def test_hess_fun1_cs(self): for test_params in self.params: #hetrue = 0 hetrue = self.hesstrue(test_params) if not hetrue is None: #Hessian doesn't work for 2d return of fun fun = self.fun() hecs = numdiff.approx_hess_cs(test_params, fun, args=self.args) assert_almost_equal(hetrue, hecs, decimal=DEC6)
def test_hess(self): pass #assert_almost_equal(self.res1.params, self.res2.params, DECIMAL_4) for test_params in self.params: he = self.mod.hessian(test_params) #TODO: bug ## hefd = numdiff.approx_hess(test_params, self.mod.score) ## assert_almost_equal(he, hefd, decimal=DEC8) hescs = numdiff.approx_fprime_cs(test_params.ravel(), self.mod.score) assert_almost_equal(he, hescs, decimal=DEC8) hecs = numdiff.approx_hess_cs(test_params.ravel(), self.mod.loglike) assert_almost_equal(he, hecs, decimal=DEC6)
x = np.arange(nobs * 3).reshape(nobs, -1) x = np.random.randn(nobs, 3) xk = np.array([1, 2, 3]) xk = np.array([1., 1., 1.]) #xk = np.zeros(3) beta = xk y = np.dot(x, beta) + 0.1 * np.random.randn(nobs) xkols = np.dot(np.linalg.pinv(x), y) print approx_fprime((1, 2, 3), fun, epsilon, x) gradtrue = x.sum(0) print x.sum(0) gradcs = approx_fprime_cs((1, 2, 3), fun, (x, ), h=1.0e-20) print gradcs, maxabs(gradcs, gradtrue) print approx_hess_cs((1, 2, 3), fun, (x, ), h=1.0e-20) #this is correctly zero print approx_hess_cs((1, 2, 3), fun2, (y, x), h=1.0e-20) - 2 * np.dot(x.T, x) print numdiff.approx_hess(xk, fun2, 1e-3, (y, x))[0] - 2 * np.dot(x.T, x) gt = (-x * 2 * (y - np.dot(x, [1, 2, 3]))[:, None]) g = approx_fprime_cs((1, 2, 3), fun1, (y, x), h=1.0e-20) #.T #this shouldn't be transposed gd = numdiff.approx_fprime1((1, 2, 3), fun1, epsilon, (y, x)) print maxabs(g, gt) print maxabs(gd, gt) import statsmodels.api as sm data = sm.datasets.spector.load()
x = np.arange(nobs*3).reshape(nobs,-1) x = np.random.randn(nobs,3) xk = np.array([1,2,3]) xk = np.array([1.,1.,1.]) #xk = np.zeros(3) beta = xk y = np.dot(x, beta) + 0.1*np.random.randn(nobs) xkols = np.dot(np.linalg.pinv(x),y) print approx_fprime((1,2,3),fun,epsilon,x) gradtrue = x.sum(0) print x.sum(0) gradcs = approx_fprime_cs((1,2,3), fun, (x,), h=1.0e-20) print gradcs, maxabs(gradcs, gradtrue) print approx_hess_cs((1,2,3), fun, (x,), h=1.0e-20) #this is correctly zero print approx_hess_cs((1,2,3), fun2, (y,x), h=1.0e-20)-2*np.dot(x.T, x) print numdiff.approx_hess(xk,fun2,1e-3, (y,x))[0] - 2*np.dot(x.T, x) gt = (-x*2*(y-np.dot(x, [1,2,3]))[:,None]) g = approx_fprime_cs((1,2,3), fun1, (y,x), h=1.0e-20)#.T #this shouldn't be transposed gd = numdiff.approx_fprime1((1,2,3),fun1,epsilon,(y,x)) print maxabs(g, gt) print maxabs(gd, gt) import statsmodels.api as sm data = sm.datasets.spector.load() data.exog = sm.add_constant(data.exog)