コード例 #1
0
def process_mock_densdata(options):
    print("Using mock Pal 5 data from %s" % options.mockfilename)
    # Read and prep data for mocks
    xvid= numpy.loadtxt(options.mockfilename)
    xv= xvid[:,:6]
    xv= xv[numpy.argsort(xvid[:,6])]
    XYZ= bovy_coords.galcenrect_to_XYZ(xv[:,0],xv[:,1],xv[:,2],
                                       Xsun=R0,Zsun=0.025)
    lbd= bovy_coords.XYZ_to_lbd(XYZ[0],XYZ[1],XYZ[2],degree=True)
    radec= bovy_coords.lb_to_radec(lbd[:,0],lbd[:,1],degree=True)
    xieta= pal5_util.radec_to_pal5xieta(radec[:,0],radec[:,1],degree=True)
    # make sure the progenitor is at (0,0)
    xieta[:,0]-= numpy.median(xieta[:,0])
    xieta[:,1]-= numpy.median(xieta[:,1])
    h,e= numpy.histogram(xieta[:,0],range=[0.2,14.3],bins=141)
    xdata= numpy.arange(0.25,14.35,0.1)
    # Compute power spectrum
    tdata= h-0.
    pp= Polynomial.fit(xdata,tdata,deg=options.polydeg,w=1./numpy.sqrt(h+1.))
    tdata/= pp(xdata)
    ll= xdata
    py= signal.csd(tdata,tdata,fs=1./(ll[1]-ll[0]),scaling='spectrum',
                   nperseg=len(ll))[1]
    py= py.real
    # Also compute the bispectrum
    Bspec, Bpx= bispectrum.bispectrum(numpy.vstack((tdata,tdata)).T,
                                      nfft=len(tdata),wind=7,nsamp=1,overlap=0)
    ppyr= numpy.fabs(Bspec[len(Bspec)//2+_BISPECIND,len(Bspec)//2:].real)
    ppyi= numpy.fabs(Bspec[len(Bspec)//2+_BISPECIND,len(Bspec)//2:].imag)
    return (numpy.sqrt(py*(ll[-1]-ll[0])),numpy.sqrt(h+1.)/pp(xdata),
            ppyr,ppyi)
コード例 #2
0
def convert_dens_to_obs(sdf_pepper,
                        apars,
                        dens,
                        mO,
                        dens_smooth,
                        minxi=0.25,
                        maxxi=14.35):
    """
    NAME:
        convert_dens_to_obs
    PURPOSE:
        Convert track to observed coordinates
    INPUT:
        sdf_pepper - streampepperdf object
        apars - parallel angles
        dens - density(apars)
        dens_smooth - smooth density(apars)
        mO= (None) mean parallel frequency (1D) 
            [needs to be set to get density on same grid as track]
        minxi= (0.25) minimum xi to consider
    OUTPUT:
        (xi,dens/smooth)
    """
    mT = sdf_pepper.meanTrack(apars, _mO=mO, coord='lb')
    mradec = bovy_coords.lb_to_radec(mT[0], mT[1], degree=True)
    mxieta = pal5_util.radec_to_pal5xieta(mradec[:, 0],
                                          mradec[:, 1],
                                          degree=True)
    outll = np.arange(minxi, maxxi, 0.1)
    # Interpolate density
    ipll = interpolate.InterpolatedUnivariateSpline(mxieta[:, 0], apars)
    ipdens = interpolate.InterpolatedUnivariateSpline(apars,
                                                      dens / dens_smooth)
    return (outll, ipdens(ipll(outll)))
コード例 #3
0
def process_mock_densdata(options):
    print ("Using mock Pal 5 data from %s" % options.mockfilename)
    # Read and prep data for mocks
    xvid = numpy.loadtxt(options.mockfilename)
    xv = xvid[:, :6]
    xv = xv[numpy.argsort(xvid[:, 6])]
    XYZ = bovy_coords.galcenrect_to_XYZ(xv[:, 0], xv[:, 1], xv[:, 2], Xsun=R0, Zsun=0.025)
    lbd = bovy_coords.XYZ_to_lbd(XYZ[0], XYZ[1], XYZ[2], degree=True)
    radec = bovy_coords.lb_to_radec(lbd[:, 0], lbd[:, 1], degree=True)
    xieta = pal5_util.radec_to_pal5xieta(radec[:, 0], radec[:, 1], degree=True)
    # make sure the progenitor is at (0,0)
    xieta[:, 0] -= numpy.median(xieta[:, 0])
    xieta[:, 1] -= numpy.median(xieta[:, 1])
    h, e = numpy.histogram(xieta[:, 0], range=[0.2, 14.3], bins=141)
    xdata = numpy.arange(0.25, 14.35, 0.1)
    # Compute power spectrum
    tdata = h - 0.0
    pp = Polynomial.fit(xdata, tdata, deg=options.polydeg, w=1.0 / numpy.sqrt(h + 1.0))
    tdata /= pp(xdata)
    ll = xdata
    py = signal.csd(tdata, tdata, fs=1.0 / (ll[1] - ll[0]), scaling="spectrum", nperseg=len(ll))[1]
    py = py.real
    # Also compute the bispectrum
    Bspec, Bpx = bispectrum.bispectrum(numpy.vstack((tdata, tdata)).T, nfft=len(tdata), wind=7, nsamp=1, overlap=0)
    ppyr = numpy.fabs(Bspec[len(Bspec) // 2 + _BISPECIND, len(Bspec) // 2 :].real)
    ppyi = numpy.fabs(Bspec[len(Bspec) // 2 + _BISPECIND, len(Bspec) // 2 :].imag)
    return (numpy.sqrt(py * (ll[-1] - ll[0])), numpy.sqrt(h + 1.0) / pp(xdata), ppyr, ppyi)
コード例 #4
0
def convert_dens_to_obs(sdf_pepper, apars, dens, mO, dens_smooth, minxi=0.25, maxxi=14.35):
    """
    NAME:
        convert_dens_to_obs
    PURPOSE:
        Convert track to observed coordinates
    INPUT:
        sdf_pepper - streampepperdf object
        apars - parallel angles
        dens - density(apars)
        dens_smooth - smooth density(apars)
        mO= (None) mean parallel frequency (1D) 
            [needs to be set to get density on same grid as track]
        minxi= (0.25) minimum xi to consider
    OUTPUT:
        (xi,dens/smooth)
    """
    mT = sdf_pepper.meanTrack(apars, _mO=mO, coord="lb")
    mradec = bovy_coords.lb_to_radec(mT[0], mT[1], degree=True)
    mxieta = pal5_util.radec_to_pal5xieta(mradec[:, 0], mradec[:, 1], degree=True)
    outll = numpy.arange(minxi, maxxi, 0.1)
    # Interpolate density
    ipll = interpolate.InterpolatedUnivariateSpline(mxieta[:, 0], apars)
    ipdens = interpolate.InterpolatedUnivariateSpline(apars, dens / dens_smooth)
    return (outll, ipdens(ipll(outll)))
コード例 #5
0
def get_star_dx(pepperdf, n=1000, returnapar=False, returnxi=False):
    (Omega, angle, dt) = pepperdf.sample(n=n, returnaAdt=True)
    RvR = pepperdf._approxaAInv(Omega[0], Omega[1], Omega[2], angle[0],
                                angle[1], angle[2])
    vo = pepperdf._vo
    ro = pepperdf._ro
    R0 = pepperdf._R0
    Zsun = pepperdf._Zsun
    vsun = pepperdf._vsun
    XYZ = bovy_coords.galcencyl_to_XYZ(RvR[0] * ro,
                                       RvR[5],
                                       RvR[3] * ro,
                                       Xsun=R0,
                                       Zsun=Zsun).T
    slbd = bovy_coords.XYZ_to_lbd(XYZ[0], XYZ[1], XYZ[2], degree=True)
    sradec = bovy_coords.lb_to_radec(slbd[:, 0], slbd[:, 1], degree=True)
    xieta = pal5_util.radec_to_pal5xieta(sradec[:, 0],
                                         sradec[:, 1],
                                         degree=True)
    l = slbd[:, 0]
    b = slbd[:, 1]
    r = slbd[:, 2]
    if returnapar:
        closesttrackindexes = np.zeros(len(r))
        for i in np.arange(len(r)):
            closesttrackindexes[i] = pepperdf.find_closest_trackpoint(
                RvR[0][i],
                RvR[1][i],
                RvR[2][i],
                RvR[3][i],
                RvR[4][i],
                RvR[5][i],
                interp=True)
        starapar = pepperdf._interpolatedThetasTrack[(
            closesttrackindexes).astype(int)]
        return starapar
    if returnxi: return xieta[:, 0]
    else: return None
def convert_track_to_obs(apars,mO,coord):
    """
    NAME:
        convert_track_to_obs
    PURPOSE:
        Convert track to observed coordinates
    INPUT:
        apars - parallel angles
        mO - mean parallel frequency (1D)
        coord - coordinate to convert to (1: eta, 2: distance, 3: vlos, 4: pmll, 5: pmbb)
    OUTPUT:
        (longitude,(track-smooth)[coord])
    """
    mT= sdf_pepper.meanTrack(apars,_mO=mO,coord='lb')
    mradec= bovy_coords.lb_to_radec(mT[0],mT[1],degree=True)
    mxieta= pal5_util.radec_to_pal5xieta(mradec[:,0],mradec[:,1],degree=True)
    mT[0]= mxieta[:,0]
    mT[1]= mxieta[:,1]
    # Interpolate
    ipll= interpolate.InterpolatedUnivariateSpline(mT[0],apars)
    ipcoord= interpolate.InterpolatedUnivariateSpline(apars,mT[coord])
    outll= numpy.arange(minxi,14.35,0.1)
    return (outll,ipcoord(ipll(outll))-smooth_track[coord](smooth_ll(outll)))    
def convert_dens_to_obs(apars,dens,dens_smooth,mO,poly_deg=3):
    """
    NAME:
        convert_dens_to_obs
    PURPOSE:
        Convert track to observed coordinates
    INPUT:
        apars - parallel angles
        dens - density(apars)
        dens_smooth - smooth-stream density(apars)
        mO= (None) mean parallel frequency (1D) 
            [needs to be set to get density on same grid as track]
        poly_deg= (3) degree of the polynomial to fit for the 'smooth' stream
    OUTPUT:
        (xi,dens/smooth)
    """
    mT= sdf_pepper.meanTrack(apars,_mO=mO,coord='lb')
    mradec= bovy_coords.lb_to_radec(mT[0],mT[1],degree=True)
    mxieta= pal5_util.radec_to_pal5xieta(mradec[:,0],mradec[:,1],degree=True)
    outll= numpy.arange(minxi,14.35,0.1)
    # Interpolate density
    ipll= interpolate.InterpolatedUnivariateSpline(mxieta[:,0],apars)
    ipdens= interpolate.InterpolatedUnivariateSpline(apars,dens/dens_smooth)
    return (outll,ipdens(ipll(outll)))
    with open(pepperfilename,'rb') as savefile:
        sdf_pepper= pickle.load(savefile)
else:
    import simulate_streampepper
    timpacts= simulate_streampepper.parse_times('1sampling',9.)
    sdf_pepper= pal5_util.setup_pal5model(timpact=timpacts,
                                        hernquist=True)
    save_pickles(pepperfilename,sdf_pepper)

# Convert track to xi, eta
trackRADec=\
  bovy_coords.lb_to_radec(sdf_smooth._interpolatedObsTrackLB[:,0],
                          sdf_smooth._interpolatedObsTrackLB[:,1],
                          degree=True)
trackXiEta=\
  pal5_util.radec_to_pal5xieta(trackRADec[:,0],
                    trackRADec[:,1],degree=True)
smooth_track= []
for coord in range(6):
    if coord < 2:
        smooth_track.append(\
            interpolate.InterpolatedUnivariateSpline(sdf_smooth._interpolatedThetasTrack,
                                                     trackXiEta[:,coord]))
    else:
        smooth_track.append(\
            interpolate.InterpolatedUnivariateSpline(sdf_smooth._interpolatedThetasTrack,
                                                     sdf_smooth._interpolatedObsTrackLB[:,coord]))
smooth_ll= interpolate.InterpolatedUnivariateSpline(trackXiEta[:,0],
                                                    sdf_smooth._interpolatedThetasTrack)