def __init__ (self, obj, parent=None): AbstractObject.__init__(self) # Fill in the data sent as parameters self.bge_object = obj self.robot_parent = parent self.level = self.bge_object.get("abstraction_level", "default") # Variable to indicate the activation status of the component self._active = True self.check_level() # Define the position of sensors with respect # to their robot parent # TODO: implement this using morse.helpers.transformation if parent: self.relative_position = obj.getVectTo(parent.bge_object) # Create an instance of the 3d transformation class self.position_3d = morse.helpers.transformation.Transformation3d(obj) self.initialize_local_data() self.update_properties() # The actual frequency at which the action is called # The frequency of the game sensor specifies how many times # the action is skipped when the logic brick is executed. # e.g. game sensor frequency = 0 -> sensor runs at full logic rate sensors = blenderapi.getalwayssensors(obj) self._frequency = blenderapi.getfrequency() # New MORSE_LOGIC sensor, see AbstractComponent.morseable() morselogic = [s for s in sensors if s.name.startswith('MORSE_LOGIC')] if len(morselogic) == 1: if blenderapi.version() >= (2, 74, 5): self._frequency /= morselogic[0].skippedTicks + 1 else: self._frequency /= morselogic[0].frequency + 1 # Backward compatible (some actuators got special logic) elif len(sensors) == 1: if blenderapi.version() >= (2, 74, 5): self._frequency /= sensors[0].skippedTicks + 1 else: self._frequency /= sensors[0].frequency + 1 elif len(sensors) == 0: logger.warning("Can't get frequency for " + self.name() + \ " as the Game Logic sensor calling the action can't be found.") else: logger.warning(self.name() + " has too many Game Logic sensors to get " + \ "an unambiguous frequency for the action.")
def __init__(self, obj, parent=None): AbstractObject.__init__(self) # Fill in the data sent as parameters self.bge_object = obj self.robot_parent = parent self.level = self.bge_object.get("abstraction_level", "default") # Variable to indicate the activation status of the component self._active = True self.check_level() # Define the position of sensors with respect # to their robot parent # TODO: implement this using morse.helpers.transformation if parent: self.relative_position = obj.getVectTo(parent.bge_object) # Create an instance of the 3d transformation class self.position_3d = morse.helpers.transformation.Transformation3d(obj) self.initialize_local_data() self.update_properties() # The actual frequency at which the action is called # The frequency of the game sensor specifies how many times # the action is skipped when the logic brick is executed. # e.g. game sensor frequency = 0 -> sensor runs at full logic rate sensors = blenderapi.getalwayssensors(obj) self._frequency = blenderapi.getfrequency() # New MORSE_LOGIC sensor, see AbstractComponent.morseable() morselogic = [s for s in sensors if s.name.startswith('MORSE_LOGIC')] if len(morselogic) == 1: if blenderapi.version() >= (2, 74, 5): self._frequency /= morselogic[0].skippedTicks + 1 else: self._frequency /= morselogic[0].frequency + 1 # Backward compatible (some actuators got special logic) elif len(sensors) == 1: if blenderapi.version() >= (2, 74, 5): self._frequency /= sensors[0].skippedTicks + 1 else: self._frequency /= sensors[0].frequency + 1 elif len(sensors) == 0: logger.warning("Can't get frequency for " + self.name() + \ " as the Game Logic sensor calling the action can't be found.") else: logger.warning(self.name() + " has too many Game Logic sensors to get " + \ "an unambiguous frequency for the action.")
def update_Y_forward(self, obj): """ Update the transformation3D to reflect the tranformation between obj (a blender object) and the blender world origin. In this case, the robot moves forwad along the Y axis. Change the values of yaw, pitch, roll for Blender vehicles Robots that use the Blender vehicle constrainst move in the direction of the Y axis, contrary to most of the MORSE components that move along the X axis. """ rot_matrix = obj.orientation self.matrix = mathutils.Matrix((rot_matrix[0], \ rot_matrix[1], \ rot_matrix[2])) self.matrix = self.matrix * self.correction_matrix self.matrix.resize_4x4() pos = obj.worldPosition for i in range(0, 3): if blenderapi.version() < (2, 62, 0): self.matrix[3][i] = pos[i] else: self.matrix[i][3] = pos[i] self.matrix[3][3] = 1 self.euler = self.matrix.to_euler()
def update_Y_forward(self, obj): """ Update the transformation3D to reflect the tranformation between obj (a blender object) and the blender world origin. In this case, the robot moves forwad along the Y axis. Change the values of yaw, pitch, roll for Blender vehicles Robots that use the Blender vehicle constrainst move in the direction of the Y axis, contrary to most of the MORSE components that move along the X axis. """ rot_matrix = obj.orientation self.matrix = mathutils.Matrix((rot_matrix[0], \ rot_matrix[1], \ rot_matrix[2])) self.matrix = self.matrix * self.correction_matrix self.matrix.resize_4x4() pos = obj.worldPosition for i in range(0, 3): if blenderapi.version() < (2,62,0): self.matrix[3][i] = pos[i] else: self.matrix[i][3] = pos[i] self.matrix[3][3] = 1 self.euler = self.matrix.to_euler()
def z(self): """ Return the translation against the z axle """ if blenderapi.version() < (2, 62, 0): return self.matrix[3][2] else: return self.matrix[2][3]
def z(self): """ Return the translation against the z axle """ if blenderapi.version() < (2,62,0): return self.matrix[3][2] else: return self.matrix[2][3]
def z(self): """ Return the translation along the z-axis """ if blenderapi.version() < (2, 62, 0): return self.matrix[3][2] else: return self.matrix[2][3]
def _restore_ik_targets(self): for c in self._ik_targets.values(): #Bug in Blender! cf http://developer.blender.org/T37892 if version() < (2, 70, 0): if c.active: c.active = True logger.info("Tracking IK target <%s>" % c.target.name) else: if not c.active: c.active = True logger.info("Tracking IK target <%s>" % c.target.name)
def _suspend_ik_targets(self): for c in self._ik_targets.values(): #Bug in Blender! cf http://developer.blender.org/T37892 if blenderapi.version() < (2, 70, 0): if not c.active: logger.info("Stop tracking IK target <%s>" % c.target.name) c.active = False else: if c.active: logger.info("Stop tracking IK target <%s>" % c.target.name) c.active = False
def _suspend_ik_targets(self): for c in self._ik_targets.values(): #Bug in Blender! cf http://developer.blender.org/T37892 if version() < (2, 70, 0): if not c.active: logger.info("Stop tracking IK target <%s>" % c.target.name) c.active = False else: if c.active: logger.info("Stop tracking IK target <%s>" % c.target.name) c.active = False
def _restore_ik_targets(self): for c in self._ik_targets.values(): #Bug in Blender! cf http://developer.blender.org/T37892 if blenderapi.version() < (2, 70, 0): if c.active: c.active = True logger.info("Tracking IK target <%s>" % c.target.name) else: if not c.active: c.active = True logger.info("Tracking IK target <%s>" % c.target.name)
def update(self, obj): """ Update the transformation3D to reflect the transformation between obj (a blender object) and the blender world origin """ self.matrix = obj.worldOrientation.to_4x4() pos = obj.worldPosition for i in range(0, 3): if blenderapi.version() < (2, 62, 0): self.matrix[3][i] = pos[i] else: self.matrix[i][3] = pos[i] self.matrix[3][3] = 1 self.euler = self.matrix.to_euler()
def change_arc(self): # Change the shape of the arc to show what the sensor detects # Display only for 1 layer scanner if (2, 65, 0) < blenderapi.version() <= (2, 66, 3): # see http://projects.blender.org/tracker/?func=detail&aid=34550 return # not supported in 2.66 due to BGE bug #34550 # TODO rework the LDMRS (3 layers) display [code in 1.0-beta2] if self.visible_arc: for mesh in self._ray_arc.meshes: for m_index in range(len(mesh.materials)): index = 0 for v_index in range(mesh.getVertexArrayLength(m_index)): # Switch to a new layer after a set number of vertices if index % self._vertex_per_layer == 0: index += 1 # Skip the first vertex of a triangle. It will always # be at the origin, and should not be changed if v_index % 3 == 0: continue # Place the next vertex in the triangle if v_index % 3 == 2: point = self.local_data['point_list'][index] if point == [0.0, 0.0, 0.0]: # If there was no intersection, move the vertex # to the laser range point = self._ray_list[index] * self.laser_range vertex = mesh.getVertex(m_index, v_index) vertex.setXYZ(point) index += 1 # Set the final vertex, in the correct order to have # the normals facing upwards. if v_index % 3 == 1: point = self.local_data['point_list'][index - 1] if point == [0.0, 0.0, 0.0]: # If there was no intersection, move the vertex # to the laser range point = self._ray_list[index - 1] * self.laser_range vertex = mesh.getVertex(m_index, v_index) vertex.setXYZ(point)
def change_arc(self): # Change the shape of the arc to show what the sensor detects # Display only for 1 layer scanner if (2, 65, 0) < blenderapi.version() <= (2, 66, 3): # see http://projects.blender.org/tracker/?func=detail&aid=34550 return # not supported in 2.66 due to BGE bug #34550 # TODO rework the LDMRS (3 layers) display [code in 1.0-beta2] if self.visible_arc and self._layers == 1: for mesh in self._ray_arc.meshes: for m_index in range(len(mesh.materials)): # Skip the first vertex (located at the center of the sensor) for v_index in range(1, mesh.getVertexArrayLength(m_index)): vertex = mesh.getVertex(m_index, v_index) point = self.local_data['point_list'][v_index-1] if point == [0.0, 0.0, 0.0]: # If there was no intersection, move the vertex # to the laser range point = self._ray_list[v_index-1] * self.laser_range vertex.setXYZ(point[:3])
def default_action(self): """ Switch on/off the light. """ # if no changes, return if self._last == self.local_data['emit']: return if self.local_data['emit']: self.light.energy = self._energy else: self.light.energy = 0.0 # workaround Blender < 2.66 did not share light energy between scenes if blenderapi.version() < (2, 66, 0): # for each camera's scene: update the light for scene in blenderapi.get_scene_list(): if scene.name not in ['S.MORSE_ENV', 'S.MORSE_LOGIC'] and \ self.light.name in scene.objects: scene.objects[self.light.name].energy = self.light.energy self._last = self.local_data['emit']
def update(self, obj): """ Update the transformation3D to reflect the tranformation between obj (a blender object) and the blender world origin """ rot_matrix = obj.orientation self.matrix = mathutils.Matrix((rot_matrix[0], \ rot_matrix[1], \ rot_matrix[2])) self.matrix.resize_4x4() pos = obj.worldPosition for i in range(0, 3): if blenderapi.version() < (2, 62, 0): self.matrix[3][i] = pos[i] else: self.matrix[i][3] = pos[i] self.matrix[3][3] = 1 self.euler = self.matrix.to_euler()
def update(self, obj): """ Update the transformation3D to reflect the tranformation between obj (a blender object) and the blender world origin """ rot_matrix = obj.orientation self.matrix = mathutils.Matrix((rot_matrix[0], \ rot_matrix[1], \ rot_matrix[2])) self.matrix.resize_4x4() pos = obj.worldPosition for i in range(0, 3): if blenderapi.version() < (2,62,0): self.matrix[3][i] = pos[i] else: self.matrix[i][3] = pos[i] self.matrix[3][3] = 1 self.euler = self.matrix.to_euler()
def change_arc(self): # Change the shape of the arc to show what the sensor detects # Display only for 1 layer scanner if (2, 65, 0) < blenderapi.version() <= (2, 66, 3): # see http://projects.blender.org/tracker/?func=detail&aid=34550 return # not supported in 2.66 due to BGE bug #34550 # TODO rework the LDMRS (3 layers) display [code in 1.0-beta2] if self.visible_arc and self._layers == 1: for mesh in self._ray_arc.meshes: for m_index in range(len(mesh.materials)): # Skip the first vertex (located at the center of the sensor) for v_index in range(1, mesh.getVertexArrayLength(m_index)): vertex = mesh.getVertex(m_index, v_index) point = self.local_data['point_list'][v_index - 1] if point == [0.0, 0.0, 0.0]: # If there was no intersection, move the vertex # to the laser range point = self._ray_list[v_index - 1] * self.laser_range vertex.setXYZ(point[:3])
def _setup_video_texture(self): """ Prepare this camera to use the bge.texture module. Extract the references to the Blender camera and material where the images will be rendered. """ for child in self.bge_object.children: # The camera object that will produce the image in Blender if 'CameraRobot' in child.name: camera = child # The object that contains the material where the image is rendered if 'CameraMesh' in child.name: screen = child # Considering it consists of a single mesh mesh = child.meshes[0] # Get the material name for material in mesh.materials: material_index = material.getMaterialIndex() mesh_material_name = mesh.getMaterialName(material_index) if 'MAScreenMat' in mesh_material_name: material_name = mesh_material_name try: logger.debug("\tCAMERA: %s" % camera.name) logger.debug("\tSCREEN: %s" % screen.name) logger.debug("\tMATERIAL: %s" % material_name) except UnboundLocalError: logger.error("The video camera could not be properly initialized." "The children object could not be found." "Best solution is to re-link the camera.") return False # Get the reference to the scene scene_map = blenderapi.get_scene_map() logger.info("Scene %s from %s" % (self.scene_name, repr(scene_map.keys()))) self._scene = scene_map[self.scene_name] self._morse_scene = scene_map['S.MORSE_LOGIC'] """ Compute the relation between objects in the current scene and objects in the main logic scene. The logic is a bit complex, as in the case of group, we can have objects with the same name (but different ids). So, in this case, we follow the hierarchy on both scene to find correspondance (assuming no recursive group) known_ids is used to track objects alreay referenced and not include it twice (and possibly missing the fact that the same name can reference multiples different objects) I'm definitively not sure it is correct at all, it is a really really dark corner of Blender :). But it seems to do the job! """ self._scene_syncable_objects = [] known_ids = set() for obj in self._scene.objects: if obj.name != '__default__cam__' and id(obj) not in known_ids: if blenderapi.version() < (2, 63, 0): members = None elif blenderapi.version() < (2, 64, 0): members = obj.group elif blenderapi.version() < (2, 65, 0): members = obj.group_parent else: members = obj.groupMembers if not members: self._scene_syncable_objects.append( (obj, self._morse_scene.objects[obj.name])) known_ids.add(id(obj)) else: if blenderapi.version() < (2, 64, 0): main_members = self._morse_scene.objects[ obj.name].group elif blenderapi.version() < (2, 65, 0): main_members = self._morse_scene.objects[ obj.name].group_parent else: main_members = self._morse_scene.objects[ obj.name].groupMembers for i in range(0, len(main_members)): self._scene_syncable_objects.append( (members[i], main_members[i])) known_ids.add(id(members[i])) childs = members[i].childrenRecursive main_childs = main_members[i].childrenRecursive for child in childs: self._scene_syncable_objects.append( (child, main_childs[child.name])) known_ids.add(id(child)) # Link the objects using bge.texture if not blenderapi.hascameras(): blenderapi.initcameras() mat_id = blenderapi.texture().materialID(screen, material_name) vt_camera = blenderapi.texture().Texture(screen, mat_id) vt_camera.source = blenderapi.texture().ImageRender( self._scene, camera) # Set the focal length of the camera using the Game Logic Property camera.lens = self.image_focal logger.info("\tFocal length of the camera is: %s" % camera.lens) # Set the clipping distances of the camera using the Game Logic Property camera.near = self.near_clipping logger.info("\tNear clipping distance of the camera is: %s" % camera.near) camera.far = self.far_clipping logger.info("\tFar clipping distance of the camera is: %s" % camera.far) # Set the background to be used for the render vt_camera.source.background = self.bg_color # Define an image size. It must be powers of two. Default 512 * 512 vt_camera.source.capsize = [self.image_width, self.image_height] logger.info("Camera '%s': Exporting an image of capsize: %s pixels" % (self.name(), vt_camera.source.capsize)) # Reverse the image (boolean game-property) vt_camera.source.flip = self.vertical_flip try: # Use the Z-Buffer as an image texture for the camera if self.retrieve_zbuffer: vt_camera.source.zbuff = True # Use the Z-Buffer as input with an array of depths if self.retrieve_depth: vt_camera.source.depth = True except AttributeError as detail: logger.warn("%s\nPlease use Blender > 2.65 for Z-Buffer support" % detail) blenderapi.cameras()[self.name()] = vt_camera
def _setup_video_texture(self): """ Prepare this camera to use the bge.texture module. Extract the references to the Blender camera and material where the images will be rendered. """ for child in self.bge_object.children: # The camera object that will produce the image in Blender if 'CameraRobot' in child.name: camera = child # The object that contains the material where the image is rendered if 'CameraMesh' in child.name: screen = child # Considering it consists of a single mesh mesh = child.meshes[0] # Get the material name for material in mesh.materials: material_index = material.getMaterialIndex() mesh_material_name = mesh.getMaterialName(material_index) if 'MAScreenMat' in mesh_material_name: material_name = mesh_material_name try: logger.debug("\tCAMERA: %s" % camera.name) logger.debug("\tSCREEN: %s" % screen.name) logger.debug("\tMATERIAL: %s" % material_name) except UnboundLocalError: logger.error("The video camera could not be properly initialized." "The children object could not be found." "Best solution is to re-link the camera.") return False # Get the reference to the scene scene_map = blenderapi.get_scene_map() logger.info("Scene %s from %s"% (self.scene_name, repr(scene_map.keys()) ) ) self._scene = scene_map[self.scene_name] self._morse_scene = scene_map['S.MORSE_LOGIC'] """ Compute the relation between objects in the current scene and objects in the main logic scene. The logic is a bit complex, as in the case of group, we can have objects with the same name (but different ids). So, in this case, we follow the hierarchy on both scene to find correspondance (assuming no recursive group) known_ids is used to track objects alreay referenced and not include it twice (and possibly missing the fact that the same name can reference multiples different objects) I'm definitively not sure it is correct at all, it is a really really dark corner of Blender :). But it seems to do the job! """ self._scene_syncable_objects = [] known_ids = set() for obj in self._scene.objects: if obj.name != '__default__cam__' and id(obj) not in known_ids: if blenderapi.version() < (2, 63, 0): members = None elif blenderapi.version() < (2, 64, 0): members = obj.group elif blenderapi.version() < (2, 65, 0): members = obj.group_parent else: members = obj.groupMembers if not members: self._scene_syncable_objects.append( (obj, self._morse_scene.objects[obj.name])) known_ids.add(id(obj)) else: if blenderapi.version() < (2, 64, 0): main_members = self._morse_scene.objects[obj.name].group elif blenderapi.version() < (2, 65, 0): main_members = self._morse_scene.objects[obj.name].group_parent else: main_members = self._morse_scene.objects[obj.name].groupMembers for i in range(0, len(main_members)): self._scene_syncable_objects.append( (members[i], main_members[i])) known_ids.add(id(members[i])) childs = members[i].childrenRecursive main_childs = main_members[i].childrenRecursive for child in childs: self._scene_syncable_objects.append( (child, main_childs[child.name])) known_ids.add(id(child)) # Link the objects using bge.texture if not blenderapi.hascameras(): blenderapi.initcameras() mat_id = blenderapi.texture().materialID(screen, material_name) vt_camera = blenderapi.texture().Texture(screen, mat_id) vt_camera.source = blenderapi.texture().ImageRender(self._scene, camera) # Set the focal length of the camera using the Game Logic Property camera.lens = self.image_focal logger.info("\tFocal length of the camera is: %s" % camera.lens) # Set the clipping distances of the camera using the Game Logic Property camera.near = self.near_clipping logger.info("\tNear clipping distance of the camera is: %s" % camera.near) camera.far = self.far_clipping logger.info("\tFar clipping distance of the camera is: %s" % camera.far) # Set the background to be used for the render vt_camera.source.background = self.bg_color # Define an image size. It must be powers of two. Default 512 * 512 vt_camera.source.capsize = [self.image_width, self.image_height] logger.info("Camera '%s': Exporting an image of capsize: %s pixels" % (self.name(), vt_camera.source.capsize)) # Reverse the image (boolean game-property) vt_camera.source.flip = self.vertical_flip try: # Use the Z-Buffer as an image texture for the camera if self.retrieve_zbuffer: vt_camera.source.zbuff = True # Use the Z-Buffer as input with an array of depths if self.retrieve_depth: vt_camera.source.depth = True except AttributeError as detail: logger.warn("%s\nPlease use Blender > 2.65 for Z-Buffer support" % detail) blenderapi.cameras()[self.name()] = vt_camera
def default_action(self): """ Do ray tracing from the SICK object using a semicircle Generates a list of lists, with the points located. Also deforms the geometry of the arc associated to the SICK, as a way to display the results obtained. """ #logger.debug("ARC POSITION: [%.4f, %.4f, %.4f]" % # (self.bge_object.position[0], # self.bge_object.position[1], # self.bge_object.position[2])) # Get the inverse of the transformation matrix inverse = self.position_3d.matrix.inverted() index = 0 for ray in self._ray_list: # Transform the ray to the current position and rotation # of the sensor correct_ray = self.position_3d.matrix * ray # Shoot a ray towards the target target, point, normal = self.bge_object.rayCast(correct_ray, None, self.laser_range) #logger.debug("\tTarget, point, normal: %s, %s, %s" % # (target, point, normal)) # Register when an intersection occurred if target: distance = self.bge_object.getDistanceTo(point) # Return the point to the reference of the sensor new_point = inverse * point #logger.debug("\t\tGOT INTERSECTION WITH RAY: [%.4f, %.4f, %.4f]" % (correct_ray[0], correct_ray[1], correct_ray[2])) #logger.debug("\t\tINTERSECTION AT: [%.4f, %.4f, %.4f] = %s" % (point[0], point[1], point[2], target)) # If there was no intersection, store the default values else: distance = self.laser_range new_point = [0.0, 0.0, 0.0] # Save the information gathered self.local_data['point_list'][index] = new_point[:] self.local_data['range_list'][index] = distance index += 1 # Change the shape of the arc to show what the sensor detects # Display only for 1 layer scanner if (2, 65, 0) < blenderapi.version() <= (2, 66, 3): # see http://projects.blender.org/tracker/?func=detail&aid=34550 return # not supported in 2.66 due to BGE bug #34550 # TODO rework the LDMRS (3 layers) display [code in 1.0-beta2] if self.visible_arc and self._layers == 1: for mesh in self._ray_arc.meshes: for m_index in range(len(mesh.materials)): # Skip the first vertex (located at the center of the sensor) for v_index in range(1, mesh.getVertexArrayLength(m_index)): vertex = mesh.getVertex(m_index, v_index) point = self.local_data['point_list'][v_index-1] if point == [0.0, 0.0, 0.0]: # If there was no intersection, move the vertex # to the laser range point = self._ray_list[v_index-1] * self.laser_range vertex.setXYZ(point)
def default_action(self): """ Do ray tracing from the SICK object using a semicircle Generates a list of lists, with the points located. Also deforms the geometry of the arc associated to the SICK, as a way to display the results obtained. """ #logger.debug("ARC POSITION: [%.4f, %.4f, %.4f]" % # (self.bge_object.position[0], # self.bge_object.position[1], # self.bge_object.position[2])) # Get the inverse of the transformation matrix inverse = self.position_3d.matrix.inverted() index = 0 for ray in self._ray_list: # Transform the ray to the current position and rotation # of the sensor correct_ray = self.position_3d.matrix * ray # Shoot a ray towards the target target, point, normal = self.bge_object.rayCast( correct_ray, None, self.laser_range) #logger.debug("\tTarget, point, normal: %s, %s, %s" % # (target, point, normal)) # Register when an intersection occurred if target: distance = self.bge_object.getDistanceTo(point) # Return the point to the reference of the sensor new_point = inverse * point #logger.debug("\t\tGOT INTERSECTION WITH RAY: [%.4f, %.4f, %.4f]" % (correct_ray[0], correct_ray[1], correct_ray[2])) #logger.debug("\t\tINTERSECTION AT: [%.4f, %.4f, %.4f] = %s" % (point[0], point[1], point[2], target)) # If there was no intersection, store the default values else: distance = self.laser_range new_point = [0.0, 0.0, 0.0] # Save the information gathered self.local_data['point_list'][index] = new_point[:] self.local_data['range_list'][index] = distance index += 1 # Change the shape of the arc to show what the sensor detects # Display only for 1 layer scanner if (2, 65, 0) < blenderapi.version() <= (2, 66, 3): # see http://projects.blender.org/tracker/?func=detail&aid=34550 return # not supported in 2.66 due to BGE bug #34550 # TODO rework the LDMRS (3 layers) display [code in 1.0-beta2] if self.visible_arc and self._layers == 1: for mesh in self._ray_arc.meshes: for m_index in range(len(mesh.materials)): # Skip the first vertex (located at the center of the sensor) for v_index in range(1, mesh.getVertexArrayLength(m_index)): vertex = mesh.getVertex(m_index, v_index) point = self.local_data['point_list'][v_index - 1] if point == [0.0, 0.0, 0.0]: # If there was no intersection, move the vertex # to the laser range point = self._ray_list[v_index - 1] * self.laser_range vertex.setXYZ(point)