コード例 #1
0
    def test_coord_transform(self):
        """WaveCoord class: testing coordinates transformations"""
        wave = WaveCoord(crval=0, cunit=u.nm, shape=10)
        pixel = wave.pixel(wave.coord(5, unit=u.nm), nearest=True, unit=u.nm)
        assert pixel == 5

        wave2 = np.arange(10)
        pixel = wave.pixel(wave.coord(wave2, unit=u.nm), nearest=True,
                           unit=u.nm)
        assert_array_equal(pixel, wave2)

        pix = np.arange(wave.shape, dtype=float)
        np.testing.assert_allclose(wave.pixel(wave.coord(unit=u.nm),
                                              unit=u.nm), pix)
コード例 #2
0
 def test_rebin(self):
     """WCS class: testing rebin method"""
     wave = WaveCoord(crval=0, cunit=u.nm, shape=10)
     wave.rebin(factor=2)
     assert wave.get_step(unit=u.nm) == 2.0
     assert wave.get_start(unit=u.nm) == 0.5
     assert wave.coord(2, unit=u.nm) == 4.5
     assert wave.shape == 5
コード例 #3
0
    def test_coord(self):
        """WaveCoord class: testing getting the coordinates"""
        wave = WaveCoord(crval=1, cunit=u.nm, shape=10)
        # By default the CTYPE is LINEAR and can't be converted to air or
        # vacuum.
        with pytest.raises(ValueError):
            wave.coord(medium='air')
        with pytest.raises(ValueError):
            wave.coord(medium='vacuum')
        wave.wcs.wcs.ctype = ['WAVE']
        with pytest.raises(ValueError):
            # Unknown parameter value
            wave.coord(medium='vacuu')

        refcoord = np.arange(10) + 1
        assert_array_equal(wave.coord(medium='vacuum'), refcoord)
        assert_array_equal(wave.coord(medium='air'), vactoair(refcoord))
        wave.wcs.wcs.ctype = ['AWAV']
        assert_array_equal(wave.coord(medium='air'), refcoord)
        assert_array_equal(wave.coord(medium='vacuum'), airtovac(refcoord))
コード例 #4
0
def test_resample():
    """Spectrum class: Test resampling"""

    # Choose the dimensions of the spectrum, choosing a large number that is
    # *not* a convenient power of 2.
    oldshape = 4000

    # Choose the wavelength pixel size and the default wavelength units.
    oldstep = 1.0
    oldunit = u.angstrom

    # Create the wavelength axis coordinates.
    wave = WaveCoord(crpix=2.0,
                     cdelt=oldstep,
                     crval=0.5,
                     cunit=oldunit,
                     shape=oldshape)

    # Specify the desired increase in pixel size, and the resulting pixel size.
    factor = 6.5
    newstep = ((factor * oldstep) * oldunit).to(u.nm).value

    # Specify the wavelength at which the peak of the resampled spectrum should
    # be expected.
    expected_peak_wave = 3000.0

    # Create the array in which the test spectrum will be composed.
    data = np.zeros(oldshape)

    # Get the wavelength coordinates of each pixel in the spectrum.
    w = wave.coord()

    # Add the following list gaussians to the spectrum, where each
    # gaussian is specified as: (amplitude, sigma_in_pixels,
    # center_wavelength). Given that narrow gaussians are reduced in
    # amplitude by resampling more than wide gaussians, we arrange
    # that the peak gaussian before and after correctly resampling are
    # different.
    gaussians = [
        (0.5, 12.0, 800.0),
        (0.7, 5.0, 1200.0),
        (0.4, 700.0, 1600.0),
        (1.5, 2.6, 1980.0),  # Peak before resampling
        (1.2, 2.6, 2000.0),
        (1.3, 15.0, expected_peak_wave),  # Peak if resampled correctly
        (1.0, 2.0, 3200.0)
    ]
    for amp, sigma, center in gaussians:
        sigma *= oldstep
        data += amp * np.exp(-0.5 * ((center - w) / sigma)**2)

    # Fill the variance array with a simple window function.
    var = np.hamming(oldshape)

    # Add gaussian random noise to the spectrum, but leave 3 output
    # pixel widths zero at each end of the spectrum so that the PSF of
    # the output grid doesn't spread flux from the edges off the edge
    # of the output grid. It takes about 3 pixel widths for the gaussian
    # PSF to drop to about 0.01 of its peak.
    margin = np.ceil(3 * factor).astype(int)
    data[margin:-margin] += np.random.normal(scale=0.1,
                                             size=data.shape - 2 * margin)

    # Install the spectral data in a Spectrum container.
    oldsp = Spectrum(data=data, var=var, wave=wave)

    # Mask a few pixels.
    masked_slice = slice(900, 910)
    oldsp.mask[masked_slice] = True

    # Create a down-sampled version of the input spectrum.
    newsp = oldsp.resample(newstep, unit=u.nm)

    # Check that the integral flux in the resampled spectrum matches that of
    # the original spectrum.
    expected_flux = oldsp.sum(weight=False)[0] * oldsp.wave.get_step(
        unit=oldunit)
    actual_flux = newsp.sum(weight=False)[0] * newsp.wave.get_step(
        unit=oldunit)
    assert_allclose(actual_flux, expected_flux, 1e-2)

    # Do the same test, but with fluxes weighted by the inverse of the variances.
    expected_flux = oldsp.sum(weight=True)[0] * oldsp.wave.get_step(
        unit=oldunit)
    actual_flux = newsp.sum(weight=True)[0] * newsp.wave.get_step(unit=oldunit)
    assert_allclose(actual_flux, expected_flux, 1e-2)

    # Check that the peak of the resampled spectrum is at the wavelength
    # where the strongest gaussian was centered in the input spectrum.
    assert_allclose(np.argmax(newsp.data),
                    newsp.wave.pixel(expected_peak_wave, nearest=True))

    # Now upsample the downsampled spectrum to the original pixel size.
    # This won't recover the same spectrum, since higher spatial frequencies
    # are lost when downsampling, but the total flux should be about the
    # same, and the peak should be at the same wavelength as the peak in
    # original spectrum within one pixel width of the downsampled spectrum.
    newsp2 = newsp.resample(oldstep, unit=oldunit)

    # Check that the doubly resampled spectrum has the same integrated flux
    # as the original.
    expected_flux = oldsp.sum(weight=False)[0] * oldsp.wave.get_step(
        unit=oldunit)
    actual_flux = newsp2.sum(weight=False)[0] * newsp2.wave.get_step(
        unit=oldunit)
    assert_allclose(actual_flux, expected_flux, 1e-2)

    # Check that the peak of the up-sampled spectrum is at the wavelength
    # of the peak of the down-sampled spectrum to within the pixel resolution
    # of the downsampled spectrum.
    assert_allclose(
        newsp.wave.pixel(newsp2.wave.coord(np.argmax(newsp2.data)),
                         nearest=True),
        newsp.wave.pixel(expected_peak_wave, nearest=True))

    # Check that pixels that were masked in the input spectrum are still
    # masked in the final spectrum.
    np.testing.assert_equal(newsp2.mask[masked_slice],
                            oldsp.mask[masked_slice])