コード例 #1
0
def train_svm(C=0.1, grid=False):
    ds = PascalSegmentation()
    svm = LinearSVC(C=C, dual=False, class_weight='auto')

    if grid:
        data_train = load_pascal("kTrain")
        X, y = shuffle(data_train.X, data_train.Y)
        # prepare leave-one-label-out by assigning labels to images
        image_indicators = np.hstack([np.repeat(i, len(x)) for i, x in
                                      enumerate(X)])
        # go down to only 5 "folds"
        labels = image_indicators % 5
        X, y = np.vstack(X), np.hstack(y)

        cv = LeavePLabelOut(labels=labels, p=1)
        param_grid = {'C': 10. ** np.arange(-3, 3)}
        scorer = Scorer(recall_score, average="macro")
        grid_search = GridSearchCV(svm, param_grid=param_grid, cv=cv,
                                   verbose=10, scoring=scorer, n_jobs=-1)
        grid_search.fit(X, y)
    else:
        data_train = load_pascal("train")
        X, y = np.vstack(data_train.X), np.hstack(data_train.Y)
        svm.fit(X, y)
        print(svm.score(X, y))
        eval_on_sp(ds, data_train, [svm.predict(x) for x in data_train.X],
                   print_results=True)

        data_val = load_pascal("val")
        eval_on_sp(ds, data_val, [svm.predict(x) for x in data_val.X],
                   print_results=True)
コード例 #2
0
def visualize_pascal(plot_probabilities=False):
    data = load_pascal('val')
    ds = PascalSegmentation()
    for x, y, f, sps in zip(data.X, data.Y, data.file_names, data.superpixels):
        fig, ax = plt.subplots(2, 3)
        ax = ax.ravel()
        image = ds.get_image(f)
        y_pixel = ds.get_ground_truth(f)
        x_raw = load_kraehenbuehl(f)

        boundary_image = mark_boundaries(image, sps)

        ax[0].imshow(image)
        ax[1].imshow(y_pixel, cmap=ds.cmap)
        ax[2].imshow(boundary_image)
        ax[3].imshow(np.argmax(x_raw, axis=-1), cmap=ds.cmap, vmin=0, vmax=256)
        ax[4].imshow(y[sps], cmap=ds.cmap, vmin=0, vmax=256)
        ax[5].imshow(np.argmax(x, axis=-1)[sps], cmap=ds.cmap, vmin=0,
                     vmax=256)
        for a in ax:
            a.set_xticks(())
            a.set_yticks(())
        plt.savefig("figures_pascal_val/%s.png" % f, bbox_inches='tight')
        plt.close()
        if plot_probabilities:
            fig, ax = plt.subplots(3, 7)
            for k in range(21):
                ax.ravel()[k].matshow(x[:, :, k], vmin=0, vmax=1)
            for a in ax.ravel():
                a.set_xticks(())
                a.set_yticks(())
            plt.savefig("figures_pascal_val/%s_prob.png" % f,
                        bbox_inches='tight')
            plt.close()
    tracer()
コード例 #3
0
def eval_segment_best_possible():
    ds = PascalSegmentation()
    print("loading")
    data = load_pascal('train')
    print("getting edges")
    data = add_edges(data)
    print("computing segments")
    segments = [get_km_segments(x, ds.get_image(image_name), sps,
                                n_segments=25) for x, image_name, sps in
                zip(data.X, data.file_names, data.superpixels)]
    print("combining superpixels")
    segments = [seg[sp] for seg, sp in zip(segments, data.superpixels)]
    predictions = [gt_in_sp(ds, f, seg)[seg]
                   for seg, f in zip(segments, data.file_names)]
    Y_true = [ds.get_ground_truth(f) for f in data.file_names]
    hamming, jaccard = eval_on_pixels(ds, Y_true, predictions,
                                      print_results=True)
    tracer()
コード例 #4
0
def main():
    ds = PascalSegmentation()
    # load training data
    edge_type = "pairwise"
    which = "kTrain"
    data_train = load_pascal(which=which, sp_type="cpmc")

    data_train = add_edges(data_train, edge_type)
    data_train = add_edge_features(ds, data_train)
    data_train = discard_void(ds, data_train, ds.void_label)

    X, Y = data_train.X, data_train.Y

    class_weights = 1. / np.bincount(np.hstack(Y))
    class_weights *= 21. / np.sum(class_weights)

    model = crfs.EdgeFeatureGraphCRF(class_weight=class_weights,
                                     symmetric_edge_features=[0, 1],
                                     antisymmetric_edge_features=[2],
                                     inference_method='qpbo')

    ssvm = learners.NSlackSSVM(model, C=0.01, n_jobs=-1)
    ssvm.fit(X, Y)
コード例 #5
0
def main(C=1, test=False):
    ds = PascalSegmentation()
    # load training data
    edge_type = "pairwise"
    if test:
        which = "train"
    else:
        which = "kTrain"
    data_train = load_pascal(which=which, sp_type="cpmc")

    data_train = add_edges(data_train, edge_type)
    data_train = add_edge_features(ds, data_train)
    data_train = discard_void(ds, data_train, ds.void_label)

    print("number of samples: %s" % len(data_train.X))
    class_weights = 1. / np.bincount(np.hstack(data_train.Y))
    class_weights *= 21. / np.sum(class_weights)
    print(class_weights)
    #model = crfs.GraphCRF(n_states=n_states,
    #n_features=data_train.X[0][0].shape[1],
    #inference_method='qpbo', class_weight=class_weights)
    model = crfs.EdgeFeatureGraphCRF(inference_method='qpbo',
                                     class_weight=class_weights,
                                     symmetric_edge_features=[0, 1],
                                     antisymmetric_edge_features=[2])
    experiment_name = "cpmc_edge_features_trainval_new_%f" % C
    #warm_start = True
    warm_start = False
    ssvm = learners.OneSlackSSVM(model,
                                 verbose=2,
                                 C=C,
                                 max_iter=100000,
                                 n_jobs=-1,
                                 tol=0.0001,
                                 show_loss_every=50,
                                 inference_cache=50,
                                 cache_tol='auto',
                                 logger=SaveLogger(experiment_name + ".pickle",
                                                   save_every=100),
                                 inactive_threshold=1e-5,
                                 break_on_bad=False,
                                 inactive_window=50,
                                 switch_to=None)
    #ssvm = learners.SubgradientSSVM(
    #model, verbose=3, C=C, max_iter=10000, n_jobs=-1, show_loss_every=10,
    #logger=SaveLogger(experiment_name + ".pickle", save_every=10),
    #momentum=0, learning_rate=0.1, decay_exponent=1, decay_t0=100)

    if warm_start:
        ssvm = SaveLogger(experiment_name + ".pickle").load()
        ssvm.logger = SaveLogger(file_name=experiment_name + "_refit.pickle",
                                 save_every=10)
        #ssvm.learning_rate = 0.000001

        ssvm.model.inference_method = 'ad3bb'
        #ssvm.n_jobs = 1

    ssvm.fit(data_train.X, data_train.Y, warm_start=warm_start)
    return

    print("fit finished!")
    if test:
        data_val = load_pascal('val')
    else:
        data_val = load_pascal('kVal')

    data_val = add_edges(data_val, edge_type)
    data_val = add_edge_features(ds, data_val, more_colors=True)
    eval_on_sp(ds, data_val, ssvm.predict(data_val.X), print_results=True)
コード例 #6
0
def svm_on_segments(C=.1, learning_rate=.001, subgradient=False):
    data_file = "data_train_XY.pickle"
    ds = PascalSegmentation()
    if os.path.exists(data_file):
        X_, Y_ = cPickle.load(open(data_file))
    else:
        # load and prepare data
        data_train = load_pascal("train", sp_type="cpmc")
        data_train = make_cpmc_hierarchy(ds, data_train)
        data_train = discard_void(ds, data_train)
        X_, Y_ = data_train.X, data_train.Y
        cPickle.dump((X_, Y_), open(data_file, 'wb'), -1)



    class_weights = 1. / np.bincount(np.hstack(Y_))
    class_weights *= 21. / np.sum(class_weights)
    experiment_name = ("latent_25_cpmc_%f_qpbo_n_slack_blub3" % C)
    logger = SaveLogger(experiment_name + ".pickle", save_every=10)
    model = LatentNodeCRF(n_hidden_states=25,
                          inference_method='qpbo',
                          class_weight=class_weights,
                          latent_node_features=False)
    if subgradient:
        ssvm = learners.LatentSubgradientSSVM(
            model, C=C, verbose=1, show_loss_every=10, logger=logger,
            n_jobs=-1, learning_rate=learning_rate, decay_exponent=1,
            momentum=0., max_iter=100000, decay_t0=100)
    else:
        latent_logger = SaveLogger("lssvm_" + experiment_name +
                                   "_%d.pickle", save_every=1)
        #base_ssvm = learners.OneSlackSSVM(
            #model, verbose=2, C=C, max_iter=100, n_jobs=-1, tol=0.001,
            #show_loss_every=200, inference_cache=50, logger=logger,
            #cache_tol='auto', inactive_threshold=1e-5, break_on_bad=False,
            #switch_to=('ogm', {'alg': 'dd'}))
        base_ssvm = learners.NSlackSSVM(
            model, verbose=4, C=C, n_jobs=-1, tol=0.1,
            show_loss_every=20, logger=logger, inactive_threshold=1e-8,
            break_on_bad=False, batch_size=36, inactive_window=10,
            switch_to=('ad3', {'branch_and_bound': True}))
        ssvm = learners.LatentSSVM(base_ssvm, logger=latent_logger,
                                   latent_iter=3)
    #warm_start = True
    warm_start = False
    if warm_start:
        ssvm = logger.load()
        ssvm.logger = SaveLogger(experiment_name + "_retrain.pickle",
                                 save_every=10)
        ssvm.max_iter = 10000
        ssvm.decay_exponent = 1
        #ssvm.decay_t0 = 1000
        #ssvm.learning_rate = 0.00001
        #ssvm.momentum = 0

    X_, Y_ = shuffle(X_, Y_)
    #ssvm.fit(data_train.X, data_train.Y)
    ssvm.fit(X_, Y_)
    #H_init = [np.hstack([y, np.random.randint(21, 26)]) for y in Y_]
    #ssvm.fit(X_, Y_, H_init=H_init)
    print("fit finished!")
コード例 #7
0
def eval_spixel_best_possible():
    data = load_pascal('kTrain', sp_type='cpmc')
    pascal = PascalSegmentation()
    hamming, jaccard = eval_on_sp(pascal, data, data.Y, print_results=True)
コード例 #8
0
def eval_sp_prediction():
    data = load_pascal('val')
    predictions = [np.argmax(x, axis=-1) for x in data.X]
    hamming, jaccard = eval_on_sp(data, predictions, print_results=True)
    tracer()
コード例 #9
0
ファイル: pascal_crf.py プロジェクト: amueller/segmentation
def main(C=1, test=False):
    ds = PascalSegmentation()
    # load training data
    edge_type = "pairwise"
    if test:
        which = "train"
    else:
        which = "kTrain"
    data_train = load_pascal(which=which, sp_type="cpmc")

    data_train = add_edges(data_train, edge_type)
    data_train = add_edge_features(ds, data_train)
    data_train = discard_void(ds, data_train, ds.void_label)

    print("number of samples: %s" % len(data_train.X))
    class_weights = 1. / np.bincount(np.hstack(data_train.Y))
    class_weights *= 21. / np.sum(class_weights)
    print(class_weights)
    #model = crfs.GraphCRF(n_states=n_states,
                          #n_features=data_train.X[0][0].shape[1],
                          #inference_method='qpbo', class_weight=class_weights)
    model = crfs.EdgeFeatureGraphCRF(inference_method='qpbo',
                                     class_weight=class_weights,
                                     symmetric_edge_features=[0, 1],
                                     antisymmetric_edge_features=[2])
    experiment_name = "cpmc_edge_features_trainval_new_%f" % C
    #warm_start = True
    warm_start = False
    ssvm = learners.OneSlackSSVM(
        model, verbose=2, C=C, max_iter=100000, n_jobs=-1,
        tol=0.0001, show_loss_every=50, inference_cache=50, cache_tol='auto',
        logger=SaveLogger(experiment_name + ".pickle", save_every=100),
        inactive_threshold=1e-5, break_on_bad=False, inactive_window=50,
        switch_to=None)
    #ssvm = learners.SubgradientSSVM(
        #model, verbose=3, C=C, max_iter=10000, n_jobs=-1, show_loss_every=10,
        #logger=SaveLogger(experiment_name + ".pickle", save_every=10),
        #momentum=0, learning_rate=0.1, decay_exponent=1, decay_t0=100)

    if warm_start:
        ssvm = SaveLogger(experiment_name + ".pickle").load()
        ssvm.logger = SaveLogger(
            file_name=experiment_name + "_refit.pickle",
            save_every=10)
        #ssvm.learning_rate = 0.000001

        ssvm.model.inference_method = 'ad3bb'
        #ssvm.n_jobs = 1

    ssvm.fit(data_train.X, data_train.Y, warm_start=warm_start)
    return

    print("fit finished!")
    if test:
        data_val = load_pascal('val')
    else:
        data_val = load_pascal('kVal')

    data_val = add_edges(data_val, edge_type)
    data_val = add_edge_features(ds, data_val, more_colors=True)
    eval_on_sp(ds, data_val, ssvm.predict(data_val.X), print_results=True)
コード例 #10
0
def svm_on_segments(C=.1, learning_rate=.001, subgradient=False):
    data_file = "data_train_XY.pickle"
    ds = PascalSegmentation()
    if os.path.exists(data_file):
        X_, Y_ = cPickle.load(open(data_file))
    else:
        # load and prepare data
        data_train = load_pascal("train", sp_type="cpmc")
        data_train = make_cpmc_hierarchy(ds, data_train)
        data_train = discard_void(ds, data_train)
        X_, Y_ = data_train.X, data_train.Y
        cPickle.dump((X_, Y_), open(data_file, 'wb'), -1)

    class_weights = 1. / np.bincount(np.hstack(Y_))
    class_weights *= 21. / np.sum(class_weights)
    experiment_name = ("latent_25_cpmc_%f_qpbo_n_slack_blub3" % C)
    logger = SaveLogger(experiment_name + ".pickle", save_every=10)
    model = LatentNodeCRF(n_hidden_states=25,
                          inference_method='qpbo',
                          class_weight=class_weights,
                          latent_node_features=False)
    if subgradient:
        ssvm = learners.LatentSubgradientSSVM(model,
                                              C=C,
                                              verbose=1,
                                              show_loss_every=10,
                                              logger=logger,
                                              n_jobs=-1,
                                              learning_rate=learning_rate,
                                              decay_exponent=1,
                                              momentum=0.,
                                              max_iter=100000,
                                              decay_t0=100)
    else:
        latent_logger = SaveLogger("lssvm_" + experiment_name + "_%d.pickle",
                                   save_every=1)
        #base_ssvm = learners.OneSlackSSVM(
        #model, verbose=2, C=C, max_iter=100, n_jobs=-1, tol=0.001,
        #show_loss_every=200, inference_cache=50, logger=logger,
        #cache_tol='auto', inactive_threshold=1e-5, break_on_bad=False,
        #switch_to=('ogm', {'alg': 'dd'}))
        base_ssvm = learners.NSlackSSVM(model,
                                        verbose=4,
                                        C=C,
                                        n_jobs=-1,
                                        tol=0.1,
                                        show_loss_every=20,
                                        logger=logger,
                                        inactive_threshold=1e-8,
                                        break_on_bad=False,
                                        batch_size=36,
                                        inactive_window=10,
                                        switch_to=('ad3', {
                                            'branch_and_bound': True
                                        }))
        ssvm = learners.LatentSSVM(base_ssvm,
                                   logger=latent_logger,
                                   latent_iter=3)
    #warm_start = True
    warm_start = False
    if warm_start:
        ssvm = logger.load()
        ssvm.logger = SaveLogger(experiment_name + "_retrain.pickle",
                                 save_every=10)
        ssvm.max_iter = 10000
        ssvm.decay_exponent = 1
        #ssvm.decay_t0 = 1000
        #ssvm.learning_rate = 0.00001
        #ssvm.momentum = 0

    X_, Y_ = shuffle(X_, Y_)
    #ssvm.fit(data_train.X, data_train.Y)
    ssvm.fit(X_, Y_)
    #H_init = [np.hstack([y, np.random.randint(21, 26)]) for y in Y_]
    #ssvm.fit(X_, Y_, H_init=H_init)
    print("fit finished!")