint_checkpoints != None:
        takeSimpointCheckpoints(simpoints, interval_length, cptdir)

    # Restore from SimPoint checkpoints
    elif options.restore_simpoint_checkpoint != None:
        restoreSimpointCheckpoint()

    else:
        if options.fast_forward:
            m5.stats.reset()

        print("**** REAL SIMULATION ****")

        # If checkpoints are being taken, then the checkpoint instruction
        # will occur in the benchmark code it self.
        if options.repeat_switch and maxtick > options.repeat_switch:
            exit_event = repeatSwitch(testsys, repeat_switch_cpu_list, maxtick,
                                      options.repeat_switch)
        elif options.advancedstats:
            while 1:
                exit_event = m5.simulate(
                    options.dumpinterval
                )  # The time scale is nano second (one tick)
                m5.stats.dump()
                # m5.stats.reset()
                # print('MESSAGE', exit_event.getCause())
                if (exit_event.getCause() ==
                        'exiting with last active thread context'):
                    break
            print("all sample completed")
        else:
            exit_event = benchCheckpoints(options, maxtick, cptdir)

    print('Exiting @ tick %i because %s' %
          (m5.curTick(), exit_event.getCause()))
コード例 #24
0
system.cpu.createInterruptController()
if isa == 'x86':
    system.cpu.interrupts[0].pio = system.membus.master
    system.cpu.interrupts[0].int_master = system.membus.slave
    system.cpu.interrupts[0].int_slave = system.membus.master

system.system_port = system.membus.slave
system.mem_ctrl = DDR3_1600_8x8()
system.mem_ctrl.range = system.mem_ranges[0]
system.mem_ctrl.port = system.membus.master
process = Process()
apps_path = "/project/linuxlab/gem5/test_progs/"
if program == "daxpy" and isa == "x86":
    process.cmd = [apps_path + '/daxpy/daxpy_x86']
elif program == "daxpy" and isa == "arm":
    process.cmd = [apps_path + '/daxpy/daxpy_arm']
elif program == "queens" and isa == "x86":
    process.cmd = [apps_path + '/queens/queens_x86']
    process.cmd += ["10 -c"]
elif program == "queens" and isa == "arm":
    process.cmd = [apps_path + 'queens/queens_arm']
    process.cmd += ["10 -c"]

system.cpu.workload = process
system.cpu.createThreads()
root = Root(full_system=False, system=system)
m5.instantiate()
print("Beginning simulation!")
exit_event = m5.simulate()
print('Exiting @ tick because '.format(m5.curTick(), exit_event.getCause()))
コード例 #25
0
ファイル: simple.py プロジェクト: sagOvski/gem5scripts
# int controllers
system.cpu.createInterruptController()
system.cpu.interrupts[0].pio = system.membus.master
system.cpu.interrupts[0].int_master = system.membus.slave
system.cpu.interrupts[0].int_slave = system.membus.master

system.system_port = system.membus.slave

system.mem_ctrl = DDR3_1600_8x8()
system.mem_ctrl.range = system.mem_ranges[0]
system.mem_ctrl.port = system.membus.master

process = Process()
process.cmd = ['tests/test-progs/hello/bin/x86/linux/hello']
system.cpu.workload = process
system.cpu.createThreads()

# all the simulations have to have a root object, absolutely required,
# all others are optionsl
root = Root(full_system=False, system=system)

# walk through all the above python objects and create all C++ objects
m5.instantiate()

print "beginning simulation"
exit_event = m5.simulate()

print "done simulating at tick %d because %s!!" % (m5.curTick(),
                                                   exit_event.getCause())
コード例 #26
0
checkpoint_dir = None
m5.instantiate(checkpoint_dir)

# Map workload to this address space
host_cpu.workload[0].map(0x10000000, 0x200000000, 4096)

if options.fast_forward:
    print("Switch at instruction count: %d" % cpu_list[0].max_insts_any_thread)

exit_event = m5.simulate(maxtick)

if options.fast_forward:
    if exit_event.getCause() == "a thread reached the max instruction count":
        m5.switchCpus(system, switch_cpu_list)
        print("Switched CPUS @ tick %s" % (m5.curTick()))
        m5.stats.reset()
        exit_event = m5.simulate(maxtick - m5.curTick())
elif options.fast_forward_pseudo_op:
    while exit_event.getCause() == "switchcpu":
        # If we are switching *to* kvm, then the current stats are meaningful
        # Note that we don't do any warmup by default
        if type(switch_cpu_list[0][0]) == FutureCpuClass:
            print("Dumping stats...")
            m5.stats.dump()
        m5.switchCpus(system, switch_cpu_list)
        print("Switched CPUS @ tick %s" % (m5.curTick()))
        m5.stats.reset()
        # This lets us switch back and forth without keeping a counter
        switch_cpu_list = [(x[1], x[0]) for x in switch_cpu_list]
        exit_event = m5.simulate(maxtick - m5.curTick())
コード例 #27
0
ファイル: starter_se.py プロジェクト: mrunalkp/cs251
def main():
    parser = argparse.ArgumentParser(epilog=__doc__)

    parser.add_argument("commands_to_run",
                        metavar="command(s)",
                        nargs='*',
                        help="Command(s) to run")
    parser.add_argument("--cpu",
                        type=str,
                        choices=cpu_types.keys(),
                        default="atomic",
                        help="CPU model to use")
    parser.add_argument("--cpu-freq", type=str, default="4GHz")
    parser.add_argument("--num-cores",
                        type=int,
                        default=1,
                        help="Number of CPU cores")
    parser.add_argument("--mem-type",
                        default="DDR3_1600_8x8",
                        choices=ObjectList.mem_list.get_names(),
                        help="type of memory to use")
    parser.add_argument("--mem-channels",
                        type=int,
                        default=2,
                        help="number of memory channels")
    parser.add_argument("--mem-ranks",
                        type=int,
                        default=None,
                        help="number of memory ranks per channel")
    parser.add_argument("--mem-size",
                        action="store",
                        type=str,
                        default="2GB",
                        help="Specify the physical memory size")

    args = parser.parse_args()

    # Create a single root node for gem5's object hierarchy. There can
    # only exist one root node in the simulator at any given
    # time. Tell gem5 that we want to use syscall emulation mode
    # instead of full system mode.
    root = Root(full_system=False)

    # Populate the root node with a system. A system corresponds to a
    # single node with shared memory.
    root.system = create(args)

    # Instantiate the C++ object hierarchy. After this point,
    # SimObjects can't be instantiated anymore.
    m5.instantiate()

    # Start the simulator. This gives control to the C++ world and
    # starts the simulator. The returned event tells the simulation
    # script why the simulator exited.
    event = m5.simulate()

    # Print the reason for the simulation exit. Some exit codes are
    # requests for service (e.g., checkpoints) from the simulation
    # script. We'll just ignore them here and exit.
    print(event.getCause(), " @ ", m5.curTick())
    sys.exit(event.getCode())
コード例 #28
0
 def __call__(self):
     print "Progress! Time now %fs" % (m5.curTick() / 1e12)
     self.eventq.schedule(self, m5.curTick() + self.period)
コード例 #29
0
 def __init__(self, eventq, period):
     super(ProgressEvent, self).__init__()
     self.period = int(period)
     self.eventq = eventq
     self.eventq.schedule(self, m5.curTick() + self.period)
コード例 #30
0
 def get_current_tick(self) -> int:
     """
     Returns the current tick.
     """
     return m5.curTick()
コード例 #31
0
ファイル: Simulation.py プロジェクト: Weil0ng/gem5_arm
def scriptCheckpoints(options, maxtick, cptdir):
    if options.at_instruction or options.simpoint:
        checkpoint_inst = int(options.take_checkpoints)

        # maintain correct offset if we restored from some instruction
        if options.checkpoint_restore != None:
            checkpoint_inst += options.checkpoint_restore

        print "Creating checkpoint at inst:%d" % (checkpoint_inst)
        exit_event = m5.simulate()
        exit_cause = exit_event.getCause()
        print "exit cause = %s" % exit_cause

        # skip checkpoint instructions should they exist
        while exit_cause == "checkpoint":
            exit_event = m5.simulate()
            exit_cause = exit_event.getCause()

        if exit_cause == "a thread reached the max instruction count":
            m5.checkpoint(joinpath(cptdir, "cpt.%s.%d" % \
                    (options.bench, checkpoint_inst)))
            print "Checkpoint written."

    else:
        when, period = options.take_checkpoints.split(",", 1)
        when = int(when)
        period = int(period)
        num_checkpoints = 0

        exit_event = m5.simulate(when - m5.curTick())
        exit_cause = exit_event.getCause()
        while exit_cause == "checkpoint":
            exit_event = m5.simulate(when - m5.curTick())
            exit_cause = exit_event.getCause()

        if exit_cause == "simulate() limit reached":
            # cuiwl: dump and reset stats.
            print "Checkpoint %d." % (num_checkpoints)
            m5.checkpoint(joinpath(cptdir, "cpt.%d"))
            num_checkpoints += 1

        sim_ticks = when
        max_checkpoints = options.max_checkpoints

        while num_checkpoints < max_checkpoints and \
                exit_cause == "simulate() limit reached":
            if (sim_ticks + period) > maxtick:
                exit_event = m5.simulate(maxtick - sim_ticks)
                exit_cause = exit_event.getCause()
                break
            else:
                exit_event = m5.simulate(period)
                exit_cause = exit_event.getCause()
                sim_ticks += period
                while exit_event.getCause() == "checkpoint":
                    exit_event = m5.simulate(sim_ticks - m5.curTick())
                if exit_event.getCause() == "simulate() limit reached":
                    # dump and reset stats.
                    print "Checkpoint %d." % (num_checkpoints)
                    m5.stats.dump()
                    m5.stats.reset()
                    m5.checkpoint(joinpath(cptdir, "cpt.%d"))
                    num_checkpoints += 1
        if options.stat_prefix:
          shutil.copyfile("/usr/local/google/home/cuiwl/gem5/m5out/stats.txt", "/usr/local/google/home/cuiwl/gem5/m5out/stats/" + options.stat_prefix + "_" + time.strftime("%Y%m%d") + "_" + time.strftime("%H:%M:%S") + ".txt")
        else:
          shutil.copyfile("/usr/local/google/home/cuiwl/gem5/m5out/stats.txt", "/usr/local/google/home/cuiwl/gem5/m5out/stats/none" + "_" + time.strftime("%Y%m%d") + "_" + time.strftime("%H:%M:%S") + ".txt")
    return exit_event
コード例 #32
0
    numa_cache_upward.append(domain.numa_cache_upward)

    system.mem_ranges.append(domain.mem_ranges)

    mem_ctrl.append(domain.mem_ctrl)

    membus.append(domain.membus)

    l2bus.append(domain.l2bus)

    l2cache.append(domain.l2cache)

    cpu += domain.cpu

system.numa_cache_downward = numa_cache_downward
system.numa_cache_upward = numa_cache_upward
system.mem_ctrl = mem_ctrl
system.membus = membus
system.l2bus = l2bus
system.l2cache = l2cache
system.cpu = cpu

system.system_port = system.systembus.slave

root = Root(full_system = False, system = system)

m5.instantiate()

exit_event = m5.simulate()
print 'Exiting @ tick ' + str(m5.curTick()) + ' because ' + exit_event.getCause()
コード例 #33
0
ファイル: memtest.py プロジェクト: hassahma/m5
               make_level(spec[1:], prototypes[1:], cache, "cpu_side")
     else:
          # we just built the MemTest objects
          parent.cpu = objs
          for t in objs:
               t.test = getattr(attach_obj, attach_port)
               t.functional = system.funcmem.port

make_level(treespec, prototypes, system.physmem, "port")

# -----------------------
# run simulation
# -----------------------

root = Root( system = system )
if options.atomic:
    root.system.mem_mode = 'atomic'
else:
    root.system.mem_mode = 'timing'

# Not much point in this being higher than the L1 latency
m5.ticks.setGlobalFrequency('1ns')

# instantiate configuration
m5.instantiate(root)

# simulate until program terminates
exit_event = m5.simulate(options.maxtick)

print 'Exiting @ tick', m5.curTick(), 'because', exit_event.getCause()
コード例 #34
0
ファイル: two_level.py プロジェクト: miaochenlu/LearningGem5

system.cpu.createInterruptController()
system.cpu.interrupts[0].pio = system.membus.master
system.cpu.interrupts[0].int_master = system.membus.slave
system.cpu.interrupts[0].int_slave = system.membus.master

system.system_port = system.membus.slave

system.mem_ctrl = DDR3_1600_8x8()

system.mem_ctrl.range = system.mem_ranges[0]

system.mem_ctrl.port = system.membus.master

process = Process()
process.cmd = ['tests/test-progs/hello/bin/x86/linux/hello']
system.cpu.workload = process
system.cpu.createThreads()

root = Root(full_system = False, system = system)

m5.instantiate()

print("Beginning simulation!")
exit_event = m5.simulate()

print('Exiting @ tick {} because {}'
      .format(m5.curTick(), exit_event.getCause()))

コード例 #35
0
ファイル: spec2006.py プロジェクト: lbiester/gem5
process = Process()
system.cpu.process = process
system.cpu.max_insts_any_thread = opts.maxinsts or default_max_insts

# Set the command
# cmd is a list which begins with the executable (like argv)
process.cmd = binary + input_file
process.output = output_file
# Set the cpu to use the process as its workload and create thread contexts
system.cpu.workload = process
system.cpu.createThreads()

# set up the root SimObject and start the simulation
root = Root(full_system = False, system = system)
# instantiate all of the objects we've created above
m5.instantiate()

# this code allows us to dump stats in intermediate states, every n instructions
dump_n_instructions = 100000
i = 0
while True:
    i += dump_n_instructions
    system.cpu.scheduleInstStop(0, dump_n_instructions, 'dump statistics')
    event = m5.simulate()
    if event.getCause() == 'dump statistics':
        m5.stats.dump()
        print(str(datetime.datetime.now()), 'Instruction Count: {}, Dumping stats'.format(i))
    else:
        print('Exiting @ tick %i because %s', m5.curTick(), event.getCause())
        break
コード例 #36
0
ファイル: fs_bigLITTLE.py プロジェクト: YanMeng991/test
def main():
    parser = argparse.ArgumentParser(
        description="Generic ARM big.LITTLE configuration")

    parser.add_argument("--restore-from",
                        type=str,
                        default=None,
                        help="Restore from checkpoint")
    parser.add_argument("--dtb",
                        type=str,
                        default=default_dtb,
                        help="DTB file to load")
    parser.add_argument("--kernel",
                        type=str,
                        default=default_kernel,
                        help="Linux kernel")
    parser.add_argument("--disk",
                        action="append",
                        type=str,
                        default=[],
                        help="Disks to instantiate")
    parser.add_argument("--bootscript",
                        type=str,
                        default=default_rcs,
                        help="Linux bootscript")
    parser.add_argument("--atomic",
                        action="store_true",
                        default=False,
                        help="Use atomic CPUs")
    parser.add_argument("--kernel-init",
                        type=str,
                        default="/sbin/init",
                        help="Override init")
    parser.add_argument("--big-cpus",
                        type=int,
                        default=1,
                        help="Number of big CPUs to instantiate")
    parser.add_argument("--little-cpus",
                        type=int,
                        default=1,
                        help="Number of little CPUs to instantiate")
    parser.add_argument("--caches",
                        action="store_true",
                        default=False,
                        help="Instantiate caches")
    parser.add_argument("--last-cache-level",
                        type=int,
                        default=2,
                        help="Last level of caches (e.g. 3 for L3)")
    parser.add_argument("--big-cpu-clock",
                        type=str,
                        default="2GHz",
                        help="Big CPU clock frequency")
    parser.add_argument("--little-cpu-clock",
                        type=str,
                        default="1GHz",
                        help="Little CPU clock frequency")

    m5.ticks.fixGlobalFrequency()

    options = parser.parse_args()

    kernel_cmd = [
        "earlyprintk=pl011,0x1c090000",
        "console=ttyAMA0",
        "lpj=19988480",
        "norandmaps",
        "loglevel=8",
        "mem=%s" % default_mem_size,
        "root=/dev/vda1",
        "rw",
        "init=%s" % options.kernel_init,
        "vmalloc=768MB",
    ]

    root = Root(full_system=True)

    disks = default_disk if len(options.disk) == 0 else options.disk
    system = createSystem(options.kernel, options.bootscript, disks=disks)

    root.system = system
    system.boot_osflags = " ".join(kernel_cmd)

    AtomicCluster = devices.AtomicCluster

    if options.big_cpus + options.little_cpus == 0:
        m5.util.panic("Empty CPU clusters")

    # big cluster
    if options.big_cpus > 0:
        if options.atomic:
            system.bigCluster = AtomicCluster(system, options.big_cpus,
                                              options.big_cpu_clock)
        else:
            system.bigCluster = BigCluster(system, options.big_cpus,
                                           options.big_cpu_clock)
        mem_mode = system.bigCluster.memoryMode()
    # little cluster
    if options.little_cpus > 0:
        if options.atomic:
            system.littleCluster = AtomicCluster(system, options.little_cpus,
                                                 options.little_cpu_clock)

        else:
            system.littleCluster = LittleCluster(system, options.little_cpus,
                                                 options.little_cpu_clock)
        mem_mode = system.littleCluster.memoryMode()

    if options.big_cpus > 0 and options.little_cpus > 0:
        if system.bigCluster.memoryMode() != system.littleCluster.memoryMode():
            m5.util.panic("Memory mode missmatch among CPU clusters")
    system.mem_mode = mem_mode

    # create caches
    system.addCaches(options.caches, options.last_cache_level)
    if not options.caches:
        if options.big_cpus > 0 and system.bigCluster.requireCaches():
            m5.util.panic("Big CPU model requires caches")
        if options.little_cpus > 0 and system.littleCluster.requireCaches():
            m5.util.panic("Little CPU model requires caches")

    # Linux device tree
    system.dtb_filename = SysPaths.binary(options.dtb)

    # Get and load from the chkpt or simpoint checkpoint
    if options.restore_from is not None:
        m5.instantiate(options.restore_from)
    else:
        m5.instantiate()

    # start simulation (and drop checkpoints when requested)
    while True:
        event = m5.simulate()
        exit_msg = event.getCause()
        if exit_msg == "checkpoint":
            print "Dropping checkpoint at tick %d" % m5.curTick()
            cpt_dir = os.path.join(m5.options.outdir, "cpt.%d" % m5.curTick())
            m5.checkpoint(os.path.join(cpt_dir))
            print "Checkpoint done."
        else:
            print exit_msg, " @ ", m5.curTick()
            break

    sys.exit(event.getCode())
コード例 #37
0
def main():
    parser = argparse.ArgumentParser(
        description="Generic ARM big.LITTLE configuration")

    parser.add_argument("--restore-from", type=str, default=None,
                        help="Restore from checkpoint")
    parser.add_argument("--dtb", type=str, default=default_dtb,
                        help="DTB file to load")
    parser.add_argument("--kernel", type=str, default=default_kernel,
                        help="Linux kernel")
    parser.add_argument("--disk", action="append", type=str, default=[],
                        help="Disks to instantiate")
    parser.add_argument("--bootscript", type=str, default=default_rcs,
                        help="Linux bootscript")
    parser.add_argument("--atomic", action="store_true", default=False,
                        help="Use atomic CPUs")
    parser.add_argument("--kernel-init", type=str, default="/sbin/init",
                        help="Override init")
    parser.add_argument("--big-cpus", type=int, default=1,
                        help="Number of big CPUs to instantiate")
    parser.add_argument("--little-cpus", type=int, default=1,
                        help="Number of little CPUs to instantiate")
    parser.add_argument("--caches", action="store_true", default=False,
                        help="Instantiate caches")
    parser.add_argument("--last-cache-level", type=int, default=2,
                        help="Last level of caches (e.g. 3 for L3)")
    parser.add_argument("--big-cpu-clock", type=str, default="2GHz",
                        help="Big CPU clock frequency")
    parser.add_argument("--little-cpu-clock", type=str, default="1GHz",
                        help="Little CPU clock frequency")

    m5.ticks.fixGlobalFrequency()

    options = parser.parse_args()

    kernel_cmd = [
        "earlyprintk=pl011,0x1c090000",
        "console=ttyAMA0",
        "lpj=19988480",
        "norandmaps",
        "loglevel=8",
        "mem=%s" % default_mem_size,
        "root=/dev/vda1",
        "rw",
        "init=%s" % options.kernel_init,
        "vmalloc=768MB",
    ]

    root = Root(full_system=True)

    disks = [default_disk] if len(options.disk) == 0 else options.disk
    system = createSystem(options.caches,
                          options.kernel,
                          options.bootscript,
                          disks=disks)

    root.system = system
    system.boot_osflags = " ".join(kernel_cmd)

    AtomicCluster = devices.AtomicCluster

    if options.big_cpus + options.little_cpus == 0:
        m5.util.panic("Empty CPU clusters")

    # big cluster
    if options.big_cpus > 0:
        if options.atomic:
            system.bigCluster = AtomicCluster(system, options.big_cpus,
                                              options.big_cpu_clock)
        else:
            system.bigCluster = BigCluster(system, options.big_cpus,
                                           options.big_cpu_clock)
        mem_mode = system.bigCluster.memoryMode()
    # little cluster
    if options.little_cpus > 0:
        if options.atomic:
            system.littleCluster = AtomicCluster(system, options.little_cpus,
                                                 options.little_cpu_clock)

        else:
            system.littleCluster = LittleCluster(system, options.little_cpus,
                                                 options.little_cpu_clock)
        mem_mode = system.littleCluster.memoryMode()

    if options.big_cpus > 0 and options.little_cpus > 0:
        if system.bigCluster.memoryMode() != system.littleCluster.memoryMode():
            m5.util.panic("Memory mode missmatch among CPU clusters")
    system.mem_mode = mem_mode

    # create caches
    system.addCaches(options.caches, options.last_cache_level)
    if not options.caches:
        if options.big_cpus > 0 and system.bigCluster.requireCaches():
            m5.util.panic("Big CPU model requires caches")
        if options.little_cpus > 0 and system.littleCluster.requireCaches():
            m5.util.panic("Little CPU model requires caches")

    # Linux device tree
    system.dtb_filename = SysPaths.binary(options.dtb)

    # Get and load from the chkpt or simpoint checkpoint
    if options.restore_from is not None:
        m5.instantiate(options.restore_from)
    else:
        m5.instantiate()

    # start simulation (and drop checkpoints when requested)
    while True:
        event = m5.simulate()
        exit_msg = event.getCause()
        if exit_msg == "checkpoint":
            print "Dropping checkpoint at tick %d" % m5.curTick()
            cpt_dir = os.path.join(m5.options.outdir, "cpt.%d" % m5.curTick())
            m5.checkpoint(os.path.join(cpt_dir))
            print "Checkpoint done."
        else:
            print exit_msg, " @ ", m5.curTick()
            break

    sys.exit(event.getCode())
コード例 #38
0
def run(options, root, testsys, cpu_class):
    if options.maxtick:
        maxtick = options.maxtick
    elif options.maxtime:
        simtime = m5.ticks.seconds(simtime)
        print "simulating for: ", simtime
        maxtick = simtime
    else:
        maxtick = m5.MaxTick

    if options.checkpoint_dir:
        cptdir = options.checkpoint_dir
    elif m5.options.outdir:
        cptdir = m5.options.outdir
    else:
        cptdir = getcwd()

    if options.fast_forward and options.checkpoint_restore != None:
        fatal("Can't specify both --fast-forward and --checkpoint-restore")

    if options.standard_switch and not options.caches:
        fatal("Must specify --caches when using --standard-switch")

    np = options.num_cpus
    max_checkpoints = options.max_checkpoints
    switch_cpus = None

    if options.prog_interval:
        for i in xrange(np):
            testsys.cpu[i].progress_interval = options.prog_interval

    if options.maxinsts:
        for i in xrange(np):
            testsys.cpu[i].max_insts_any_thread = options.maxinsts

    if cpu_class:
        switch_cpus = [cpu_class(defer_registration=True, cpu_id=(np+i))
                       for i in xrange(np)]

        for i in xrange(np):
            if options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            switch_cpus[i].system =  testsys
            switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clock = testsys.cpu[0].clock
            # simulation period
            if options.maxinsts:
                switch_cpus[i].max_insts_any_thread = options.maxinsts
            # Add checker cpu if selected
            if options.checker:
                switch_cpus[i].addCheckerCpu()

        testsys.switch_cpus = switch_cpus
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i]) for i in xrange(np)]

    if options.standard_switch:
        if not options.caches:
            # O3 CPU must have a cache to work.
            print "O3 CPU must be used with caches"
            sys.exit(1)

        switch_cpus = [TimingSimpleCPU(defer_registration=True, cpu_id=(np+i))
                       for i in xrange(np)]
        switch_cpus_1 = [DerivO3CPU(defer_registration=True, cpu_id=(2*np+i))
                        for i in xrange(np)]

        for i in xrange(np):
            switch_cpus[i].system =  testsys
            switch_cpus_1[i].system =  testsys
            switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus_1[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clock = testsys.cpu[0].clock
            switch_cpus_1[i].clock = testsys.cpu[0].clock

            # if restoring, make atomic cpu simulate only a few instructions
            if options.checkpoint_restore != None:
                testsys.cpu[i].max_insts_any_thread = 1
            # Fast forward to specified location if we are not restoring
            elif options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            # Fast forward to a simpoint (warning: time consuming)
            elif options.simpoint:
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('simpoint not found')
                testsys.cpu[i].max_insts_any_thread = \
                    testsys.cpu[i].workload[0].simpoint
            # No distance specified, just switch
            else:
                testsys.cpu[i].max_insts_any_thread = 1

            # warmup period
            if options.warmup_insts:
                switch_cpus[i].max_insts_any_thread =  options.warmup_insts

            # simulation period
            if options.maxinsts:
                switch_cpus_1[i].max_insts_any_thread = options.maxinsts

            # attach the checker cpu if selected
            if options.checker:
                switch_cpus[i].addCheckerCpu()
                switch_cpus_1[i].addCheckerCpu()

        testsys.switch_cpus = switch_cpus
        testsys.switch_cpus_1 = switch_cpus_1
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i]) for i in xrange(np)]
        switch_cpu_list1 = [(switch_cpus[i], switch_cpus_1[i]) for i in xrange(np)]

    # set the checkpoint in the cpu before m5.instantiate is called
    if options.take_checkpoints != None and \
           (options.simpoint or options.at_instruction):
        offset = int(options.take_checkpoints)
        # Set an instruction break point
        if options.simpoint:
            for i in xrange(np):
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('no simpoint for testsys.cpu[%d].workload[0]', i)
                checkpoint_inst = int(testsys.cpu[i].workload[0].simpoint) + offset
                testsys.cpu[i].max_insts_any_thread = checkpoint_inst
                # used for output below
                options.take_checkpoints = checkpoint_inst
        else:
            options.take_checkpoints = offset
            # Set all test cpus with the right number of instructions
            # for the upcoming simulation
            for i in xrange(np):
                testsys.cpu[i].max_insts_any_thread = offset

    checkpoint_dir = None
    if options.checkpoint_restore != None:
        from os.path import isdir, exists
        from os import listdir
        import re

        if not isdir(cptdir):
            fatal("checkpoint dir %s does not exist!", cptdir)

        if options.at_instruction or options.simpoint:
            inst = options.checkpoint_restore
            if options.simpoint:
                # assume workload 0 has the simpoint
                if testsys.cpu[0].workload[0].simpoint == 0:
                    fatal('Unable to find simpoint')
                inst += int(testsys.cpu[0].workload[0].simpoint)

            checkpoint_dir = joinpath(cptdir,
                                      "cpt.%s.%s" % (options.bench, inst))
            if not exists(checkpoint_dir):
                fatal("Unable to find checkpoint directory %s", checkpoint_dir)
        else:
            dirs = listdir(cptdir)
            expr = re.compile('cpt\.([0-9]*)')
            cpts = []
            for dir in dirs:
                match = expr.match(dir)
                if match:
                    cpts.append(match.group(1))

            cpts.sort(lambda a,b: cmp(long(a), long(b)))

            cpt_num = options.checkpoint_restore

            if cpt_num > len(cpts):
                fatal('Checkpoint %d not found', cpt_num)

            ## Adjust max tick based on our starting tick
            maxtick = maxtick - int(cpts[cpt_num - 1])
            checkpoint_dir = joinpath(cptdir, "cpt.%s" % cpts[cpt_num - 1])

    m5.instantiate(checkpoint_dir)

    if options.standard_switch or cpu_class:
        if options.standard_switch:
            print "Switch at instruction count:%s" % \
                    str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        elif cpu_class and options.fast_forward:
            print "Switch at instruction count:%s" % \
                    str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        else:
            print "Switch at curTick count:%s" % str(10000)
            exit_event = m5.simulate(10000)
        print "Switched CPUS @ tick %s" % (m5.curTick())

        # when you change to Timing (or Atomic), you halt the system
        # given as argument.  When you are finished with the system
        # changes (including switchCpus), you must resume the system
        # manually.  You DON'T need to resume after just switching
        # CPUs if you haven't changed anything on the system level.

        m5.changeToTiming(testsys)
        m5.switchCpus(switch_cpu_list)
        m5.resume(testsys)

        if options.standard_switch:
            print "Switch at instruction count:%d" % \
                    (testsys.switch_cpus[0].max_insts_any_thread)

            #warmup instruction count may have already been set
            if options.warmup_insts:
                exit_event = m5.simulate()
            else:
                exit_event = m5.simulate(options.warmup)
            print "Switching CPUS @ tick %s" % (m5.curTick())
            print "Simulation ends instruction count:%d" % \
                    (testsys.switch_cpus_1[0].max_insts_any_thread)
            m5.drain(testsys)
            m5.switchCpus(switch_cpu_list1)
            m5.resume(testsys)

    num_checkpoints = 0
    exit_cause = ''

    # If we're taking and restoring checkpoints, use checkpoint_dir
    # option only for finding the checkpoints to restore from.  This
    # lets us test checkpointing by restoring from one set of
    # checkpoints, generating a second set, and then comparing them.
    if options.take_checkpoints and options.checkpoint_restore:
        if m5.options.outdir:
            cptdir = m5.options.outdir
        else:
            cptdir = getcwd()

    # Checkpoints being taken via the command line at <when> and at
    # subsequent periods of <period>.  Checkpoint instructions
    # received from the benchmark running are ignored and skipped in
    # favor of command line checkpoint instructions.
    if options.take_checkpoints != None :
        if options.at_instruction or options.simpoint:
            checkpoint_inst = int(options.take_checkpoints)

            # maintain correct offset if we restored from some instruction
            if options.checkpoint_restore != None:
                checkpoint_inst += options.checkpoint_restore

            print "Creating checkpoint at inst:%d" % (checkpoint_inst)
            exit_event = m5.simulate()
            print "exit cause = %s" % (exit_event.getCause())

            # skip checkpoint instructions should they exist
            while exit_event.getCause() == "checkpoint":
                exit_event = m5.simulate()

            if exit_event.getCause() == \
                   "a thread reached the max instruction count":
                m5.checkpoint(joinpath(cptdir, "cpt.%s.%d" % \
                        (options.bench, checkpoint_inst)))
                print "Checkpoint written."
                num_checkpoints += 1

            if exit_event.getCause() == "user interrupt received":
                exit_cause = exit_event.getCause();
        else:
            when, period = options.take_checkpoints.split(",", 1)
            when = int(when)
            period = int(period)

            exit_event = m5.simulate(when)
            while exit_event.getCause() == "checkpoint":
                exit_event = m5.simulate(when - m5.curTick())

            if exit_event.getCause() == "simulate() limit reached":
                m5.checkpoint(joinpath(cptdir, "cpt.%d"))
                num_checkpoints += 1

            sim_ticks = when
            exit_cause = "maximum %d checkpoints dropped" % max_checkpoints
            while num_checkpoints < max_checkpoints and \
                    exit_event.getCause() == "simulate() limit reached":
                if (sim_ticks + period) > maxtick:
                    exit_event = m5.simulate(maxtick - sim_ticks)
                    exit_cause = exit_event.getCause()
                    break
                else:
                    exit_event = m5.simulate(period)
                    sim_ticks += period
                    while exit_event.getCause() == "checkpoint":
                        exit_event = m5.simulate(sim_ticks - m5.curTick())
                    if exit_event.getCause() == "simulate() limit reached":
                        m5.checkpoint(joinpath(cptdir, "cpt.%d"))
                        num_checkpoints += 1

            if exit_event.getCause() != "simulate() limit reached":
                exit_cause = exit_event.getCause();

    else: # no checkpoints being taken via this script
        if options.fast_forward:
            m5.stats.reset()
        print "**** REAL SIMULATION ****"
        exit_event = m5.simulate(maxtick)

        while exit_event.getCause() == "checkpoint":
            m5.checkpoint(joinpath(cptdir, "cpt.%d"))
            num_checkpoints += 1
            if num_checkpoints == max_checkpoints:
                exit_cause = "maximum %d checkpoints dropped" % max_checkpoints
                break

            exit_event = m5.simulate(maxtick - m5.curTick())
            exit_cause = exit_event.getCause()

    if exit_cause == '':
        exit_cause = exit_event.getCause()
    print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_cause)

    if options.checkpoint_at_end:
        m5.checkpoint(joinpath(cptdir, "cpt.%d"))
コード例 #39
0
dispatcher.cpu = host_cpu
dispatcher.shader_pointer = shader
dispatcher.cl_driver = driver

########################## Start simulation ########################

root = Root(system=system, full_system=False)
m5.ticks.setGlobalFrequency('1THz')
if options.abs_max_tick:
    maxtick = options.abs_max_tick
else:
    maxtick = m5.MaxTick

# Benchmarks support work item annotations
Simulation.setWorkCountOptions(system, options)

# Checkpointing is not supported by APU model
if (options.checkpoint_dir != None or options.checkpoint_restore != None):
    fatal("Checkpointing not supported by apu model")

checkpoint_dir = None
m5.instantiate(checkpoint_dir)

# Map workload to this address space
host_cpu.workload[0].map(0x10000000, 0x200000000, 4096)

exit_event = m5.simulate(maxtick)
print "Ticks:", m5.curTick()
print 'Exiting because ', exit_event.getCause()
sys.exit(exit_event.getCode())
コード例 #40
0
ファイル: simple.py プロジェクト: shinezyy/gem5_modification
# obj1.master = obj2.slave  <==> obj2.slave = obj1.master
# But the direction of data stream between cache and the membus should be double direction ?


system.cpu.createInterruptController()
print type(system.cpu.interrupts.pio)
system.cpu.interrupts.pio = system.membus.master
system.cpu.interrupts.int_master = system.membus.slave
system.cpu.interrupts.int_slave = system.membus.master


system.system_port = system.membus.slave # x86 specific, allow system to r/w memory

system.mem_ctrl = DDR3_1600_x64() # memory controller
system.mem_ctrl.range = system.mem_ranges[0]
system.mem_ctrl.port = system.membus.master

process = LiveProcess()
process.cmd = ['tests/test-progs/hello/bin/x86/linux/hello']
system.cpu.workload = process
system.cpu.createThreads()

root = Root(full_system=False, system=system)
m5.instantiate()

print 'Beginning simulation!'
exit_event = m5.simulate()

print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_event.getCause())

コード例 #41
0
        root.sim_quantum = int(1e9)  # 1 ms

    # instantiate all of the objects we've created above
    m5.instantiate()

    # Keep running until we are done.
    print("Running the simulation")
    curCpus = 'system.cpu'
    exit_event = m5.simulate()
    while exit_event.getCause() != "m5_exit instruction encountered":
        if exit_event.getCause() == "user interrupt received":
            print("User interrupt. Exiting")
            break

        print('Pause @ tick %i because %s' %
              (m5.curTick(), exit_event.getCause()))
        if exit_event.getCause() == "switchcpu":
            if 'system.cpu' == curCpus:
                system.switchCpus(system.cpu, system.timingCpu)
                curCpus = 'system.timingCpu'
            else:
                system.switchCpus(system.timingCpu, system.cpu)
                curCpus = 'system.cpu'
            m5.stats.reset()
            exit_event = m5.simulate(100000000)

        elif exit_event.getCause() == "simulate() limit reached":
            if 'system.timingCpu' == curCpus:
                m5.stats.dump()
                m5.stats.reset()
                print("Continuing...")
コード例 #42
0
system.mem_ctrl.range = system.mem_ranges[0]
system.mem_ctrl.port = system.membus.master
'''
Process setup
'''
# Process
process = Process()
process.cmd = [binary]

# Set CPU to execute process
system.cpu.workload = process

# Create the execution threads
system.cpu.createThreads()
'''
Simulation environment setup
'''
# Root of the simulation
root = Root(full_system=False, system=system)
'''
Run the setup
'''
# Instantiating the simulator
m5.instantiate()

# Run the simulator, kick off discrete event simulation
exit_event = m5.simulate()
m5.stats.dump()

print("{} at tick {}.".format(exit_event.getCause(), m5.curTick()))
コード例 #43
0
ファイル: Simulation.py プロジェクト: MiladMoghaddam/DRM
def run(options, root, testsys, cpu_class):
# NOTE: this function is called from example from configs/example/ruby_fs.py 
# like this: "Simulation.run(options, root, system, FutureClass)"
# so, "system" is "testsys" here;

    if options.maxtick:
        maxtick = options.maxtick
    elif options.maxtime:
        simtime = m5.ticks.seconds(simtime)
        print "simulating for: ", simtime
        maxtick = simtime
    else:
        maxtick = m5.MaxTick

    if options.checkpoint_dir:
        cptdir = options.checkpoint_dir
    elif m5.options.outdir:
        cptdir = m5.options.outdir
    else:
        cptdir = getcwd()

    if options.fast_forward and options.checkpoint_restore != None:
        fatal("Can't specify both --fast-forward and --checkpoint-restore")

    if options.standard_switch and not options.caches:
        fatal("Must specify --caches when using --standard-switch")

    np = options.num_cpus
    max_checkpoints = options.max_checkpoints
    switch_cpus = None

    if options.prog_interval:
        for i in xrange(np):
            testsys.cpu[i].progress_interval = options.prog_interval

    if options.maxinsts:
        for i in xrange(np):
            testsys.cpu[i].max_insts_any_thread = options.maxinsts

    if cpu_class:
        switch_cpus = [cpu_class(defer_registration=True, cpu_id=(np+i))
                       for i in xrange(np)]

        for i in xrange(np):
            if options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            switch_cpus[i].system =  testsys
            if not buildEnv['FULL_SYSTEM']:
                switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clock = testsys.cpu[0].clock
            # simulation period
            if options.maxinsts:
                switch_cpus[i].max_insts_any_thread = options.maxinsts

        testsys.switch_cpus = switch_cpus
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i]) for i in xrange(np)]

    if options.standard_switch:
        if not options.caches:
            # O3 CPU must have a cache to work.
            print "O3 CPU must be used with caches"
            sys.exit(1)

        switch_cpus = [TimingSimpleCPU(defer_registration=True, cpu_id=(np+i))
                       for i in xrange(np)]
        switch_cpus_1 = [DerivO3CPU(defer_registration=True, cpu_id=(2*np+i))
                        for i in xrange(np)]

        for i in xrange(np):
            switch_cpus[i].system =  testsys
            switch_cpus_1[i].system =  testsys
            if not buildEnv['FULL_SYSTEM']:
                switch_cpus[i].workload = testsys.cpu[i].workload
                switch_cpus_1[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clock = testsys.cpu[0].clock
            switch_cpus_1[i].clock = testsys.cpu[0].clock

            # if restoring, make atomic cpu simulate only a few instructions
            if options.checkpoint_restore != None:
                testsys.cpu[i].max_insts_any_thread = 1
            # Fast forward to specified location if we are not restoring
            elif options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            # Fast forward to a simpoint (warning: time consuming)
            elif options.simpoint:
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('simpoint not found')
                testsys.cpu[i].max_insts_any_thread = \
                    testsys.cpu[i].workload[0].simpoint
            # No distance specified, just switch
            else:
                testsys.cpu[i].max_insts_any_thread = 1

            # warmup period
            if options.warmup_insts:
                switch_cpus[i].max_insts_any_thread =  options.warmup_insts

            # simulation period
            if options.maxinsts:
                switch_cpus_1[i].max_insts_any_thread = options.maxinsts

        testsys.switch_cpus = switch_cpus
        testsys.switch_cpus_1 = switch_cpus_1
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i]) for i in xrange(np)]
        switch_cpu_list1 = [(switch_cpus[i], switch_cpus_1[i]) for i in xrange(np)]

    # set the checkpoint in the cpu before m5.instantiate is called
    if options.take_checkpoints != None and \
           (options.simpoint or options.at_instruction):
        offset = int(options.take_checkpoints)
        # Set an instruction break point
        if options.simpoint:
            for i in xrange(np):
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('no simpoint for testsys.cpu[%d].workload[0]', i)
                checkpoint_inst = int(testsys.cpu[i].workload[0].simpoint) + offset
                testsys.cpu[i].max_insts_any_thread = checkpoint_inst
                # used for output below
                options.take_checkpoints = checkpoint_inst
        else:
            options.take_checkpoints = offset
            # Set all test cpus with the right number of instructions
            # for the upcoming simulation
            for i in xrange(np):
                testsys.cpu[i].max_insts_any_thread = offset

    checkpoint_dir = None
    if options.checkpoint_restore != None:
        from os.path import isdir, exists
        from os import listdir
        import re

        if not isdir(cptdir):
            fatal("checkpoint dir %s does not exist!", cptdir)

        if options.at_instruction or options.simpoint:
            inst = options.checkpoint_restore
            if options.simpoint:
                # assume workload 0 has the simpoint
                if testsys.cpu[0].workload[0].simpoint == 0:
                    fatal('Unable to find simpoint')
                inst += int(testsys.cpu[0].workload[0].simpoint)

            checkpoint_dir = joinpath(cptdir,
                                      "cpt.%s.%s" % (options.bench, inst))
            if not exists(checkpoint_dir):
                fatal("Unable to find checkpoint directory %s", checkpoint_dir)
        else:
            dirs = listdir(cptdir)
            expr = re.compile('cpt\.([0-9]*)')
            cpts = []
            for dir in dirs:
                match = expr.match(dir)
                if match:
                    cpts.append(match.group(1))

            cpts.sort(lambda a,b: cmp(long(a), long(b)))

            cpt_num = options.checkpoint_restore

            if cpt_num > len(cpts):
                fatal('Checkpoint %d not found', cpt_num)

            ## Adjust max tick based on our starting tick
            maxtick = maxtick - int(cpts[cpt_num - 1])
            checkpoint_dir = joinpath(cptdir, "cpt.%s" % cpts[cpt_num - 1])

    m5.instantiate(checkpoint_dir)

    if options.standard_switch or cpu_class:
        if options.standard_switch:
            print "Switch at instruction count:%s" % \
                    str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        elif cpu_class and options.fast_forward:
            print "Switch at instruction count:%s" % \
                    str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        else:
            print "Switch at curTick count:%s" % str(10000)
            exit_event = m5.simulate(10000)
        print "Switched CPUS @ tick %s" % (m5.curTick())

        # when you change to Timing (or Atomic), you halt the system
        # given as argument.  When you are finished with the system
        # changes (including switchCpus), you must resume the system
        # manually.  You DON'T need to resume after just switching
        # CPUs if you haven't changed anything on the system level.

        m5.changeToTiming(testsys)
        m5.switchCpus(switch_cpu_list)
        m5.resume(testsys)

        if options.standard_switch:
            print "Switch at instruction count:%d" % \
                    (testsys.switch_cpus[0].max_insts_any_thread)

            #warmup instruction count may have already been set
            if options.warmup_insts:
                exit_event = m5.simulate()
            else:
                exit_event = m5.simulate(options.warmup)
            print "Switching CPUS @ tick %s" % (m5.curTick())
            print "Simulation ends instruction count:%d" % \
                    (testsys.switch_cpus_1[0].max_insts_any_thread)
            m5.drain(testsys)
            m5.switchCpus(switch_cpu_list1)
            m5.resume(testsys)

    num_checkpoints = 0
    exit_cause = ''

    # If we're taking and restoring checkpoints, use checkpoint_dir
    # option only for finding the checkpoints to restore from.  This
    # lets us test checkpointing by restoring from one set of
    # checkpoints, generating a second set, and then comparing them.
    if options.take_checkpoints and options.checkpoint_restore:
        if m5.options.outdir:
            cptdir = m5.options.outdir
        else:
            cptdir = getcwd()

    # Checkpoints being taken via the command line at <when> and at
    # subsequent periods of <period>.  Checkpoint instructions
    # received from the benchmark running are ignored and skipped in
    # favor of command line checkpoint instructions.
    if options.take_checkpoints != None :
        if options.at_instruction or options.simpoint:
            checkpoint_inst = int(options.take_checkpoints)

            # maintain correct offset if we restored from some instruction
            if options.checkpoint_restore != None:
                checkpoint_inst += options.checkpoint_restore

            print "Creating checkpoint at inst:%d" % (checkpoint_inst)
            exit_event = m5.simulate()
            print "exit cause = %s" % (exit_event.getCause())

            # skip checkpoint instructions should they exist
            while exit_event.getCause() == "checkpoint":
                exit_event = m5.simulate()

            if exit_event.getCause() == \
                   "a thread reached the max instruction count":
                m5.checkpoint(joinpath(cptdir, "cpt.%s.%d" % \
                        (options.bench, checkpoint_inst)))
                print "Checkpoint written."
                num_checkpoints += 1

            if exit_event.getCause() == "user interrupt received":
                exit_cause = exit_event.getCause();
        else:
            when, period = options.take_checkpoints.split(",", 1)
            when = int(when)
            period = int(period)

            exit_event = m5.simulate(when)
            while exit_event.getCause() == "checkpoint":
                exit_event = m5.simulate(when - m5.curTick())

            if exit_event.getCause() == "simulate() limit reached":
                m5.checkpoint(joinpath(cptdir, "cpt.%d"))
                num_checkpoints += 1

            sim_ticks = when
            exit_cause = "maximum %d checkpoints dropped" % max_checkpoints
            while num_checkpoints < max_checkpoints and \
                    exit_event.getCause() == "simulate() limit reached":
                if (sim_ticks + period) > maxtick:
                    exit_event = m5.simulate(maxtick - sim_ticks)
                    exit_cause = exit_event.getCause()
                    break
                else:
                    exit_event = m5.simulate(period)
                    sim_ticks += period
                    while exit_event.getCause() == "checkpoint":
                        exit_event = m5.simulate(sim_ticks - m5.curTick())
                    if exit_event.getCause() == "simulate() limit reached":
                        m5.checkpoint(joinpath(cptdir, "cpt.%d"))
                        num_checkpoints += 1

            if exit_event.getCause() != "simulate() limit reached":
                exit_cause = exit_event.getCause();

    else: # no checkpoints being taken via this script
        if options.fast_forward:
            m5.stats.reset()
        print "**** REAL SIMULATION ****"
        #exit_event = m5.simulate(maxtick)


        # --Note1: Ruby is created in ruby_fs.py by 
        # "Ruby.create_system(options, system, system.piobus, system._dma_devices)"
        # which assigned: "stats_filename = options.ruby_stats";
        # definition of "create_system" is in configs/ruby/Ruby.py, which
        # instantiate the ctor of RubySystem: "system.ruby = RubySystem(...)";
        #print testsys.ruby._cpu_ruby_ports 
        #print testsys.ruby.network.ni_flit_size
        #print testsys.ruby.profiler.ruby_system
        # the ctor of RubySystem is defined in src/mem/ruby/system/RubySystem.py;
        # which sets some defaults:
        #print testsys.ruby.stats_filename # i.e., ruby.stats
        #print testsys.ruby.type
        #print testsys.ruby.random_seed
        #print testsys.ruby.clock
        #print testsys.ruby.block_size_bytes
        #print testsys.ruby.mem_size
        #print testsys.ruby.no_mem_vec

        # () cris: description of changes
        # --Note2: initially writing into ruby.stats was done with overwriting;
        # so, for each dump point the file was re-written; to fix that I
        # changed function "OutputDirectory::create(...)" from src/base/output.cc
        # which is called by "RubyExitCallback::process()" from src/mem/ruby/system/System.cc
        # function that is the one called at the end of the gem5 run
        # as a calback to dump all ruby stats (callback is "registered" in the
        # ctor of RubySystem::RubySystem() inside the same file...); 
        # --Note3: using doExitCleanup inspired from src/python/m5/simulate.py 
        # (inside which ini and json files are created; you need to rebuild each
        # time you change that Python file):
        #m5.internal.core.doExitCleanup( False) #clear callback queue?
        # --Note4: python/m5/internal/core.py describes "m5.internal.core";

        # cris: here I want to dump stats every other delta ticks;
        # I need these to be able to generate reliability traces;
        
        NUM_OF_DUMPS = 100
        num_i = 0
        delta = maxtick/NUM_OF_DUMPS
        sim_ticks = m5.curTick()
        while (m5.curTick() < maxtick):
            sim_ticks += delta
            exit_event = m5.simulate(sim_ticks - m5.curTick())
            if exit_event.getCause() == "simulate() limit reached":
                #--Note5: "doExitCleanup()" is described in src/sim/core.cc;
                # I changed it to be able to call it multiple times;
                #--Note6: do not dump stats in ruby.stats for last iteration 
                # because it will be repeated once more via the exit callbacks
                # in src/python/m5/simulate.py...
                # Note6: next call of doExitCleanup does actually also reset/clear
                # the stats of ruby system via the RubyExitCallback::process() in
                # src/mem/ruby/system/System.cc
                if num_i < (NUM_OF_DUMPS-1):
                    print "Dumping also ruby stats at inst %d to file: ruby.stats" %(num_i)
                    m5.internal.core.doExitCleanup( False) #clear callback queue?
                print "Dumping gem5 stats at inst %d to file: stats.txt" %(num_i)
                # --Note7: dump() wites into stats.txt; dump() is defined in
                # src/python/m5/stats/__init__.py and does its 
                # thing via the functions described in base/stats/text.cc
                #atexit.register(stats.dump) <--- does not work (from simulate.py)
                m5.stats.dump()
                m5.stats.reset() # <--- what does it actually do?
                num_i += 1
                

        # alex's changes:
	#while exit_event.getCause() != "m5_exit instruction encountered":
	#    m5.stats.dump()
	#    m5.stats.reset()
	#    exit_event = m5.simulate(maxtick)

        #while exit_event.getCause() == "checkpoint":
        #    m5.checkpoint(joinpath(cptdir, "cpt.%d"))
        #    num_checkpoints += 1
        #    if num_checkpoints == max_checkpoints:
        #        exit_cause = "maximum %d checkpoints dropped" % max_checkpoints
        #        break
        #    exit_event = m5.simulate(maxtick - m5.curTick())
        #    exit_cause = exit_event.getCause()

    if exit_cause == '':
        exit_cause = exit_event.getCause()
    print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_cause)

    if options.checkpoint_at_end:
        m5.checkpoint(joinpath(cptdir, "cpt.%d"))
コード例 #44
0
system.cpu = TimingSimpleCPU()

system.membus = SystemXBar()

system.cpu.icache_port = system.membus.slave
system.cpu.dcache_port = system.membus.slave

system.cpu.createInterruptController()
system.cpu.interrupts[0].pio = system.membus.master
system.cpu.interrupts[0].int_master = system.membus.slave
system.cpu.interrupts[0].int_slave = system.membus.master
system.system_port = system.membus.slave

system.mem_ctrl = DDR3_1600_8x8()
system.mem_ctrl.range = system.mem_ranges[0]
system.mem_ctrl.port = system.membus.master

process = Process()
#process.cmd = ['tests/test-progs/hello/bin/x86/linux/hello']
process.cmd = ['tests/test-progs/hello/bin/x86/linux/loop']
system.cpu.workload = process
system.cpu.createThreads()

root = Root(full_system=False, system=system)
m5.instantiate()

print "Beginning Simulation"
exit_event = m5.simulate()

print 'Exiting @ tick %i' % (m5.curTick())
コード例 #45
0

system.system_port = system.membus.slave

#Caches
if options.caches or options.l2cache:
    system.iocache = IOCache(addr_ranges=[system.physmem.range])
    system.iocache.cpu_side = system.iobus.master
    system.iocache.mem_side = system.membus.slave
else:
    system.iobridge = Bridge(delay='50ns',
                               ranges = [system.physmem.range])
    system.iobridge.slave = system.iobus.master
    system.iobridge.master = system.membus.slave
    
CacheConfig.config_cache(options, system)

#######################################################################
#
# Start simulation

root = Root(full_system=True, system=system)
m5.instantiate()

print '..... STARTING SIMULATION'

exit_event = m5.simulate()
exit_cause = exit_event.getCause()

print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_cause)
コード例 #46
0
    # instantiate all of the objects we've created above
    m5.instantiate()

    globalStart = time.time()

    print("Running the simulation")
    print("Using cpu: {}".format(cpu))
    exit_event = m5.simulate()

    if exit_event.getCause() == "workbegin":
        # Reached the start of ROI
        # start of ROI is marked by an
        # m5_work_begin() call
        print("Resetting stats at the start of ROI!")
        m5.stats.reset()
        start_tick = m5.curTick()
        start_insts = system.totalInsts()
        # switching cpu if argument cpu == atomic or timing
        if cpu == 'atomic':
            system.switchCpus(system.cpu, system.atomicCpu)
        if cpu == 'timing':
            system.switchCpus(system.cpu, system.timingCpu)
    else:
        print("Unexpected termination of simulation !")
        exit()

    # Simulate the ROI
    exit_event = m5.simulate()

    # Reached the end of ROI
    # Finish executing the benchmark
コード例 #47
0
ファイル: event.py プロジェクト: een5afr-public/gem5
 def __call__(self):
     print("Progress! Time now %fs" % (m5.curTick()/1e12))
     self.eventq.schedule(self, m5.curTick() + self.period)
コード例 #48
0
isa = str(m5.defines.buildEnv['TARGET_ISA']).lower()

# Run application and use the compiled ISA to find the binary
# grab the specific path to the binary
thispath = os.path.dirname(os.path.realpath(__file__))
binary = os.path.join(thispath, '../../../', 'tests/test-progs/threads/bin/',
                      isa, 'linux/threads')

# Create a process for a simple "multi-threaded" application
process = Process()
# Set the command
# cmd is a list which begins with the executable (like argv)
process.cmd = [binary]
# Set the cpu to use the process as its workload and create thread contexts
for cpu in system.cpu:
    cpu.workload = process
    cpu.createThreads()

# Set up the pseudo file system for the threads function above
config_filesystem(system)

# set up the root SimObject and start the simulation
root = Root(full_system=False, system=system)
# instantiate all of the objects we've created above
m5.instantiate()

print("Beginning simulation!")
exit_event = m5.simulate()
print('Exiting @ tick {} because {}'.format(m5.curTick(),
                                            exit_event.getCause()))
コード例 #49
0
ファイル: run.py プロジェクト: hplp/gem5-reclaim
    ctrl.port = system.membus.master

if args.dump_period:
    m5.internal.stats.periodicStatDump(int(args.dump_period * 1e9))
root = m5.objects.Root(full_system=False, system=system)

if args.fast_forward:
    cpu_types[args.cpu_type].numThreads = args.num_threads
    system.switch_cpus = [
        cpu_types[args.cpu_type](switched_out=True, cpu_id=i)
        for i in xrange(args.num_cpus)
    ]
    for i in xrange(args.num_cpus):
        system.cpu[i].max_insts_any_thread = args.fast_forward
        system.switch_cpus[i].system = system
        system.switch_cpus[i].workload = system.cpu[i].workload
        system.switch_cpus[i].clk_domain = system.cpu[i].clk_domain
        system.switch_cpus[i].progress_interval = system.cpu[
            i].progress_interval
        system.switch_cpus[i].createThreads()
        if args.max_instructions:
            system.switch_cpus[i].max_insts_all_threads = args.max_instructions

m5.instantiate(None)
if args.fast_forward:
    exit_event = m5.simulate(args.stop_at_tick)
    m5.switchCpus(system, [(system.cpu[i], system.switch_cpus[i])
                           for i in xrange(args.num_cpus)])
exit_event = m5.simulate(args.stop_at_tick - m5.curTick())
print("Exiting at tick %i because %s" % (m5.curTick(), exit_event.getCause()))
コード例 #50
0
for (i, cpu) in enumerate(cpus):
    #
    # Tie the cpu memtester ports to the correct system ports
    #
    cpu.port = system.ruby._cpu_ports[i].slave

    #
    # Since the memtester is incredibly bursty, increase the deadlock
    # threshold to 5 million cycles
    #
    system.ruby._cpu_ports[i].deadlock_threshold = 5000000

# -----------------------
# run simulation
# -----------------------

root = Root(full_system=False, system=system)
root.system.mem_mode = 'timing'

# Not much point in this being higher than the L1 latency
m5.ticks.setGlobalFrequency('1ns')

# instantiate configuration
m5.instantiate()

# simulate until program terminates
exit_event = m5.simulate(options.abs_max_tick)

print('Exiting @ tick', m5.curTick(), 'because', exit_event.getCause())
コード例 #51
0
for core in system.cpu:
    core.workload = process
    core.createThreads()
print(bcol.OK("Done"))
print("")

print(bcol.I("Instantiating system ..."))
root = Root(full_system=False, system=system)
m5.instantiate()
print(bcol.OK("Done"))
print("")

print(bcol.H( \
"*********************** Beginning gem5 simulation ************************"))
simulation = m5.simulate()
if simulation.getCause() == "exiting with last active thread context":
    print(bcol.H( \
"**************************************************************************"))
    print(bcol.OK("Done."))
    print(bcol.OK("Finished at tick %i." % (m5.curTick())))
    print(bcol.OK("Status: %s." % (simulation.getCause())))
    print(bcol.H( \
"**************************************************************************"))
else:
    print(bcol.H( \
"**************************************************************************"))
    print(bcol.E("Status: %s." % (simulation.getCause())))
    print(bcol.H( \
"**************************************************************************"))
コード例 #52
0
def run_system_with_cpu(
        process, options, output_dir,
        warmup_cpu_class=None,
        warmup_instructions=0,
        real_cpu_create_function=lambda cpu_id: DerivO3CPU(cpu_id=cpu_id),
):
    # Override the -d outdir --outdir option to gem5
    m5.options.outdir = output_dir
    m5.core.setOutputDir(m5.options.outdir)

    m5.stats.reset()

    max_tick = options.abs_max_tick
    if options.rel_max_tick:
        max_tick = options.rel_max_tick
    elif options.maxtime:
        max_tick = int(options.maxtime * 1000 * 1000 * 1000 * 1000)

    eprint("Simulating until tick=%s" %  (max_tick))

    real_cpus = [real_cpu_create_function(0)]
    mem_mode = real_cpus[0].memory_mode()

    if warmup_cpu_class:
        warmup_cpus = [warmup_cpu_class(cpu_id=0)]
        warmup_cpus[0].max_insts_any_thread = warmup_instructions
    else:
        warmup_cpus = real_cpus

    system = System(cpu = warmup_cpus,
                    mem_mode = mem_mode,
                    mem_ranges = [AddrRange(options.mem_size)],
                    cache_line_size = options.cacheline_size)
    system.multi_thread = False
    system.voltage_domain = VoltageDomain(voltage = options.sys_voltage)
    system.clk_domain = SrcClockDomain(clock =  options.sys_clock,
                                       voltage_domain = system.voltage_domain)
    system.cpu_voltage_domain = VoltageDomain()
    system.cpu_clk_domain = SrcClockDomain(clock = options.cpu_clock,
                                           voltage_domain =
                                           system.cpu_voltage_domain)
    system.cache_line_size = options.cacheline_size
    if warmup_cpu_class:
        for cpu in real_cpus:
            cpu.clk_domain = system.cpu_clk_domain
            cpu.workload = process
            cpu.system = system
            cpu.switched_out = True
            cpu.createThreads()
        system.switch_cpus = real_cpus

    for cpu in system.cpu:
        cpu.clk_domain = system.cpu_clk_domain
        cpu.workload = process
        if options.prog_interval:
            cpu.progress_interval = options.prog_interval
        cpu.createThreads();

    MemClass = Simulation.setMemClass(options)
    system.membus = SystemXBar()
    system.system_port = system.membus.slave
    system.cpu[0].connectAllPorts(system.membus)
    MemConfig.config_mem(options, system)
    root = Root(full_system = False, system = system)

    m5.options.outdir = output_dir
    m5.instantiate(None) # None == no checkpoint
    if warmup_cpu_class:
        eprint("Running warmup with warmup CPU class (%d instrs.)" % (warmup_instructions))
    eprint("Starting simulation")
    exit_event = m5.simulate(max_tick)
    if warmup_cpu_class:
        max_tick -= m5.curTick()
        m5.stats.reset()
        debug_print("Finished warmup; running real simulation")
        m5.switchCpus(system, real_cpus)
        exit_event = m5.simulate(max_tick)
    eprint("Done simulation @ tick = %s: %s" % (m5.curTick(), exit_event.getCause()))
    m5.stats.dump()
コード例 #53
0
ファイル: run_gapbs.py プロジェクト: marjanfariborz/LLM
    system.readfile = writeBenchScript(m5.options.outdir, benchmark_name,
                                       benchmark_size, synthetic)
    m5.disableAllListeners()
    # set up the root SimObject and start the simulation
    root = Root(full_system = True, system = system)

    root.sim_quantum = int(1e9) # 1 ms

    # instantiate all of the objects we've created above
    m5.instantiate()

    print("Running the simulation with: ", system.cpu)
    exit_event = m5.simulate()
    print('Exiting @ tick {} because {}'
            .format(m5.curTick(), exit_event.getCause()))
    if exit_event.getCause() == "work started count reach":
        m5.stats.reset()
        start_tick = m5.curTick()
        start_insts = system.totalInsts()
        if cpu_type != 'kvm':
            system.switchToTiming()
            print("Switch to detailed cpu model")
    else:
        print("ROI is not annotated!")
        print('Exiting @ tick {} because {}'
            .format(m5.curTick(), exit_event.getCause()))
        exit()

    exit_event = m5.simulate()
コード例 #54
0
if m5.defines.buildEnv['TARGET_ISA'] == "x86":
    system.cpu.interrupts[0].pio = system.membus.master
    system.cpu.interrupts[0].int_master = system.membus.slave
    system.cpu.interrupts[0].int_slave = system.membus.master

# Connect the system up to the membus
system.system_port = system.membus.slave

# Create a DDR3 memory controller
system.mem_ctrl = DDR3_1600_x64()
system.mem_ctrl.range = system.mem_ranges[0]
system.mem_ctrl.port = system.membus.master

# Create a process for a simple "Hello World" application
process = LiveProcess()
# Set the command
# cmd is a list which begins with the executable (like argv)
process.cmd = [binary]
# Set the cpu to use the process as its workload and create thread contexts
system.cpu.workload = process
system.cpu.createThreads()

# set up the root SimObject and start the simulation
root = Root(full_system=False, system=system)
# instantiate all of the objects we've created above
m5.instantiate()

print "Beginning simulation!"
exit_event = m5.simulate()
print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_event.getCause())
コード例 #55
0
def run(options, root, testsys, cpu_class):
    if options.maxtick:
        maxtick = options.maxtick
    elif options.maxtime:
        simtime = m5.ticks.seconds(simtime)
        print "simulating for: ", simtime
        maxtick = simtime
    else:
        maxtick = m5.MaxTick

    if options.checkpoint_dir:
        cptdir = options.checkpoint_dir
    elif m5.options.outdir:
        cptdir = m5.options.outdir
    else:
        cptdir = getcwd()

    if options.fast_forward and options.checkpoint_restore != None:
        fatal("Can't specify both --fast-forward and --checkpoint-restore")

    if options.standard_switch and not options.caches:
        fatal("Must specify --caches when using --standard-switch")

    if options.standard_switch and options.repeat_switch:
        fatal("Can't specify both --standard-switch and --repeat-switch")

    if options.repeat_switch and options.take_checkpoints:
        fatal("Can't specify both --repeat-switch and --take-checkpoints")

    np = options.num_cpus
    switch_cpus = None

    if options.prog_interval:
        for i in xrange(np):
            testsys.cpu[i].progress_interval = options.prog_interval

    if options.maxinsts:
        for i in xrange(np):
            testsys.cpu[i].max_insts_any_thread = options.maxinsts

    if cpu_class:
        switch_cpus = [
            cpu_class(defer_registration=True, cpu_id=(i)) for i in xrange(np)
        ]

        for i in xrange(np):
            if options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            switch_cpus[i].system = testsys
            switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clock = testsys.cpu[i].clock
            # simulation period
            if options.maxinsts:
                switch_cpus[i].max_insts_any_thread = options.maxinsts
            # Add checker cpu if selected
            if options.checker:
                switch_cpus[i].addCheckerCpu()

        testsys.switch_cpus = switch_cpus
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i])
                           for i in xrange(np)]

    if options.repeat_switch:
        if options.cpu_type == "arm_detailed":
            if not options.caches:
                print "O3 CPU must be used with caches"
                sys.exit(1)

            repeat_switch_cpus = [O3_ARM_v7a_3(defer_registration=True, \
                                  cpu_id=(i)) for i in xrange(np)]
        elif options.cpu_type == "detailed":
            if not options.caches:
                print "O3 CPU must be used with caches"
                sys.exit(1)

            repeat_switch_cpus = [DerivO3CPU(defer_registration=True, \
                                  cpu_id=(i)) for i in xrange(np)]
        elif options.cpu_type == "inorder":
            print "inorder CPU switching not supported"
            sys.exit(1)
        elif options.cpu_type == "timing":
            repeat_switch_cpus = [TimingSimpleCPU(defer_registration=True, \
                                  cpu_id=(i)) for i in xrange(np)]
        else:
            repeat_switch_cpus = [AtomicSimpleCPU(defer_registration=True, \
                                  cpu_id=(i)) for i in xrange(np)]

        for i in xrange(np):
            repeat_switch_cpus[i].system = testsys
            repeat_switch_cpus[i].workload = testsys.cpu[i].workload
            repeat_switch_cpus[i].clock = testsys.cpu[i].clock

            if options.maxinsts:
                repeat_switch_cpus[i].max_insts_any_thread = options.maxinsts

            if options.checker:
                repeat_switch_cpus[i].addCheckerCpu()

        testsys.repeat_switch_cpus = repeat_switch_cpus

        if cpu_class:
            repeat_switch_cpu_list = [(switch_cpus[i], repeat_switch_cpus[i])
                                      for i in xrange(np)]
        else:
            repeat_switch_cpu_list = [(testsys.cpu[i], repeat_switch_cpus[i])
                                      for i in xrange(np)]

    if options.standard_switch:
        switch_cpus = [
            TimingSimpleCPU(defer_registration=True, cpu_id=(i))
            for i in xrange(np)
        ]
        switch_cpus_1 = [
            DerivO3CPU(defer_registration=True, cpu_id=(i)) for i in xrange(np)
        ]

        for i in xrange(np):
            switch_cpus[i].system = testsys
            switch_cpus_1[i].system = testsys
            switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus_1[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clock = testsys.cpu[i].clock
            switch_cpus_1[i].clock = testsys.cpu[i].clock

            # if restoring, make atomic cpu simulate only a few instructions
            if options.checkpoint_restore != None:
                testsys.cpu[i].max_insts_any_thread = 1
            # Fast forward to specified location if we are not restoring
            elif options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            # Fast forward to a simpoint (warning: time consuming)
            elif options.simpoint:
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('simpoint not found')
                testsys.cpu[i].max_insts_any_thread = \
                    testsys.cpu[i].workload[0].simpoint
            # No distance specified, just switch
            else:
                testsys.cpu[i].max_insts_any_thread = 1

            # warmup period
            if options.warmup_insts:
                switch_cpus[i].max_insts_any_thread = options.warmup_insts

            # simulation period
            if options.maxinsts:
                switch_cpus_1[i].max_insts_any_thread = options.maxinsts

            # attach the checker cpu if selected
            if options.checker:
                switch_cpus[i].addCheckerCpu()
                switch_cpus_1[i].addCheckerCpu()

        testsys.switch_cpus = switch_cpus
        testsys.switch_cpus_1 = switch_cpus_1
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i])
                           for i in xrange(np)]
        switch_cpu_list1 = [(switch_cpus[i], switch_cpus_1[i])
                            for i in xrange(np)]

    # set the checkpoint in the cpu before m5.instantiate is called
    if options.take_checkpoints != None and \
           (options.simpoint or options.at_instruction):
        offset = int(options.take_checkpoints)
        # Set an instruction break point
        if options.simpoint:
            for i in xrange(np):
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('no simpoint for testsys.cpu[%d].workload[0]', i)
                checkpoint_inst = int(
                    testsys.cpu[i].workload[0].simpoint) + offset
                testsys.cpu[i].max_insts_any_thread = checkpoint_inst
                # used for output below
                options.take_checkpoints = checkpoint_inst
        else:
            options.take_checkpoints = offset
            # Set all test cpus with the right number of instructions
            # for the upcoming simulation
            for i in xrange(np):
                testsys.cpu[i].max_insts_any_thread = offset

    checkpoint_dir = None
    if options.checkpoint_restore != None:
        maxtick, checkpoint_dir = findCptDir(options, maxtick, cptdir, testsys)
    m5.instantiate(checkpoint_dir)

    if options.standard_switch or cpu_class:
        if options.standard_switch:
            print "Switch at instruction count:%s" % \
                    str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        elif cpu_class and options.fast_forward:
            print "Switch at instruction count:%s" % \
                    str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        else:
            print "Switch at curTick count:%s" % str(10000)
            exit_event = m5.simulate(10000)
        print "Switched CPUS @ tick %s" % (m5.curTick())

        # when you change to Timing (or Atomic), you halt the system
        # given as argument.  When you are finished with the system
        # changes (including switchCpus), you must resume the system
        # manually.  You DON'T need to resume after just switching
        # CPUs if you haven't changed anything on the system level.

        m5.changeToTiming(testsys)
        m5.switchCpus(switch_cpu_list)
        m5.resume(testsys)

        if options.standard_switch:
            print "Switch at instruction count:%d" % \
                    (testsys.switch_cpus[0].max_insts_any_thread)

            #warmup instruction count may have already been set
            if options.warmup_insts:
                exit_event = m5.simulate()
            else:
                exit_event = m5.simulate(options.standard_switch)
            print "Switching CPUS @ tick %s" % (m5.curTick())
            print "Simulation ends instruction count:%d" % \
                    (testsys.switch_cpus_1[0].max_insts_any_thread)
            m5.drain(testsys)
            m5.switchCpus(switch_cpu_list1)
            m5.resume(testsys)

    # If we're taking and restoring checkpoints, use checkpoint_dir
    # option only for finding the checkpoints to restore from.  This
    # lets us test checkpointing by restoring from one set of
    # checkpoints, generating a second set, and then comparing them.
    if options.take_checkpoints and options.checkpoint_restore:
        if m5.options.outdir:
            cptdir = m5.options.outdir
        else:
            cptdir = getcwd()

    if options.take_checkpoints != None:
        # Checkpoints being taken via the command line at <when> and at
        # subsequent periods of <period>.  Checkpoint instructions
        # received from the benchmark running are ignored and skipped in
        # favor of command line checkpoint instructions.
        exit_cause = scriptCheckpoints(options, maxtick, cptdir)
    else:
        if options.fast_forward:
            m5.stats.reset()
        print "**** REAL SIMULATION ****"

        # If checkpoints are being taken, then the checkpoint instruction
        # will occur in the benchmark code it self.
        if options.repeat_switch and maxtick > options.repeat_switch:
            exit_cause = repeatSwitch(testsys, repeat_switch_cpu_list, maxtick,
                                      options.repeat_switch)
        else:
            exit_cause = benchCheckpoints(options, maxtick, cptdir)

    print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_cause)
    if options.checkpoint_at_end:
        m5.checkpoint(joinpath(cptdir, "cpt.%d"))
コード例 #56
0
root = Root(full_system=True, system=board)

# sim_quantum must be set if KVM cores are used.

root.sim_quantum = int(1e9)

m5.instantiate()

# We maintain the wall clock time.

globalStart = time.time()

print("Running the simulation")
print("Using KVM cpu")

start_tick = m5.curTick()
end_tick = m5.curTick()
m5.stats.reset()

# We start the simulation

exit_event = m5.simulate()

# The first exit_event ends with a `workbegin` cause. This means that the
# system booted successfully and the execution on the program started.

if exit_event.getCause() == "workbegin":

    print("Done booting Linux")
    print("Resetting stats at the start of ROI!")
コード例 #57
0
ファイル: Simulation.py プロジェクト: AMDmi3/gem5
def run(options, root, testsys, cpu_class):
    if options.checkpoint_dir:
        cptdir = options.checkpoint_dir
    elif m5.options.outdir:
        cptdir = m5.options.outdir
    else:
        cptdir = getcwd()

    if options.fast_forward and options.checkpoint_restore != None:
        fatal("Can't specify both --fast-forward and --checkpoint-restore")

    if options.standard_switch and not options.caches:
        fatal("Must specify --caches when using --standard-switch")

    if options.standard_switch and options.repeat_switch:
        fatal("Can't specify both --standard-switch and --repeat-switch")

    if options.repeat_switch and options.take_checkpoints:
        fatal("Can't specify both --repeat-switch and --take-checkpoints")

    np = options.num_cpus
    switch_cpus = None

    if options.prog_interval:
        for i in xrange(np):
            testsys.cpu[i].progress_interval = options.prog_interval

    if options.maxinsts:
        for i in xrange(np):
            testsys.cpu[i].max_insts_any_thread = options.maxinsts

    if cpu_class:
        switch_cpus = [cpu_class(switched_out=True, cpu_id=(i))
                       for i in xrange(np)]

        for i in xrange(np):
            if options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            switch_cpus[i].system =  testsys
            switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clk_domain = testsys.cpu[i].clk_domain
            switch_cpus[i].progress_interval = testsys.cpu[i].progress_interval
            # simulation period
            if options.maxinsts:
                switch_cpus[i].max_insts_any_thread = options.maxinsts
            # Add checker cpu if selected
            if options.checker:
                switch_cpus[i].addCheckerCpu()

        testsys.switch_cpus = switch_cpus
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i]) for i in xrange(np)]

    if options.repeat_switch:
        switch_class = getCPUClass(options.cpu_type)[0]
        if switch_class.require_caches() and \
                not options.caches:
            print "%s: Must be used with caches" % str(switch_class)
            sys.exit(1)
        if not switch_class.support_take_over():
            print "%s: CPU switching not supported" % str(switch_class)
            sys.exit(1)

        repeat_switch_cpus = [switch_class(switched_out=True, \
                                               cpu_id=(i)) for i in xrange(np)]

        for i in xrange(np):
            repeat_switch_cpus[i].system = testsys
            repeat_switch_cpus[i].workload = testsys.cpu[i].workload
            repeat_switch_cpus[i].clk_domain = testsys.cpu[i].clk_domain

            if options.maxinsts:
                repeat_switch_cpus[i].max_insts_any_thread = options.maxinsts

            if options.checker:
                repeat_switch_cpus[i].addCheckerCpu()

        testsys.repeat_switch_cpus = repeat_switch_cpus

        if cpu_class:
            repeat_switch_cpu_list = [(switch_cpus[i], repeat_switch_cpus[i])
                                      for i in xrange(np)]
        else:
            repeat_switch_cpu_list = [(testsys.cpu[i], repeat_switch_cpus[i])
                                      for i in xrange(np)]

    if options.standard_switch:
        switch_cpus = [TimingSimpleCPU(switched_out=True, cpu_id=(i))
                       for i in xrange(np)]
        switch_cpus_1 = [DerivO3CPU(switched_out=True, cpu_id=(i))
                        for i in xrange(np)]

        for i in xrange(np):
            switch_cpus[i].system =  testsys
            switch_cpus_1[i].system =  testsys
            switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus_1[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clk_domain = testsys.cpu[i].clk_domain
            switch_cpus_1[i].clk_domain = testsys.cpu[i].clk_domain

            # if restoring, make atomic cpu simulate only a few instructions
            if options.checkpoint_restore != None:
                testsys.cpu[i].max_insts_any_thread = 1
            # Fast forward to specified location if we are not restoring
            elif options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            # Fast forward to a simpoint (warning: time consuming)
            elif options.simpoint:
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('simpoint not found')
                testsys.cpu[i].max_insts_any_thread = \
                    testsys.cpu[i].workload[0].simpoint
            # No distance specified, just switch
            else:
                testsys.cpu[i].max_insts_any_thread = 1

            # warmup period
            if options.warmup_insts:
                switch_cpus[i].max_insts_any_thread =  options.warmup_insts

            # simulation period
            if options.maxinsts:
                switch_cpus_1[i].max_insts_any_thread = options.maxinsts

            # attach the checker cpu if selected
            if options.checker:
                switch_cpus[i].addCheckerCpu()
                switch_cpus_1[i].addCheckerCpu()

        testsys.switch_cpus = switch_cpus
        testsys.switch_cpus_1 = switch_cpus_1
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i]) for i in xrange(np)]
        switch_cpu_list1 = [(switch_cpus[i], switch_cpus_1[i]) for i in xrange(np)]

    # set the checkpoint in the cpu before m5.instantiate is called
    if options.take_checkpoints != None and \
           (options.simpoint or options.at_instruction):
        offset = int(options.take_checkpoints)
        # Set an instruction break point
        if options.simpoint:
            for i in xrange(np):
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('no simpoint for testsys.cpu[%d].workload[0]', i)
                checkpoint_inst = int(testsys.cpu[i].workload[0].simpoint) + offset
                testsys.cpu[i].max_insts_any_thread = checkpoint_inst
                # used for output below
                options.take_checkpoints = checkpoint_inst
        else:
            options.take_checkpoints = offset
            # Set all test cpus with the right number of instructions
            # for the upcoming simulation
            for i in xrange(np):
                testsys.cpu[i].max_insts_any_thread = offset

    if options.take_simpoint_checkpoints != None:
        simpoints, interval_length = parseSimpointAnalysisFile(options, testsys)

    checkpoint_dir = None
    if options.checkpoint_restore:
        cpt_starttick, checkpoint_dir = findCptDir(options, cptdir, testsys)
    m5.instantiate(checkpoint_dir)

    # Initialization is complete.  If we're not in control of simulation
    # (that is, if we're a slave simulator acting as a component in another
    #  'master' simulator) then we're done here.  The other simulator will
    # call simulate() directly. --initialize-only is used to indicate this.
    if options.initialize_only:
        return

    # Handle the max tick settings now that tick frequency was resolved
    # during system instantiation
    # NOTE: the maxtick variable here is in absolute ticks, so it must
    # include any simulated ticks before a checkpoint
    explicit_maxticks = 0
    maxtick_from_abs = m5.MaxTick
    maxtick_from_rel = m5.MaxTick
    maxtick_from_maxtime = m5.MaxTick
    if options.abs_max_tick:
        maxtick_from_abs = options.abs_max_tick
        explicit_maxticks += 1
    if options.rel_max_tick:
        maxtick_from_rel = options.rel_max_tick
        if options.checkpoint_restore:
            # NOTE: this may need to be updated if checkpoints ever store
            # the ticks per simulated second
            maxtick_from_rel += cpt_starttick
            if options.at_instruction or options.simpoint:
                warn("Relative max tick specified with --at-instruction or" \
                     " --simpoint\n      These options don't specify the " \
                     "checkpoint start tick, so assuming\n      you mean " \
                     "absolute max tick")
        explicit_maxticks += 1
    if options.maxtime:
        maxtick_from_maxtime = m5.ticks.fromSeconds(options.maxtime)
        explicit_maxticks += 1
    if explicit_maxticks > 1:
        warn("Specified multiple of --abs-max-tick, --rel-max-tick, --maxtime."\
             " Using least")
    maxtick = min([maxtick_from_abs, maxtick_from_rel, maxtick_from_maxtime])

    if options.checkpoint_restore != None and maxtick < cpt_starttick:
        fatal("Bad maxtick (%d) specified: " \
              "Checkpoint starts starts from tick: %d", maxtick, cpt_starttick)

    if options.standard_switch or cpu_class:
        if options.standard_switch:
            print "Switch at instruction count:%s" % \
                    str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        elif cpu_class and options.fast_forward:
            print "Switch at instruction count:%s" % \
                    str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        else:
            print "Switch at curTick count:%s" % str(10000)
            exit_event = m5.simulate(10000)
        print "Switched CPUS @ tick %s" % (m5.curTick())

        m5.switchCpus(testsys, switch_cpu_list)

        if options.standard_switch:
            print "Switch at instruction count:%d" % \
                    (testsys.switch_cpus[0].max_insts_any_thread)

            #warmup instruction count may have already been set
            if options.warmup_insts:
                exit_event = m5.simulate()
            else:
                exit_event = m5.simulate(options.standard_switch)
            print "Switching CPUS @ tick %s" % (m5.curTick())
            print "Simulation ends instruction count:%d" % \
                    (testsys.switch_cpus_1[0].max_insts_any_thread)
            m5.switchCpus(testsys, switch_cpu_list1)

    # If we're taking and restoring checkpoints, use checkpoint_dir
    # option only for finding the checkpoints to restore from.  This
    # lets us test checkpointing by restoring from one set of
    # checkpoints, generating a second set, and then comparing them.
    if (options.take_checkpoints or options.take_simpoint_checkpoints) \
        and options.checkpoint_restore:

        if m5.options.outdir:
            cptdir = m5.options.outdir
        else:
            cptdir = getcwd()

    if options.take_checkpoints != None :
        # Checkpoints being taken via the command line at <when> and at
        # subsequent periods of <period>.  Checkpoint instructions
        # received from the benchmark running are ignored and skipped in
        # favor of command line checkpoint instructions.
        exit_event = scriptCheckpoints(options, maxtick, cptdir)

    # Take SimPoint checkpoints
    elif options.take_simpoint_checkpoints != None:
        takeSimpointCheckpoints(simpoints, interval_length, cptdir)

    # Restore from SimPoint checkpoints
    elif options.restore_simpoint_checkpoint != None:
        restoreSimpointCheckpoint()

    else:
        if options.fast_forward:
            m5.stats.reset()
        print "**** REAL SIMULATION ****"

        # If checkpoints are being taken, then the checkpoint instruction
        # will occur in the benchmark code it self.
        if options.repeat_switch and maxtick > options.repeat_switch:
            exit_event = repeatSwitch(testsys, repeat_switch_cpu_list,
                                      maxtick, options.repeat_switch)
        else:
            exit_event = benchCheckpoints(options, maxtick, cptdir)

    print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_event.getCause())
    if options.checkpoint_at_end:
        m5.checkpoint(joinpath(cptdir, "cpt.%d"))

    if not m5.options.interactive:
        sys.exit(exit_event.getCode())
コード例 #58
0
import SimpleOpts

from system import MySystem

SimpleOpts.add_option("--script",
                      default='',
                      help="Script to execute in the simulated system")

if __name__ == "__m5_main__":
    (opts, args) = SimpleOpts.parse_args()

    # create the system we are going to simulate
    system = MySystem(opts)

    # Read in the script file passed in via an option.
    # This file gets read and executed by the simulated system after boot.
    # Note: The disk image needs to be configured to do this.
    system.readfile = opts.script

    # set up the root SimObject and start the simulation
    root = Root(full_system=True, system=system)

    # instantiate all of the objects we've created above
    m5.instantiate()

    # Keep running until we are done.
    print "Running the simulation"
    exit_event = m5.simulate()
    print 'Exiting @ tick %i because %s' % (m5.curTick(),
                                            exit_event.getCause())
コード例 #59
0
ファイル: memtest.py プロジェクト: rallylee/gem5
                tester.port = xbar.slave
        else:
            # Single tester
            testers[0].port = next_cache.cpu_side


# Top level call to create the cache hierarchy, bottom up
make_cache_level(cachespec, cache_proto, len(cachespec), None)

# Connect the lowest level crossbar to the memory
last_subsys = getattr(system, "l%dsubsys0" % len(cachespec))
last_subsys.xbar.master = system.physmem.port

root = Root(full_system=False, system=system)
if options.atomic:
    root.system.mem_mode = "atomic"
else:
    root.system.mem_mode = "timing"

# The system port is never used in the tester so merely connect it
# to avoid problems
root.system.system_port = last_subsys.xbar.slave

# Instantiate configuration
m5.instantiate()

# Simulate until program terminates
exit_event = m5.simulate(options.maxtick)

print "Exiting @ tick", m5.curTick(), "because", exit_event.getCause()
コード例 #60
0
def run(options, root, testsys, cpu_class):
    if options.checkpoint_dir:
        cptdir = options.checkpoint_dir
    elif m5.options.outdir:
        cptdir = m5.options.outdir
    else:
        cptdir = getcwd()

    if options.fast_forward and options.checkpoint_restore != None:
        fatal("Can't specify both --fast-forward and --checkpoint-restore")

    if options.standard_switch and not options.caches:
        fatal("Must specify --caches when using --standard-switch")

    if options.standard_switch and options.repeat_switch:
        fatal("Can't specify both --standard-switch and --repeat-switch")

    if options.repeat_switch and options.take_checkpoints:
        fatal("Can't specify both --repeat-switch and --take-checkpoints")

    np = options.num_cpus
    switch_cpus = None

    if options.prog_interval:
        for i in xrange(np):
            testsys.cpu[i].progress_interval = options.prog_interval

    if options.maxinsts:
        for i in xrange(np):
            testsys.cpu[i].max_insts_any_thread = options.maxinsts

    if cpu_class:
        switch_cpus = [
            cpu_class(switched_out=True, cpu_id=(i)) for i in xrange(np)
        ]

        for i in xrange(np):
            if options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            switch_cpus[i].system = testsys
            switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clk_domain = testsys.cpu[i].clk_domain
            # simulation period
            if options.maxinsts:
                switch_cpus[i].max_insts_any_thread = options.maxinsts
            # Add checker cpu if selected
            if options.checker:
                switch_cpus[i].addCheckerCpu()

        testsys.switch_cpus = switch_cpus
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i])
                           for i in xrange(np)]

    if options.repeat_switch:
        switch_class = getCPUClass(options.cpu_type)[0]
        if switch_class.require_caches() and \
                not options.caches:
            print "%s: Must be used with caches" % str(switch_class)
            sys.exit(1)
        if not switch_class.support_take_over():
            print "%s: CPU switching not supported" % str(switch_class)
            sys.exit(1)

        repeat_switch_cpus = [switch_class(switched_out=True, \
                                               cpu_id=(i)) for i in xrange(np)]

        for i in xrange(np):
            repeat_switch_cpus[i].system = testsys
            repeat_switch_cpus[i].workload = testsys.cpu[i].workload
            repeat_switch_cpus[i].clk_domain = testsys.cpu[i].clk_domain

            if options.maxinsts:
                repeat_switch_cpus[i].max_insts_any_thread = options.maxinsts

            if options.checker:
                repeat_switch_cpus[i].addCheckerCpu()

        testsys.repeat_switch_cpus = repeat_switch_cpus

        if cpu_class:
            repeat_switch_cpu_list = [(switch_cpus[i], repeat_switch_cpus[i])
                                      for i in xrange(np)]
        else:
            repeat_switch_cpu_list = [(testsys.cpu[i], repeat_switch_cpus[i])
                                      for i in xrange(np)]

    if options.standard_switch:
        switch_cpus = [
            TimingSimpleCPU(switched_out=True, cpu_id=(i)) for i in xrange(np)
        ]
        switch_cpus_1 = [
            DerivO3CPU(switched_out=True, cpu_id=(i)) for i in xrange(np)
        ]

        for i in xrange(np):
            switch_cpus[i].system = testsys
            switch_cpus_1[i].system = testsys
            switch_cpus[i].workload = testsys.cpu[i].workload
            switch_cpus_1[i].workload = testsys.cpu[i].workload
            switch_cpus[i].clk_domain = testsys.cpu[i].clk_domain
            switch_cpus_1[i].clk_domain = testsys.cpu[i].clk_domain

            # if restoring, make atomic cpu simulate only a few instructions
            if options.checkpoint_restore != None:
                testsys.cpu[i].max_insts_any_thread = 1
            # Fast forward to specified location if we are not restoring
            elif options.fast_forward:
                testsys.cpu[i].max_insts_any_thread = int(options.fast_forward)
            # Fast forward to a simpoint (warning: time consuming)
            elif options.simpoint:
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('simpoint not found')
                testsys.cpu[i].max_insts_any_thread = \
                    testsys.cpu[i].workload[0].simpoint
            # No distance specified, just switch
            else:
                testsys.cpu[i].max_insts_any_thread = 1

            # warmup period
            if options.warmup_insts:
                switch_cpus[i].max_insts_any_thread = options.warmup_insts

            # simulation period
            if options.maxinsts:
                switch_cpus_1[i].max_insts_any_thread = options.maxinsts

            # attach the checker cpu if selected
            if options.checker:
                switch_cpus[i].addCheckerCpu()
                switch_cpus_1[i].addCheckerCpu()

        testsys.switch_cpus = switch_cpus
        testsys.switch_cpus_1 = switch_cpus_1
        switch_cpu_list = [(testsys.cpu[i], switch_cpus[i])
                           for i in xrange(np)]
        switch_cpu_list1 = [(switch_cpus[i], switch_cpus_1[i])
                            for i in xrange(np)]

    # set the checkpoint in the cpu before m5.instantiate is called
    if options.take_checkpoints != None and \
           (options.simpoint or options.at_instruction):
        offset = int(options.take_checkpoints)
        # Set an instruction break point
        if options.simpoint:
            for i in xrange(np):
                if testsys.cpu[i].workload[0].simpoint == 0:
                    fatal('no simpoint for testsys.cpu[%d].workload[0]', i)
                checkpoint_inst = int(
                    testsys.cpu[i].workload[0].simpoint) + offset
                testsys.cpu[i].max_insts_any_thread = checkpoint_inst
                # used for output below
                options.take_checkpoints = checkpoint_inst
        else:
            options.take_checkpoints = offset
            # Set all test cpus with the right number of instructions
            # for the upcoming simulation
            for i in xrange(np):
                testsys.cpu[i].max_insts_any_thread = offset

    checkpoint_dir = None
    if options.checkpoint_restore:
        cpt_starttick, checkpoint_dir = findCptDir(options, cptdir, testsys)
    m5.instantiate(checkpoint_dir)

    # Handle the max tick settings now that tick frequency was resolved
    # during system instantiation
    # NOTE: the maxtick variable here is in absolute ticks, so it must
    # include any simulated ticks before a checkpoint
    explicit_maxticks = 0
    maxtick_from_abs = m5.MaxTick
    maxtick_from_rel = m5.MaxTick
    maxtick_from_maxtime = m5.MaxTick
    if options.abs_max_tick:
        maxtick_from_abs = options.abs_max_tick
        explicit_maxticks += 1
    if options.rel_max_tick:
        maxtick_from_rel = options.rel_max_tick
        if options.checkpoint_restore:
            # NOTE: this may need to be updated if checkpoints ever store
            # the ticks per simulated second
            maxtick_from_rel += cpt_starttick
            if options.at_instruction or options.simpoint:
                warn("Relative max tick specified with --at-instruction or" \
                     " --simpoint\n      These options don't specify the " \
                     "checkpoint start tick, so assuming\n      you mean " \
                     "absolute max tick")
        explicit_maxticks += 1
    if options.maxtime:
        maxtick_from_maxtime = m5.ticks.fromSeconds(options.maxtime)
        explicit_maxticks += 1
    if explicit_maxticks > 1:
        warn("Specified multiple of --abs-max-tick, --rel-max-tick, --maxtime."\
             " Using least")
    maxtick = min([maxtick_from_abs, maxtick_from_rel, maxtick_from_maxtime])

    if options.checkpoint_restore != None and maxtick < cpt_starttick:
        fatal("Bad maxtick (%d) specified: " \
              "Checkpoint starts starts from tick: %d", maxtick, cpt_starttick)

    if options.standard_switch or cpu_class:
        if options.standard_switch:
            print "Switch at instruction count:%s" % \
                    str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        elif cpu_class and options.fast_forward:
            print "Switch at instruction count:%s" % \
                    str(testsys.cpu[0].max_insts_any_thread)
            exit_event = m5.simulate()
        else:
            print "Switch at curTick count:%s" % str(10000)
            exit_event = m5.simulate(10000)
        print "Switched CPUS @ tick %s" % (m5.curTick())

        m5.switchCpus(testsys, switch_cpu_list)

        if options.standard_switch:
            print "Switch at instruction count:%d" % \
                    (testsys.switch_cpus[0].max_insts_any_thread)

            #warmup instruction count may have already been set
            if options.warmup_insts:
                exit_event = m5.simulate()
            else:
                exit_event = m5.simulate(options.standard_switch)
            print "Switching CPUS @ tick %s" % (m5.curTick())
            print "Simulation ends instruction count:%d" % \
                    (testsys.switch_cpus_1[0].max_insts_any_thread)
            m5.switchCpus(testsys, switch_cpu_list1)

    # If we're taking and restoring checkpoints, use checkpoint_dir
    # option only for finding the checkpoints to restore from.  This
    # lets us test checkpointing by restoring from one set of
    # checkpoints, generating a second set, and then comparing them.
    if options.take_checkpoints and options.checkpoint_restore:
        if m5.options.outdir:
            cptdir = m5.options.outdir
        else:
            cptdir = getcwd()

    if options.take_checkpoints != None:
        # Checkpoints being taken via the command line at <when> and at
        # subsequent periods of <period>.  Checkpoint instructions
        # received from the benchmark running are ignored and skipped in
        # favor of command line checkpoint instructions.
        exit_event = scriptCheckpoints(options, maxtick, cptdir)
    else:
        if options.fast_forward:
            m5.stats.reset()
        print "**** REAL SIMULATION ****"

        # If checkpoints are being taken, then the checkpoint instruction
        # will occur in the benchmark code it self.
        if options.repeat_switch and maxtick > options.repeat_switch:
            exit_event = repeatSwitch(testsys, repeat_switch_cpu_list, maxtick,
                                      options.repeat_switch)
        else:
            exit_event = benchCheckpoints(options, maxtick, cptdir)

    print 'Exiting @ tick %i because %s' % (m5.curTick(),
                                            exit_event.getCause())
    if options.checkpoint_at_end:
        m5.checkpoint(joinpath(cptdir, "cpt.%d"))

    if not m5.options.interactive:
        sys.exit(exit_event.getCode())