コード例 #1
0
ファイル: kingfish.py プロジェクト: bd-j/kingfish
    def bolometric_correction(self, component = 'tot', filternamelist = None):
        lightspeed = 2.998e18 #AA/s
        filterlist = observate.load_filters(filternamelist)
        mags = observate.getSED(self.spectrum[component]['wavelength'],
                                self.spectrum[component]['f_lambda_int'],
                                filterlist)
        nueff = np.array([lightspeed/f.wave_effective for f in filterlist])
        #log_nuLnu = 
        log_bc = self.spectrum[component]['log_Lbol'] - log_nuLnu

        return bc
コード例 #2
0
ファイル: example_mcmc.py プロジェクト: bd-j/pyxydust
imnamelist = ['mips_24.6arcsec.Jypix','pacs_70.6arcsec.Jypix',
              'pacs_100.6arcsec.Jypix','pacs_160.6arcsec.Jypix',
              'spire_250.6arcsec.Jypix']
errnamelist = ['x','pacs_70.6arcsec.sig','pacs_100.6arcsec.sig',
               'pacs_160.6arcsec.sig','x']
rp['fudge_err'] = [0.1,0.1,0.1,0.1,0.15] #errors to use when true error images don't exist

rp['impath'] = os.getenv('pyxydust')+'/imdata/NGC6822'
rp['imnamelist'] = ['{0}_conv250_{1}.fits'.format(rp['impath'],name) for name in imnamelist]
rp['errnamelist'] = ['{0}_{1}.fits'.format(rp['impath'],name) for name in errnamelist]


##### load the filters and the DL07 model grid
dl07 = dustmodel.DraineLi()
filterlist = observate.load_filters(rp['fnamelist'])


############### END USER INPUT ##########

############### MAIN ####################
#do it this way so the main function can come first
def main(rp):
    print('starting main')
    ##### read the images and errors
    data_mag, data_magerr, header = datacube.loadImageCube(rp['imnamelist'],rp['errnamelist'],rp['fudge_err'])
    dm = 5.0*np.log10(rp['dist'])+25
    data_mag = np.where(data_mag != 0.0, data_mag-dm, 0.0)
    nx, ny = data_mag.shape[0], data_mag.shape[1]

    
コード例 #3
0
ファイル: example_grid_mcps.py プロジェクト: bd-j/hrdspy
dust = attenuation.Attenuator(dust_type = rp['dust_type'])
fitter = sf.StarfitterGrid(rp)

#set up priors in the grid
fitter.initialize_grid(params = None)
fitter.set_params_from_isochrone(Z = [0.0077])
fitter.stargrid.pars['R_V'] = 3.0 #fix extra dust parameters (should marginalize over, but requires thought about prior)
fitter.stargrid.pars['F_BUMP'] = 0.5 #fix extra dust parameters (should marginalize over, but requires thought about prior)

fitter.build_grid(attenuator = dust)

## Set up for predicting the emission in any band
## Do this after running fitter.initialize_grid() but before
## running fitter.fit_image()
pred_fnamelist = ['galex_NUV', 'galex_FUV']
pred_filt = observate.load_filters(pred_fnamelist)
prediction_sed, tmp1, tmp2 = fitter.basel.generateSEDs(fitter.stargrid.pars, pred_filt,attenuator = dust, wave_min = 92, wave_max = 1e7)
#for i in xrange(len(pred_filt)-1) :
fitter.stargrid.add_par(prediction_sed[:,0] + 5.0*np.log10(rp['dist'])+25,pred_filt[0].name)
fitter.rp['outparnames']+= [pred_filt[0].name]

fitter.load_data()
#Chhange the number of lines to extract
#fitter.rp['nlines'] = 1e4
#fitter.rp['lines'] =None
#fitter.load_data()

fitter.fit_image()

fitter.write_catalog(outparlist = ['galex_NUV', 'LOGT','LOGL', 'A_V'])
コード例 #4
0
ファイル: example_cmd.py プロジェクト: bd-j/hrdspy
#Example hrdspy usage.  determine dispersion in integrated spectrum
#as a function of wavelength for a given mass and age.

import numpy as np
import starmodel
import isochrone
import observate
import cluster
import matplotlib.pyplot as pl
import time

# choose a few filters and load them
filternamelist = ['ctio_mosaic_ii_Uj','ctio_mosaic_ii_B','ctio_mosaic_ii_V',
                  'ctio_mosaic_ii_Rc','ctio_mosaic_ii_Ic']
filterlist = observate.load_filters(filternamelist)
j, k = 1, 3 #color to plot


# instantiate and load the isochrones and spectra first so you
# don't have to do it for each cluster realization
isoc=isochrone.Padova2007()
isoc.load_all_isoc()
speclib = starmodel.BaSeL3()
speclib.read_all_Z()

# set cluster parameters
Z = 0.0076   #LMC metallicity
mtot = 1e3   #1000 solar masses
logage = np.arange(7.2,9.2,0.2) 
nreal = 10   #10 realizations of the cluster