コード例 #1
0
def greedytravelling(points, startingpoint = 0):
    points = np.ma.array(points, mask=False)  
    finalgrouping = np.zeros((points.shape[0],1))
    chosenpoint = startingpoint
    counter = 0
    for i in range(points.shape[0]-1):
        counter += 1
        chosenpointcoords = points[chosenpoint].data
        points[chosenpoint] = np.ma.masked  
        closeindices = np.argsort(nphaversine(chosenpointcoords,points))[0]
        finalgrouping[counter] =  closeindices
        chosenpoint = closeindices
    return finalgrouping
コード例 #2
0
def greedytravelling(points, startingpoint=0):
    points = np.ma.array(points, mask=False)
    finalgrouping = np.zeros((points.shape[0], 1))
    chosenpoint = startingpoint
    counter = 0
    for i in range(points.shape[0] - 1):
        counter += 1
        chosenpointcoords = points[chosenpoint].data
        points[chosenpoint] = np.ma.masked
        closeindices = np.argsort(nphaversine(chosenpointcoords, points))[0]
        finalgrouping[counter] = closeindices
        chosenpoint = closeindices
    return finalgrouping
コード例 #3
0
    
    members  = np.where(finalgrouping==i)
#    grpmemberdist = haversine(origin,points[members[0]])  # this is sorting by who nearest pole
#    order = np.argsort(grpmemberdist) # this is sorting by who nearest pole
    
    finalgroupingrearrange = np.squeeze(greedytravelling(points[members[0],:])).astype(int)
    
    # DO A MULTIPLE START GREEDY TRAVEL EVAL THE DIST?
    # OR JUST START WITH THE ONE NEAREST THE POLE?
    
    
    
    a = int(finalgroupingrearrange[0])
    z = int(finalgroupingrearrange[-1])
    
    if nphaversine(points[members[0]][a],origin)>nphaversine(points[members[0]][z],origin):
        finalgroupingrearrange = finalgroupingrearrange[::-1]
        
    
    
    tripid[counter:counter+len(members[0])] = tripcounter
    giftid[counter:counter+len(members[0])] = members[0][finalgroupingrearrange]
    counter += len(members[0])
    tripcounter += 1



giftid = giftid+1  # NO 0 GIFTID, DONT RUN THIS TWICE, CHECK WITH giftid.min()
output = pd.DataFrame( data={"GiftId":giftid.astype(int), "TripId":tripid.astype(int)} )

# Use pandas to write the comma-separated output file
コード例 #4
0
        print 'Group: ' + str(i)

    members = np.where(finalgrouping == i)
    #    grpmemberdist = haversine(origin,points[members[0]])  # this is sorting by who nearest pole
    #    order = np.argsort(grpmemberdist) # this is sorting by who nearest pole

    finalgroupingrearrange = np.squeeze(greedytravelling(
        points[members[0], :])).astype(int)

    # DO A MULTIPLE START GREEDY TRAVEL EVAL THE DIST?
    # OR JUST START WITH THE ONE NEAREST THE POLE?

    a = int(finalgroupingrearrange[0])
    z = int(finalgroupingrearrange[-1])

    if nphaversine(points[members[0]][a], origin) > nphaversine(
            points[members[0]][z], origin):
        finalgroupingrearrange = finalgroupingrearrange[::-1]

    tripid[counter:counter + len(members[0])] = tripcounter
    giftid[counter:counter +
           len(members[0])] = members[0][finalgroupingrearrange]
    counter += len(members[0])
    tripcounter += 1

giftid = giftid + 1  # NO 0 GIFTID, DONT RUN THIS TWICE, CHECK WITH giftid.min()
output = pd.DataFrame(data={
    "GiftId": giftid.astype(int),
    "TripId": tripid.astype(int)
})