コード例 #1
0
ファイル: tests.py プロジェクト: stiphyMT/plantcv
def test_plantcv_rectangle_mask():
    img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1)
    device, masked, hist, contour, heir = pcv.rectangle_mask(img, (0, 0), (2454, 2056), device=0,
                                                             debug=None, color="black")
    maskedsum = np.sum(masked)
    imgsum = np.sum(img)
    assert maskedsum < imgsum
コード例 #2
0
ファイル: tests.py プロジェクト: migerman1/plantcv
def test_plantcv_rectangle_mask():
    img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1)
    device, masked, hist, contour, heir = pcv.rectangle_mask(img, (0, 0),
                                                             (2454, 2056),
                                                             device=0,
                                                             debug=None,
                                                             color="black")
    maskedsum = np.sum(masked)
    imgsum = np.sum(img)
    assert maskedsum < imgsum
コード例 #3
0
ファイル: nir_sv_z2500.py プロジェクト: b1234561/plantcv
def main():

    # Get options
    args = options()
    if args.debug:
        print("Analyzing your image dude...")
    # Read image
    device = 0
    img = cv2.imread(args.image, flags=0)
    path, img_name = os.path.split(args.image)
    # Read in image which is average of average of backgrounds
    img_bkgrd = cv2.imread("bkgrd_ave_z2500.png", flags=0)

    # NIR images for burnin2 are up-side down. This may be fixed in later experiments
    img = ndimage.rotate(img, 180)
    img_bkgrd = ndimage.rotate(img_bkgrd, 180)

    # Subtract the image from the image background to make the plant more prominent
    device, bkg_sub_img = pcv.image_subtract(img, img_bkgrd, device, args.debug)
    if args.debug:
        pcv.plot_hist(bkg_sub_img, "bkg_sub_img")
    device, bkg_sub_thres_img = pcv.binary_threshold(bkg_sub_img, 145, 255, "dark", device, args.debug)
    bkg_sub_thres_img = cv2.inRange(bkg_sub_img, 30, 220)
    if args.debug:
        cv2.imwrite("bkgrd_sub_thres.png", bkg_sub_thres_img)

    # device, bkg_sub_thres_img = pcv.binary_threshold_2_sided(img_bkgrd, 50, 190, device, args.debug)

    # if a region of interest is specified read it in
    roi = cv2.imread(args.roi)

    # Start by examining the distribution of pixel intensity values
    if args.debug:
        pcv.plot_hist(img, "hist_img")

    # Will intensity transformation enhance your ability to isolate object of interest by thesholding?
    device, he_img = pcv.HistEqualization(img, device, args.debug)
    if args.debug:
        pcv.plot_hist(he_img, "hist_img_he")

    # Laplace filtering (identify edges based on 2nd derivative)
    device, lp_img = pcv.laplace_filter(img, 1, 1, device, args.debug)
    if args.debug:
        pcv.plot_hist(lp_img, "hist_lp")

    # Lapacian image sharpening, this step will enhance the darkness of the edges detected
    device, lp_shrp_img = pcv.image_subtract(img, lp_img, device, args.debug)
    if args.debug:
        pcv.plot_hist(lp_shrp_img, "hist_lp_shrp")

    # Sobel filtering
    # 1st derivative sobel filtering along horizontal axis, kernel = 1, unscaled)
    device, sbx_img = pcv.sobel_filter(img, 1, 0, 1, 1, device, args.debug)
    if args.debug:
        pcv.plot_hist(sbx_img, "hist_sbx")

    # 1st derivative sobel filtering along vertical axis, kernel = 1, unscaled)
    device, sby_img = pcv.sobel_filter(img, 0, 1, 1, 1, device, args.debug)
    if args.debug:
        pcv.plot_hist(sby_img, "hist_sby")

    # Combine the effects of both x and y filters through matrix addition
    # This will capture edges identified within each plane and emphesize edges found in both images
    device, sb_img = pcv.image_add(sbx_img, sby_img, device, args.debug)
    if args.debug:
        pcv.plot_hist(sb_img, "hist_sb_comb_img")

    # Use a lowpass (blurring) filter to smooth sobel image
    device, mblur_img = pcv.median_blur(sb_img, 1, device, args.debug)
    device, mblur_invert_img = pcv.invert(mblur_img, device, args.debug)

    # combine the smoothed sobel image with the laplacian sharpened image
    # combines the best features of both methods as described in "Digital Image Processing" by Gonzalez and Woods pg. 169
    device, edge_shrp_img = pcv.image_add(mblur_invert_img, lp_shrp_img, device, args.debug)
    if args.debug:
        pcv.plot_hist(edge_shrp_img, "hist_edge_shrp_img")

    # Perform thresholding to generate a binary image
    device, tr_es_img = pcv.binary_threshold(edge_shrp_img, 145, 255, "dark", device, args.debug)

    # Prepare a few small kernels for morphological filtering
    kern = np.zeros((3, 3), dtype=np.uint8)
    kern1 = np.copy(kern)
    kern1[1, 1:3] = 1
    kern2 = np.copy(kern)
    kern2[1, 0:2] = 1
    kern3 = np.copy(kern)
    kern3[0:2, 1] = 1
    kern4 = np.copy(kern)
    kern4[1:3, 1] = 1

    # Prepare a larger kernel for dilation
    kern[1, 0:3] = 1
    kern[0:3, 1] = 1

    # Perform erosion with 4 small kernels
    device, e1_img = pcv.erode(tr_es_img, kern1, 1, device, args.debug)
    device, e2_img = pcv.erode(tr_es_img, kern2, 1, device, args.debug)
    device, e3_img = pcv.erode(tr_es_img, kern3, 1, device, args.debug)
    device, e4_img = pcv.erode(tr_es_img, kern4, 1, device, args.debug)

    # Combine eroded images
    device, c12_img = pcv.logical_or(e1_img, e2_img, device, args.debug)
    device, c123_img = pcv.logical_or(c12_img, e3_img, device, args.debug)
    device, c1234_img = pcv.logical_or(c123_img, e4_img, device, args.debug)

    # Perform dilation
    # device, dil_img = pcv.dilate(c1234_img, kern, 1, device, args.debug)
    device, comb_img = pcv.logical_or(c1234_img, bkg_sub_thres_img, device, args.debug)

    # Get masked image
    # The dilated image may contain some pixels which are not plant
    device, masked_erd = pcv.apply_mask(img, comb_img, "black", device, args.debug)
    # device, masked_erd_dil = pcv.apply_mask(img, dil_img, 'black', device, args.debug)

    # Need to remove the edges of the image, we did that by generating a set of rectangles to mask the edges
    # img is (254 X 320)
    # mask for the bottom of the image
    device, box1_img, rect_contour1, hierarchy1 = pcv.rectangle_mask(img, (120, 184), (215, 252), device, args.debug)
    # mask for the left side of the image
    device, box2_img, rect_contour2, hierarchy2 = pcv.rectangle_mask(img, (1, 1), (85, 252), device, args.debug)
    # mask for the right side of the image
    device, box3_img, rect_contour3, hierarchy3 = pcv.rectangle_mask(img, (240, 1), (318, 252), device, args.debug)
    # mask the edges
    device, box4_img, rect_contour4, hierarchy4 = pcv.border_mask(img, (1, 1), (318, 252), device, args.debug)

    # combine boxes to filter the edges and car out of the photo
    device, bx12_img = pcv.logical_or(box1_img, box2_img, device, args.debug)
    device, bx123_img = pcv.logical_or(bx12_img, box3_img, device, args.debug)
    device, bx1234_img = pcv.logical_or(bx123_img, box4_img, device, args.debug)
    device, inv_bx1234_img = pcv.invert(bx1234_img, device, args.debug)

    # Make a ROI around the plant, include connected objects
    # Apply the box mask to the image
    # device, masked_img = pcv.apply_mask(masked_erd_dil, inv_bx1234_img, 'black', device, args.debug)

    device, edge_masked_img = pcv.apply_mask(masked_erd, inv_bx1234_img, "black", device, args.debug)

    device, roi_img, roi_contour, roi_hierarchy = pcv.rectangle_mask(img, (120, 75), (200, 184), device, args.debug)

    plant_objects, plant_hierarchy = cv2.findContours(edge_masked_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    device, roi_objects, hierarchy5, kept_mask, obj_area = pcv.roi_objects(
        img, "partial", roi_contour, roi_hierarchy, plant_objects, plant_hierarchy, device, args.debug
    )

    # Apply the box mask to the image
    # device, masked_img = pcv.apply_mask(masked_erd_dil, inv_bx1234_img, 'black', device, args.debug)
    device, masked_img = pcv.apply_mask(kept_mask, inv_bx1234_img, "black", device, args.debug)
    rgb = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
    # Generate a binary to send to the analysis function
    device, mask = pcv.binary_threshold(masked_img, 1, 255, "light", device, args.debug)
    mask3d = np.copy(mask)
    plant_objects_2, plant_hierarchy_2 = cv2.findContours(mask3d, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    device, o, m = pcv.object_composition(rgb, roi_objects, hierarchy5, device, args.debug)

    ### Analysis ###
    device, hist_header, hist_data, h_norm = pcv.analyze_NIR_intensity(
        img, args.image, mask, 256, device, args.debug, args.outdir + "/" + img_name
    )
    device, shape_header, shape_data, ori_img = pcv.analyze_object(
        rgb, args.image, o, m, device, args.debug, args.outdir + "/" + img_name
    )

    pcv.print_results(args.image, hist_header, hist_data)
    pcv.print_results(args.image, shape_header, shape_data)
コード例 #4
0
ファイル: nir_sv_z3500.py プロジェクト: scallen81/plantcv
def main():
   
    # Get options
    args = options()
    if args.debug:
      print("Analyzing your image dude...")
    
    # Read image
    device = 0
    img = cv2.imread(args.image, flags=0)
    path, img_name = os.path.split(args.image)
    # Read in image which is average of average of backgrounds
    img_bkgrd = cv2.imread("bkgrd_ave_z3500.png", flags=0)

    # NIR images for burnin2 are up-side down. This may be fixed in later experiments
    img =  ndimage.rotate(img, 180)
    img_bkgrd =  ndimage.rotate(img_bkgrd, 180)

    # Subtract the image from the image background to make the plant more prominent
    device, bkg_sub_img = pcv.image_subtract(img, img_bkgrd, device, args.debug)
    if args.debug:
        pcv.plot_hist(bkg_sub_img, 'bkg_sub_img')
    device, bkg_sub_thres_img = pcv.binary_threshold(bkg_sub_img, 145, 255, 'dark', device, args.debug)
    bkg_sub_thres_img = cv2.inRange(bkg_sub_img, 30, 220)
    if args.debug:
        cv2.imwrite('bkgrd_sub_thres.png', bkg_sub_thres_img)

    #device, bkg_sub_thres_img = pcv.binary_threshold_2_sided(img_bkgrd, 50, 190, device, args.debug)

    # if a region of interest is specified read it in
    roi = cv2.imread(args.roi)

    # Start by examining the distribution of pixel intensity values
    if args.debug:
      pcv.plot_hist(img, 'hist_img')
      
    # Will intensity transformation enhance your ability to isolate object of interest by thesholding?
    device, he_img = pcv.HistEqualization(img, device, args.debug)
    if args.debug:
      pcv.plot_hist(he_img, 'hist_img_he')
    
    # Laplace filtering (identify edges based on 2nd derivative)
    device, lp_img = pcv.laplace_filter(img, 1, 1, device, args.debug)
    if args.debug:
      pcv.plot_hist(lp_img, 'hist_lp')
    
    # Lapacian image sharpening, this step will enhance the darkness of the edges detected
    device, lp_shrp_img = pcv.image_subtract(img, lp_img, device, args.debug)
    if args.debug:
      pcv.plot_hist(lp_shrp_img, 'hist_lp_shrp')
      
    # Sobel filtering  
    # 1st derivative sobel filtering along horizontal axis, kernel = 1, unscaled)
    device, sbx_img = pcv.sobel_filter(img, 1, 0, 1, 1, device, args.debug)
    if args.debug:
      pcv.plot_hist(sbx_img, 'hist_sbx')
      
    # 1st derivative sobel filtering along vertical axis, kernel = 1, unscaled)
    device, sby_img = pcv.sobel_filter(img, 0, 1, 1, 1, device, args.debug)
    if args.debug:
      pcv.plot_hist(sby_img, 'hist_sby')
      
    # Combine the effects of both x and y filters through matrix addition
    # This will capture edges identified within each plane and emphesize edges found in both images
    device, sb_img = pcv.image_add(sbx_img, sby_img, device, args.debug)
    if args.debug:
      pcv.plot_hist(sb_img, 'hist_sb_comb_img')
    
    # Use a lowpass (blurring) filter to smooth sobel image
    device, mblur_img = pcv.median_blur(sb_img, 1, device, args.debug)
    device, mblur_invert_img = pcv.invert(mblur_img, device, args.debug)
    
    # combine the smoothed sobel image with the laplacian sharpened image
    # combines the best features of both methods as described in "Digital Image Processing" by Gonzalez and Woods pg. 169 
    device, edge_shrp_img = pcv.image_add(mblur_invert_img, lp_shrp_img, device, args.debug)
    if args.debug:
      pcv.plot_hist(edge_shrp_img, 'hist_edge_shrp_img')
      
    # Perform thresholding to generate a binary image
    device, tr_es_img = pcv.binary_threshold(edge_shrp_img, 145, 255, 'dark', device, args.debug)
    
    # Prepare a few small kernels for morphological filtering
    kern = np.zeros((3,3), dtype=np.uint8)
    kern1 = np.copy(kern)
    kern1[1,1:3]=1
    kern2 = np.copy(kern)
    kern2[1,0:2]=1
    kern3 = np.copy(kern)
    kern3[0:2,1]=1
    kern4 = np.copy(kern)
    kern4[1:3,1]=1
    
    # Prepare a larger kernel for dilation
    kern[1,0:3]=1
    kern[0:3,1]=1
    
    
    # Perform erosion with 4 small kernels
    device, e1_img = pcv.erode(tr_es_img, kern1, 1, device, args.debug)
    device, e2_img = pcv.erode(tr_es_img, kern2, 1, device, args.debug)
    device, e3_img = pcv.erode(tr_es_img, kern3, 1, device, args.debug)
    device, e4_img = pcv.erode(tr_es_img, kern4, 1, device, args.debug)
    
    # Combine eroded images
    device, c12_img = pcv.logical_or(e1_img, e2_img, device, args.debug)
    device, c123_img = pcv.logical_or(c12_img, e3_img, device, args.debug)
    device, c1234_img = pcv.logical_or(c123_img, e4_img, device, args.debug)
    
    # Perform dilation
    # device, dil_img = pcv.dilate(c1234_img, kern, 1, device, args.debug)
    device, comb_img = pcv.logical_or(c1234_img, bkg_sub_thres_img, device, args.debug)
    
    # Get masked image
    # The dilated image may contain some pixels which are not plant
    device, masked_erd = pcv.apply_mask(img, comb_img, 'black', device, args.debug)
    # device, masked_erd_dil = pcv.apply_mask(img, dil_img, 'black', device, args.debug)
    
    # Need to remove the edges of the image, we did that by generating a set of rectangles to mask the edges
    # img is (254 X 320)

    # mask for the bottom of the image
    device, box1_img, rect_contour1, hierarchy1 = pcv.rectangle_mask(img, (100,210), (230,252), device, args.debug)
    # mask for the left side of the image
    device, box2_img, rect_contour2, hierarchy2 = pcv.rectangle_mask(img, (1,1), (85,252), device, args.debug)
    # mask for the right side of the image
    device, box3_img, rect_contour3, hierarchy3 = pcv.rectangle_mask(img, (240,1), (318,252), device, args.debug)
    # mask the edges
    device, box4_img, rect_contour4, hierarchy4 = pcv.border_mask(img, (1,1), (318,252), device, args.debug)
    
    # combine boxes to filter the edges and car out of the photo
    device, bx12_img = pcv.logical_or(box1_img, box2_img, device, args.debug)
    device, bx123_img = pcv.logical_or(bx12_img, box3_img, device, args.debug)
    device, bx1234_img = pcv.logical_or(bx123_img, box4_img, device, args.debug)
    device, inv_bx1234_img = pcv.invert(bx1234_img, device, args.debug)
    

    # Make a ROI around the plant, include connected objects
    # Apply the box mask to the image
    # device, masked_img = pcv.apply_mask(masked_erd_dil, inv_bx1234_img, 'black', device, args.debug)
    device, edge_masked_img = pcv.apply_mask(masked_erd, inv_bx1234_img, 'black', device, args.debug)
    device, roi_img, roi_contour, roi_hierarchy = pcv.rectangle_mask(img, (100,75), (220,208), device, args.debug)
    plant_objects, plant_hierarchy = cv2.findContours(edge_masked_img,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
    
    device, roi_objects, hierarchy5, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi_contour, roi_hierarchy, plant_objects, plant_hierarchy, device, args.debug)
    
      
    # Apply the box mask to the image
    # device, masked_img = pcv.apply_mask(masked_erd_dil, inv_bx1234_img, 'black', device, args.debug)
    device, masked_img = pcv.apply_mask(kept_mask, inv_bx1234_img, 'black', device, args.debug)
    rgb = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)

    # Generate a binary to send to the analysis function
    device, mask = pcv.binary_threshold(masked_img, 1, 255, 'light', device, args.debug)
    mask3d = np.copy(mask)
    plant_objects_2, plant_hierarchy_2 = cv2.findContours(mask3d,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
    device, o, m = pcv.object_composition(rgb, roi_objects, hierarchy5, device, args.debug)
    
    ### Analysis ###
    device, hist_header, hist_data, h_norm = pcv.analyze_NIR_intensity(img, args.image, mask, 256, device, args.debug, args.outdir + '/' + img_name)
    device, shape_header, shape_data, ori_img = pcv.analyze_object(rgb, args.image, o, m, device, args.debug, args.outdir + '/' + img_name)
    
    pcv.print_results(args.image, hist_header, hist_data)
    pcv.print_results(args.image, shape_header, shape_data)
コード例 #5
0
ファイル: nir.py プロジェクト: omar-JHA/kubeet-plant
def main():
    # obtiene opciones de imagen
    args = options()
    #LINEA 22
    if args.debug:
        print("Debug mode turned on...")
    # lee la imagen el flags=0 indica que se espera una imagen a escala de grises
    img = cv2.imread(args.image, flags=0)
    # cv2.imshow("imagen original",img)
    # Get directory path and image name from command line arguments
    path, img_name = os.path.split(args.image)

    #LINEA 30
    # Read in image which is the pixelwise average of background images
    img_bkgrd = cv2.imread("background_average.jpg", flags=0)
    #cv2.imshow("ventana del fondo",img_bkgrd)
    # paso del procesamiento de imagenes
    device = 0
    ######hasta qui bien
    #linea 37
    # Restar la imagen de fondo de la imagen con la planta.
    device, bkg_sub_img = pcv.image_subtract(img, img_bkgrd, device,
                                             args.debug)
    #cv2.imshow("imagen resta",bkg_sub_img)
    # Threshold the image of interest using the two-sided cv2.inRange function (keep what is between 50-190)
    bkg_sub_thres_img = cv2.inRange(bkg_sub_img, 50, 190)
    if args.debug:
        cv2.imwrite('bkgrd_sub_thres.png', bkg_sub_thres_img)
#hasta qui todo bien
#linea 46
# Filtrado de Laplace (identificar bordes basados ​​en la derivada 2)
    device, lp_img = pcv.laplace_filter(img, 1, 1, device, args.debug)
    #cv2.imshow("imagen de filtrado",lp_img)
    if args.debug:
        pcv.plot_hist(lp_img, 'histograma_lp')

    # Lapacian image sharpening, this step will enhance the darkness of the edges detected
    device, lp_shrp_img = pcv.image_subtract(img, lp_img, device, args.debug)
    #cv2.imshow("imagen de borde lapacian",lp_shrp_img)
    if args.debug:
        pcv.plot_hist(lp_shrp_img, 'histograma_lp_shrp')
#hasta aqui todo bien linea 58
# Sobel filtering-filtrado de sobel
# 1ª derivada filtrado sobel a lo largo del eje horizontal, núcleo = 1, sin escala)
    """    segun esta masl son siete,kito scale y me kedo con apertura k,chekar sobel en docs
    device, sbx_img = pcv.sobel_filter(img, 1, 0, 1, 1, device, args.debug)
   """
    device, sbx_img = pcv.sobel_filter(img, 1, 0, 1, device, args.debug)
    #cv2.imshow("imagen sobel-eje horizontal",sbx_img)
    if args.debug:
        pcv.plot_hist(sbx_img, 'histograma_sbx')

    # Filtrado de la primera derivada sobel a lo largo del eje vertical, núcleo = 1, sin escala)
    device, sby_img = pcv.sobel_filter(img, 0, 1, 1, device, args.debug)
    #cv2.imshow("imagen sobel-ejevertical",sby_img)
    if args.debug:
        pcv.plot_hist(sby_img, 'histograma_sby')

    # Combina los efectos de ambos filtros x e y mediante la suma de matrizes
    # Esto captura los bordes identificados dentro de cada plano y enfatiza los bordes encontrados en ambas imágenes
    device, sb_img = pcv.image_add(sbx_img, sby_img, device, args.debug)
    #cv2.imshow("imagen suma de sobel",sb_img)
    if args.debug:
        pcv.plot_hist(sb_img, 'histograma_sb_comb_img')
#hasta aqui todo bien linea 82
# usar filtro pasa bajo blur para suavizar la imagen de sobel
    device, mblur_img = pcv.median_blur(sb_img, 1, device, args.debug)
    #cv2.imshow("imagen blur",mblur_img)
    device, mblur_invert_img = pcv.invert(mblur_img, device, args.debug)
    #cv2.imshow("imagen blur-invertido",mblur_invert_img)
    # Combinar la imagen suavizada del sobel con la imagen afilada del laplaciano
    # combines the best features of both methods as described in "Digital Image Processing" by Gonzalez and Woods pg. 169
    #Combina las mejores características de ambos métodos como se describe en "Digital Image Processing" por González y Woods pág. 169
    device, edge_shrp_img = pcv.image_add(mblur_invert_img, lp_shrp_img,
                                          device, args.debug)
    #cv2.imshow("imagen-combinacion-sobel-laplacian",mblur_img)
    if args.debug:
        pcv.plot_hist(edge_shrp_img, 'hist_edge_shrp_img')

    # Realizar el umbral para generar una imagen binaria
    device, tr_es_img = pcv.binary_threshold(edge_shrp_img, 125, 255, 'dark',
                                             device, args.debug)
    #cv2.imshow("imagen binaria de combinacion",tr_es_img)
    #hasta aqui todo bien linea 99
    # Prepare a few small kernels for morphological filtering
    #prepara nucleos pequeños para un filtrado moorfologico
    kern = np.zeros((3, 3), dtype=np.uint8)
    kern1 = np.copy(kern)
    kern1[1, 1:3] = 1
    kern2 = np.copy(kern)
    kern2[1, 0:2] = 1
    kern3 = np.copy(kern)
    kern3[0:2, 1] = 1
    kern4 = np.copy(kern)
    kern4[1:3, 1] = 1

    # prepara un nucleo grande para la dilatacion
    kern[1, 0:3] = 1
    kern[0:3, 1] = 1
    # Perform erosion with 4 small kernels
    device, e1_img = pcv.erode(tr_es_img, 1, 1, device, args.debug)
    #cv2.imshow("erosion 1",e1_img)
    device, e2_img = pcv.erode(tr_es_img, 1, 1, device, args.debug)
    #cv2.imshow("erosion 2",e2_img)
    device, e3_img = pcv.erode(tr_es_img, 1, 1, device, args.debug)
    #cv2.imshow("erosion 3",e3_img)
    device, e4_img = pcv.erode(tr_es_img, 1, 1, device, args.debug)
    #cv2.imshow("erosion 4",e4_img)

    # Combine eroded images
    device, c12_img = pcv.logical_or(e1_img, e2_img, device, args.debug)
    #cv2.imshow("c12",c12_img)
    device, c123_img = pcv.logical_or(c12_img, e3_img, device, args.debug)
    #cv2.imshow("c123",c123_img)
    device, c1234_img = pcv.logical_or(c123_img, e4_img, device, args.debug)
    #cv2.imshow("c1234",c1234_img)

    # Bring the two object identification approaches together.
    # Using a logical OR combine object identified by background subtraction and the object identified by derivative filter.
    device, comb_img = pcv.logical_or(c1234_img, bkg_sub_thres_img, device,
                                      args.debug)
    #cv2.imshow("comb_img",comb_img)
    # Get masked image, Essentially identify pixels corresponding to plant and keep those.
    device, masked_erd = pcv.apply_mask(img, comb_img, 'black', device,
                                        args.debug)
    #cv2.imshow("masked_erd",masked_erd)
    #cv2.imshow("imagen original chkar",img)
    # Need to remove the edges of the image, we did that by generating a set of rectangles to mask the edges
    # img is (254 X 320)
    # mask for the bottom of the image
    device, im2, box1_img, rect_contour1, hierarchy1 = pcv.rectangle_mask(
        img, (120, 184), (215, 252), device, args.debug, color='white')
    #cv2.imshow("im2",box1_img)
    # mask for the left side of the image
    device, im3, box2_img, rect_contour2, hierarchy2 = pcv.rectangle_mask(
        img, (1, 1), (85, 252), device, args.debug, color='white')
    #cv2.imshow("im3",box2_img)
    # mask for the right side of the image
    device, im4, box3_img, rect_contour3, hierarchy3 = pcv.rectangle_mask(
        img, (240, 1), (318, 252), device, args.debug, color='white')
    #cv2.imshow("im4",box3_img)
    # mask the edges
    device, im5, box4_img, rect_contour4, hierarchy4 = pcv.rectangle_mask(
        img, (1, 1), (318, 252), device, args.debug)
    #cv2.imshow("im5",box4_img)

    # combine boxes to filter the edges and car out of the photo
    device, bx12_img = pcv.logical_or(box1_img, box2_img, device, args.debug)
    device, bx123_img = pcv.logical_or(bx12_img, box3_img, device, args.debug)
    device, bx1234_img = pcv.logical_or(bx123_img, box4_img, device,
                                        args.debug)
    #cv2.imshow("combinacion logica or",bx1234_img)

    # invert this mask and then apply it the masked image.
    device, inv_bx1234_img = pcv.invert(bx1234_img, device, args.debug)
    # cv2.imshow("combinacion logica or invertida",inv_bx1234_img)
    device, edge_masked_img = pcv.apply_mask(masked_erd, inv_bx1234_img,
                                             'black', device, args.debug)
    # cv2.imshow("edge_masked_img",edge_masked_img)

    # assign the coordinates of an area of interest (rectangle around the area you expect the plant to be in)
    device, im6, roi_img, roi_contour, roi_hierarchy = pcv.rectangle_mask(
        img, (120, 75), (200, 184), device, args.debug)
    #cv2.imshow("im6",roi_img)
    # get the coordinates of the plant from the masked object
    plant_objects, plant_hierarchy = cv2.findContours(edge_masked_img,
                                                      cv2.RETR_TREE,
                                                      cv2.CHAIN_APPROX_NONE)

    # Obtain the coordinates of the plant object which are partially within the area of interest
    device, roi_objects, hierarchy5, kept_mask, obj_area = pcv.roi_objects(
        img, 'partial', roi_contour, roi_hierarchy, plant_objects,
        plant_hierarchy, device, args.debug)

    # Apply the box mask to the image to ensure no background
    device, masked_img = pcv.apply_mask(kept_mask, inv_bx1234_img, 'black',
                                        device, args.debug)
    #cv2.imshow("mascara final",masked_img)
    #/////////////////////////////////////////////////////////////
    #device, masked_img = pcv.apply_mask(kept_mask, inv_bx1234_img, 'black', device, args.debug)
    rgb = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
    #cv2.imshow("rgb",rgb)
    # Generate a binary to send to the analysis function
    device, mask = pcv.binary_threshold(masked_img, 1, 255, 'light', device,
                                        args.debug)
    #cv2.imshow("mask",mask)
    mask3d = np.copy(mask)
    plant_objects_2, plant_hierarchy_2 = cv2.findContours(
        mask3d, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    device, o, m = pcv.object_composition(rgb, roi_objects, hierarchy5, device,
                                          args.debug)

    # Get final masked image
    device, masked_img = pcv.apply_mask(kept_mask, inv_bx1234_img, 'black',
                                        device, args.debug)
    #cv2.imshow("maskara final2",masked_img)
    ################### copia lo de arriba esta mal el tutorial
    # Obtain a 3 dimensional representation of this grayscale image (for pseudocoloring)
    #rgb = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)

    # Generate a binary to send to the analysis function
    #device, mask = pcv.binary_threshold(masked_img, 1, 255, 'light', device, args.debug)

    # Make a copy of this mask for pseudocoloring
    #mask3d = np.copy(mask)

    # Extract coordinates of plant for pseudocoloring of plant
    #plant_objects_2, plant_hierarchy_2 = cv2.findContours(mask3d,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
    #device, o, m = pcv.object_composition(rgb, roi_objects, hierarchy5, device, args.debug)

    # Extract coordinates of plant for pseudocoloring of plant
    #plant_objects_2, plant_hierarchy_2 = cv2.findContours(mask3d,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
    #device, o, m = pcv.object_composition(rgb, roi_objects, hierarchy5, device, args.debug)
    ####################################
    #######################
    ### Analysis ###
    # Perform signal analysis
    #################pruebas de que esta masl el tutorial""""""""""""""""
    #ols=type(args.image)
    #print ols
    ##############pruebas de que no agarro     device, hist_header, hist_data, h_norm = pcv.analyze_NIR_intensity(img, args.image, mask, 256, device, args.debug, args.outdir + '/' + img_name)

    #print(args.outdir+'/'+img_name)
    #print(args.debug)
    #al final si salio se agrego lo qyue esta debug= and filename=
    ##################################################### debug me marca True por ello puse pritn de mas
    #device, hist_header, hist_data, h_norm = pcv.analyze_NIR_intensity(img, rgb, mask, 256, device, debug='print', filename=False)
    device, hist_header, hist_data, h_norm = pcv.analyze_NIR_intensity(
        img,
        rgb,
        mask,
        256,
        device,
        debug=args.debug,
        filename=args.outdir + '/' + img_name)

    # Perform shape analysis
    device, shape_header, shape_data, ori_img = pcv.analyze_object(
        rgb,
        args.image,
        o,
        m,
        device,
        debug=args.debug,
        filename=args.outdir + '/' + img_name)

    # Print the results to STDOUT
    pcv.print_results(args.image, hist_header, hist_data)
    pcv.print_results(args.image, shape_header, shape_data)

    cv2.waitKey()
    cv2.destroyAllWdindows()
コード例 #6
0
def main():
   
    # Get options
    args = options()
    if args.debug:
      print("Analyzing your image dude...")
    # Read image
    img = cv2.imread(args.image, flags=0)
    # if a region of interest is specified read it in
    roi = cv2.imread(args.roi)
    # Pipeline step
    device = 0
    
    # Start by examining the distribution of pixel intensity values
    if args.debug:
      pcv.plot_hist(img, 'hist_img')
      
    # Will intensity transformation enhance your ability to isolate object of interest by thesholding?
    device, he_img = pcv.HistEqualization(img, device, args.debug)
    if args.debug:
      pcv.plot_hist(he_img, 'hist_img_he')
    
    # Laplace filtering (identify edges based on 2nd derivative)
    device, lp_img = pcv.laplace_filter(img, 1, 1, device, args.debug)
    if args.debug:
      pcv.plot_hist(lp_img, 'hist_lp')
    
    # Lapacian image sharpening, this step will enhance the darkness of the edges detected
    device, lp_shrp_img = pcv.image_subtract(img, lp_img, device, args.debug)
    if args.debug:
      pcv.plot_hist(lp_shrp_img, 'hist_lp_shrp')
      
    # Sobel filtering  
    # 1st derivative sobel filtering along horizontal axis, kernel = 1, unscaled)
    device, sbx_img = pcv.sobel_filter(img, 1, 0, 1, 1, device, args.debug)
    if args.debug:
      pcv.plot_hist(sbx_img, 'hist_sbx')
      
    # 1st derivative sobel filtering along vertical axis, kernel = 1, unscaled)
    device, sby_img = pcv.sobel_filter(img, 0, 1, 1, 1, device, args.debug)
    if args.debug:
      pcv.plot_hist(sby_img, 'hist_sby')
      
    # Combine the effects of both x and y filters through matrix addition
    # This will capture edges identified within each plane and emphesize edges found in both images
    device, sb_img = pcv.image_add(sbx_img, sby_img, device, args.debug)
    if args.debug:
      pcv.plot_hist(sb_img, 'hist_sb_comb_img')
    
    # Use a lowpass (blurring) filter to smooth sobel image
    device, mblur_img = pcv.median_blur(sb_img, 1, device, args.debug)
    device, mblur_invert_img = pcv.invert(mblur_img, device, args.debug)
    
    # combine the smoothed sobel image with the laplacian sharpened image
    # combines the best features of both methods as described in "Digital Image Processing" by Gonzalez and Woods pg. 169 
    device, edge_shrp_img = pcv.image_add(mblur_invert_img, lp_shrp_img, device, args.debug)
    if args.debug:
      pcv.plot_hist(edge_shrp_img, 'hist_edge_shrp_img')
      
    # Perform thresholding to generate a binary image
    device, tr_es_img = pcv.binary_threshold(edge_shrp_img, 145, 255, 'dark', device, args.debug)
    
    # Prepare a few small kernels for morphological filtering
    kern = np.zeros((3,3), dtype=np.uint8)
    kern1 = np.copy(kern)
    kern1[1,1:3]=1
    kern2 = np.copy(kern)
    kern2[1,0:2]=1
    kern3 = np.copy(kern)
    kern3[0:2,1]=1
    kern4 = np.copy(kern)
    kern4[1:3,1]=1
    
    # Prepare a larger kernel for dilation
    kern[1,0:3]=1
    kern[0:3,1]=1
    
    # Perform erosion with 4 small kernels
    device, e1_img = pcv.erode(tr_es_img, kern1, 1, device, args.debug)
    device, e2_img = pcv.erode(tr_es_img, kern2, 1, device, args.debug)
    device, e3_img = pcv.erode(tr_es_img, kern3, 1, device, args.debug)
    device, e4_img = pcv.erode(tr_es_img, kern4, 1, device, args.debug)
    
    # Combine eroded images
    device, c12_img = pcv.logical_or(e1_img, e2_img, device, args.debug)
    device, c123_img = pcv.logical_or(c12_img, e3_img, device, args.debug)
    device, c1234_img = pcv.logical_or(c123_img, e4_img, device, args.debug)
    
    # Perform dilation
    device, dil_img = pcv.dilate(c1234_img, kern, 1, device, args.debug)
    
    # Get masked image
    # The dilated image may contain some pixels which are not plant
    device, masked_erd = pcv.apply_mask(img, c1234_img, 'black', device, args.debug)
    device, masked_erd_dil = pcv.apply_mask(img, dil_img, 'black', device, args.debug)
    
    # Need to remove the edges of the image, we did that by generating a set of rectangles to mask the edges
    # img is (254 X 320)
    device, box1_img, rect_contour1, hierarchy1 = pcv.rectangle_mask(img, (1,1), (64,252), device, args.debug)
    device, box2_img, rect_contour2, hierarchy2 = pcv.rectangle_mask(img, (256,1), (318,252), device, args.debug)
    device, box3_img, rect_contour3, hierarchy3 = pcv.rectangle_mask(img, (1,184), (318,252), device, args.debug)
    device, box4_img, rect_contour4, hierarchy4 = pcv.border_mask(img, (1,1), (318,252), device, args.debug)
    
    # combine boxes to filter the edges and car out of the photo
    device, bx12_img = pcv.logical_or(box1_img, box2_img, device, args.debug)
    device, bx123_img = pcv.logical_or(bx12_img, box3_img, device, args.debug)
    device, bx1234_img = pcv.logical_or(bx123_img, box4_img, device, args.debug)
    device, inv_bx1234_img = pcv.invert(bx1234_img, device, args.debug)
    
    # Apply the box mask to the image
    device, masked_img = pcv.apply_mask(masked_erd_dil, inv_bx1234_img, 'black', device, args.debug)
    
    # Generate a binary to send to the analysis function
    device, mask = pcv.binary_threshold(masked_img, 1, 255, 'light', device, args.debug)
    pcv.analyze_NIR_intensity(img, args.image, mask, 256, device, args.debug, 'example')