def test_plantcv_rectangle_mask(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) device, masked, hist, contour, heir = pcv.rectangle_mask(img, (0, 0), (2454, 2056), device=0, debug=None, color="black") maskedsum = np.sum(masked) imgsum = np.sum(img) assert maskedsum < imgsum
def main(): # Get options args = options() if args.debug: print("Analyzing your image dude...") # Read image device = 0 img = cv2.imread(args.image, flags=0) path, img_name = os.path.split(args.image) # Read in image which is average of average of backgrounds img_bkgrd = cv2.imread("bkgrd_ave_z2500.png", flags=0) # NIR images for burnin2 are up-side down. This may be fixed in later experiments img = ndimage.rotate(img, 180) img_bkgrd = ndimage.rotate(img_bkgrd, 180) # Subtract the image from the image background to make the plant more prominent device, bkg_sub_img = pcv.image_subtract(img, img_bkgrd, device, args.debug) if args.debug: pcv.plot_hist(bkg_sub_img, "bkg_sub_img") device, bkg_sub_thres_img = pcv.binary_threshold(bkg_sub_img, 145, 255, "dark", device, args.debug) bkg_sub_thres_img = cv2.inRange(bkg_sub_img, 30, 220) if args.debug: cv2.imwrite("bkgrd_sub_thres.png", bkg_sub_thres_img) # device, bkg_sub_thres_img = pcv.binary_threshold_2_sided(img_bkgrd, 50, 190, device, args.debug) # if a region of interest is specified read it in roi = cv2.imread(args.roi) # Start by examining the distribution of pixel intensity values if args.debug: pcv.plot_hist(img, "hist_img") # Will intensity transformation enhance your ability to isolate object of interest by thesholding? device, he_img = pcv.HistEqualization(img, device, args.debug) if args.debug: pcv.plot_hist(he_img, "hist_img_he") # Laplace filtering (identify edges based on 2nd derivative) device, lp_img = pcv.laplace_filter(img, 1, 1, device, args.debug) if args.debug: pcv.plot_hist(lp_img, "hist_lp") # Lapacian image sharpening, this step will enhance the darkness of the edges detected device, lp_shrp_img = pcv.image_subtract(img, lp_img, device, args.debug) if args.debug: pcv.plot_hist(lp_shrp_img, "hist_lp_shrp") # Sobel filtering # 1st derivative sobel filtering along horizontal axis, kernel = 1, unscaled) device, sbx_img = pcv.sobel_filter(img, 1, 0, 1, 1, device, args.debug) if args.debug: pcv.plot_hist(sbx_img, "hist_sbx") # 1st derivative sobel filtering along vertical axis, kernel = 1, unscaled) device, sby_img = pcv.sobel_filter(img, 0, 1, 1, 1, device, args.debug) if args.debug: pcv.plot_hist(sby_img, "hist_sby") # Combine the effects of both x and y filters through matrix addition # This will capture edges identified within each plane and emphesize edges found in both images device, sb_img = pcv.image_add(sbx_img, sby_img, device, args.debug) if args.debug: pcv.plot_hist(sb_img, "hist_sb_comb_img") # Use a lowpass (blurring) filter to smooth sobel image device, mblur_img = pcv.median_blur(sb_img, 1, device, args.debug) device, mblur_invert_img = pcv.invert(mblur_img, device, args.debug) # combine the smoothed sobel image with the laplacian sharpened image # combines the best features of both methods as described in "Digital Image Processing" by Gonzalez and Woods pg. 169 device, edge_shrp_img = pcv.image_add(mblur_invert_img, lp_shrp_img, device, args.debug) if args.debug: pcv.plot_hist(edge_shrp_img, "hist_edge_shrp_img") # Perform thresholding to generate a binary image device, tr_es_img = pcv.binary_threshold(edge_shrp_img, 145, 255, "dark", device, args.debug) # Prepare a few small kernels for morphological filtering kern = np.zeros((3, 3), dtype=np.uint8) kern1 = np.copy(kern) kern1[1, 1:3] = 1 kern2 = np.copy(kern) kern2[1, 0:2] = 1 kern3 = np.copy(kern) kern3[0:2, 1] = 1 kern4 = np.copy(kern) kern4[1:3, 1] = 1 # Prepare a larger kernel for dilation kern[1, 0:3] = 1 kern[0:3, 1] = 1 # Perform erosion with 4 small kernels device, e1_img = pcv.erode(tr_es_img, kern1, 1, device, args.debug) device, e2_img = pcv.erode(tr_es_img, kern2, 1, device, args.debug) device, e3_img = pcv.erode(tr_es_img, kern3, 1, device, args.debug) device, e4_img = pcv.erode(tr_es_img, kern4, 1, device, args.debug) # Combine eroded images device, c12_img = pcv.logical_or(e1_img, e2_img, device, args.debug) device, c123_img = pcv.logical_or(c12_img, e3_img, device, args.debug) device, c1234_img = pcv.logical_or(c123_img, e4_img, device, args.debug) # Perform dilation # device, dil_img = pcv.dilate(c1234_img, kern, 1, device, args.debug) device, comb_img = pcv.logical_or(c1234_img, bkg_sub_thres_img, device, args.debug) # Get masked image # The dilated image may contain some pixels which are not plant device, masked_erd = pcv.apply_mask(img, comb_img, "black", device, args.debug) # device, masked_erd_dil = pcv.apply_mask(img, dil_img, 'black', device, args.debug) # Need to remove the edges of the image, we did that by generating a set of rectangles to mask the edges # img is (254 X 320) # mask for the bottom of the image device, box1_img, rect_contour1, hierarchy1 = pcv.rectangle_mask(img, (120, 184), (215, 252), device, args.debug) # mask for the left side of the image device, box2_img, rect_contour2, hierarchy2 = pcv.rectangle_mask(img, (1, 1), (85, 252), device, args.debug) # mask for the right side of the image device, box3_img, rect_contour3, hierarchy3 = pcv.rectangle_mask(img, (240, 1), (318, 252), device, args.debug) # mask the edges device, box4_img, rect_contour4, hierarchy4 = pcv.border_mask(img, (1, 1), (318, 252), device, args.debug) # combine boxes to filter the edges and car out of the photo device, bx12_img = pcv.logical_or(box1_img, box2_img, device, args.debug) device, bx123_img = pcv.logical_or(bx12_img, box3_img, device, args.debug) device, bx1234_img = pcv.logical_or(bx123_img, box4_img, device, args.debug) device, inv_bx1234_img = pcv.invert(bx1234_img, device, args.debug) # Make a ROI around the plant, include connected objects # Apply the box mask to the image # device, masked_img = pcv.apply_mask(masked_erd_dil, inv_bx1234_img, 'black', device, args.debug) device, edge_masked_img = pcv.apply_mask(masked_erd, inv_bx1234_img, "black", device, args.debug) device, roi_img, roi_contour, roi_hierarchy = pcv.rectangle_mask(img, (120, 75), (200, 184), device, args.debug) plant_objects, plant_hierarchy = cv2.findContours(edge_masked_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) device, roi_objects, hierarchy5, kept_mask, obj_area = pcv.roi_objects( img, "partial", roi_contour, roi_hierarchy, plant_objects, plant_hierarchy, device, args.debug ) # Apply the box mask to the image # device, masked_img = pcv.apply_mask(masked_erd_dil, inv_bx1234_img, 'black', device, args.debug) device, masked_img = pcv.apply_mask(kept_mask, inv_bx1234_img, "black", device, args.debug) rgb = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # Generate a binary to send to the analysis function device, mask = pcv.binary_threshold(masked_img, 1, 255, "light", device, args.debug) mask3d = np.copy(mask) plant_objects_2, plant_hierarchy_2 = cv2.findContours(mask3d, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) device, o, m = pcv.object_composition(rgb, roi_objects, hierarchy5, device, args.debug) ### Analysis ### device, hist_header, hist_data, h_norm = pcv.analyze_NIR_intensity( img, args.image, mask, 256, device, args.debug, args.outdir + "/" + img_name ) device, shape_header, shape_data, ori_img = pcv.analyze_object( rgb, args.image, o, m, device, args.debug, args.outdir + "/" + img_name ) pcv.print_results(args.image, hist_header, hist_data) pcv.print_results(args.image, shape_header, shape_data)
def main(): # Get options args = options() if args.debug: print("Analyzing your image dude...") # Read image device = 0 img = cv2.imread(args.image, flags=0) path, img_name = os.path.split(args.image) # Read in image which is average of average of backgrounds img_bkgrd = cv2.imread("bkgrd_ave_z3500.png", flags=0) # NIR images for burnin2 are up-side down. This may be fixed in later experiments img = ndimage.rotate(img, 180) img_bkgrd = ndimage.rotate(img_bkgrd, 180) # Subtract the image from the image background to make the plant more prominent device, bkg_sub_img = pcv.image_subtract(img, img_bkgrd, device, args.debug) if args.debug: pcv.plot_hist(bkg_sub_img, 'bkg_sub_img') device, bkg_sub_thres_img = pcv.binary_threshold(bkg_sub_img, 145, 255, 'dark', device, args.debug) bkg_sub_thres_img = cv2.inRange(bkg_sub_img, 30, 220) if args.debug: cv2.imwrite('bkgrd_sub_thres.png', bkg_sub_thres_img) #device, bkg_sub_thres_img = pcv.binary_threshold_2_sided(img_bkgrd, 50, 190, device, args.debug) # if a region of interest is specified read it in roi = cv2.imread(args.roi) # Start by examining the distribution of pixel intensity values if args.debug: pcv.plot_hist(img, 'hist_img') # Will intensity transformation enhance your ability to isolate object of interest by thesholding? device, he_img = pcv.HistEqualization(img, device, args.debug) if args.debug: pcv.plot_hist(he_img, 'hist_img_he') # Laplace filtering (identify edges based on 2nd derivative) device, lp_img = pcv.laplace_filter(img, 1, 1, device, args.debug) if args.debug: pcv.plot_hist(lp_img, 'hist_lp') # Lapacian image sharpening, this step will enhance the darkness of the edges detected device, lp_shrp_img = pcv.image_subtract(img, lp_img, device, args.debug) if args.debug: pcv.plot_hist(lp_shrp_img, 'hist_lp_shrp') # Sobel filtering # 1st derivative sobel filtering along horizontal axis, kernel = 1, unscaled) device, sbx_img = pcv.sobel_filter(img, 1, 0, 1, 1, device, args.debug) if args.debug: pcv.plot_hist(sbx_img, 'hist_sbx') # 1st derivative sobel filtering along vertical axis, kernel = 1, unscaled) device, sby_img = pcv.sobel_filter(img, 0, 1, 1, 1, device, args.debug) if args.debug: pcv.plot_hist(sby_img, 'hist_sby') # Combine the effects of both x and y filters through matrix addition # This will capture edges identified within each plane and emphesize edges found in both images device, sb_img = pcv.image_add(sbx_img, sby_img, device, args.debug) if args.debug: pcv.plot_hist(sb_img, 'hist_sb_comb_img') # Use a lowpass (blurring) filter to smooth sobel image device, mblur_img = pcv.median_blur(sb_img, 1, device, args.debug) device, mblur_invert_img = pcv.invert(mblur_img, device, args.debug) # combine the smoothed sobel image with the laplacian sharpened image # combines the best features of both methods as described in "Digital Image Processing" by Gonzalez and Woods pg. 169 device, edge_shrp_img = pcv.image_add(mblur_invert_img, lp_shrp_img, device, args.debug) if args.debug: pcv.plot_hist(edge_shrp_img, 'hist_edge_shrp_img') # Perform thresholding to generate a binary image device, tr_es_img = pcv.binary_threshold(edge_shrp_img, 145, 255, 'dark', device, args.debug) # Prepare a few small kernels for morphological filtering kern = np.zeros((3,3), dtype=np.uint8) kern1 = np.copy(kern) kern1[1,1:3]=1 kern2 = np.copy(kern) kern2[1,0:2]=1 kern3 = np.copy(kern) kern3[0:2,1]=1 kern4 = np.copy(kern) kern4[1:3,1]=1 # Prepare a larger kernel for dilation kern[1,0:3]=1 kern[0:3,1]=1 # Perform erosion with 4 small kernels device, e1_img = pcv.erode(tr_es_img, kern1, 1, device, args.debug) device, e2_img = pcv.erode(tr_es_img, kern2, 1, device, args.debug) device, e3_img = pcv.erode(tr_es_img, kern3, 1, device, args.debug) device, e4_img = pcv.erode(tr_es_img, kern4, 1, device, args.debug) # Combine eroded images device, c12_img = pcv.logical_or(e1_img, e2_img, device, args.debug) device, c123_img = pcv.logical_or(c12_img, e3_img, device, args.debug) device, c1234_img = pcv.logical_or(c123_img, e4_img, device, args.debug) # Perform dilation # device, dil_img = pcv.dilate(c1234_img, kern, 1, device, args.debug) device, comb_img = pcv.logical_or(c1234_img, bkg_sub_thres_img, device, args.debug) # Get masked image # The dilated image may contain some pixels which are not plant device, masked_erd = pcv.apply_mask(img, comb_img, 'black', device, args.debug) # device, masked_erd_dil = pcv.apply_mask(img, dil_img, 'black', device, args.debug) # Need to remove the edges of the image, we did that by generating a set of rectangles to mask the edges # img is (254 X 320) # mask for the bottom of the image device, box1_img, rect_contour1, hierarchy1 = pcv.rectangle_mask(img, (100,210), (230,252), device, args.debug) # mask for the left side of the image device, box2_img, rect_contour2, hierarchy2 = pcv.rectangle_mask(img, (1,1), (85,252), device, args.debug) # mask for the right side of the image device, box3_img, rect_contour3, hierarchy3 = pcv.rectangle_mask(img, (240,1), (318,252), device, args.debug) # mask the edges device, box4_img, rect_contour4, hierarchy4 = pcv.border_mask(img, (1,1), (318,252), device, args.debug) # combine boxes to filter the edges and car out of the photo device, bx12_img = pcv.logical_or(box1_img, box2_img, device, args.debug) device, bx123_img = pcv.logical_or(bx12_img, box3_img, device, args.debug) device, bx1234_img = pcv.logical_or(bx123_img, box4_img, device, args.debug) device, inv_bx1234_img = pcv.invert(bx1234_img, device, args.debug) # Make a ROI around the plant, include connected objects # Apply the box mask to the image # device, masked_img = pcv.apply_mask(masked_erd_dil, inv_bx1234_img, 'black', device, args.debug) device, edge_masked_img = pcv.apply_mask(masked_erd, inv_bx1234_img, 'black', device, args.debug) device, roi_img, roi_contour, roi_hierarchy = pcv.rectangle_mask(img, (100,75), (220,208), device, args.debug) plant_objects, plant_hierarchy = cv2.findContours(edge_masked_img,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE) device, roi_objects, hierarchy5, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi_contour, roi_hierarchy, plant_objects, plant_hierarchy, device, args.debug) # Apply the box mask to the image # device, masked_img = pcv.apply_mask(masked_erd_dil, inv_bx1234_img, 'black', device, args.debug) device, masked_img = pcv.apply_mask(kept_mask, inv_bx1234_img, 'black', device, args.debug) rgb = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB) # Generate a binary to send to the analysis function device, mask = pcv.binary_threshold(masked_img, 1, 255, 'light', device, args.debug) mask3d = np.copy(mask) plant_objects_2, plant_hierarchy_2 = cv2.findContours(mask3d,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE) device, o, m = pcv.object_composition(rgb, roi_objects, hierarchy5, device, args.debug) ### Analysis ### device, hist_header, hist_data, h_norm = pcv.analyze_NIR_intensity(img, args.image, mask, 256, device, args.debug, args.outdir + '/' + img_name) device, shape_header, shape_data, ori_img = pcv.analyze_object(rgb, args.image, o, m, device, args.debug, args.outdir + '/' + img_name) pcv.print_results(args.image, hist_header, hist_data) pcv.print_results(args.image, shape_header, shape_data)
def main(): # obtiene opciones de imagen args = options() #LINEA 22 if args.debug: print("Debug mode turned on...") # lee la imagen el flags=0 indica que se espera una imagen a escala de grises img = cv2.imread(args.image, flags=0) # cv2.imshow("imagen original",img) # Get directory path and image name from command line arguments path, img_name = os.path.split(args.image) #LINEA 30 # Read in image which is the pixelwise average of background images img_bkgrd = cv2.imread("background_average.jpg", flags=0) #cv2.imshow("ventana del fondo",img_bkgrd) # paso del procesamiento de imagenes device = 0 ######hasta qui bien #linea 37 # Restar la imagen de fondo de la imagen con la planta. device, bkg_sub_img = pcv.image_subtract(img, img_bkgrd, device, args.debug) #cv2.imshow("imagen resta",bkg_sub_img) # Threshold the image of interest using the two-sided cv2.inRange function (keep what is between 50-190) bkg_sub_thres_img = cv2.inRange(bkg_sub_img, 50, 190) if args.debug: cv2.imwrite('bkgrd_sub_thres.png', bkg_sub_thres_img) #hasta qui todo bien #linea 46 # Filtrado de Laplace (identificar bordes basados en la derivada 2) device, lp_img = pcv.laplace_filter(img, 1, 1, device, args.debug) #cv2.imshow("imagen de filtrado",lp_img) if args.debug: pcv.plot_hist(lp_img, 'histograma_lp') # Lapacian image sharpening, this step will enhance the darkness of the edges detected device, lp_shrp_img = pcv.image_subtract(img, lp_img, device, args.debug) #cv2.imshow("imagen de borde lapacian",lp_shrp_img) if args.debug: pcv.plot_hist(lp_shrp_img, 'histograma_lp_shrp') #hasta aqui todo bien linea 58 # Sobel filtering-filtrado de sobel # 1ª derivada filtrado sobel a lo largo del eje horizontal, núcleo = 1, sin escala) """ segun esta masl son siete,kito scale y me kedo con apertura k,chekar sobel en docs device, sbx_img = pcv.sobel_filter(img, 1, 0, 1, 1, device, args.debug) """ device, sbx_img = pcv.sobel_filter(img, 1, 0, 1, device, args.debug) #cv2.imshow("imagen sobel-eje horizontal",sbx_img) if args.debug: pcv.plot_hist(sbx_img, 'histograma_sbx') # Filtrado de la primera derivada sobel a lo largo del eje vertical, núcleo = 1, sin escala) device, sby_img = pcv.sobel_filter(img, 0, 1, 1, device, args.debug) #cv2.imshow("imagen sobel-ejevertical",sby_img) if args.debug: pcv.plot_hist(sby_img, 'histograma_sby') # Combina los efectos de ambos filtros x e y mediante la suma de matrizes # Esto captura los bordes identificados dentro de cada plano y enfatiza los bordes encontrados en ambas imágenes device, sb_img = pcv.image_add(sbx_img, sby_img, device, args.debug) #cv2.imshow("imagen suma de sobel",sb_img) if args.debug: pcv.plot_hist(sb_img, 'histograma_sb_comb_img') #hasta aqui todo bien linea 82 # usar filtro pasa bajo blur para suavizar la imagen de sobel device, mblur_img = pcv.median_blur(sb_img, 1, device, args.debug) #cv2.imshow("imagen blur",mblur_img) device, mblur_invert_img = pcv.invert(mblur_img, device, args.debug) #cv2.imshow("imagen blur-invertido",mblur_invert_img) # Combinar la imagen suavizada del sobel con la imagen afilada del laplaciano # combines the best features of both methods as described in "Digital Image Processing" by Gonzalez and Woods pg. 169 #Combina las mejores características de ambos métodos como se describe en "Digital Image Processing" por González y Woods pág. 169 device, edge_shrp_img = pcv.image_add(mblur_invert_img, lp_shrp_img, device, args.debug) #cv2.imshow("imagen-combinacion-sobel-laplacian",mblur_img) if args.debug: pcv.plot_hist(edge_shrp_img, 'hist_edge_shrp_img') # Realizar el umbral para generar una imagen binaria device, tr_es_img = pcv.binary_threshold(edge_shrp_img, 125, 255, 'dark', device, args.debug) #cv2.imshow("imagen binaria de combinacion",tr_es_img) #hasta aqui todo bien linea 99 # Prepare a few small kernels for morphological filtering #prepara nucleos pequeños para un filtrado moorfologico kern = np.zeros((3, 3), dtype=np.uint8) kern1 = np.copy(kern) kern1[1, 1:3] = 1 kern2 = np.copy(kern) kern2[1, 0:2] = 1 kern3 = np.copy(kern) kern3[0:2, 1] = 1 kern4 = np.copy(kern) kern4[1:3, 1] = 1 # prepara un nucleo grande para la dilatacion kern[1, 0:3] = 1 kern[0:3, 1] = 1 # Perform erosion with 4 small kernels device, e1_img = pcv.erode(tr_es_img, 1, 1, device, args.debug) #cv2.imshow("erosion 1",e1_img) device, e2_img = pcv.erode(tr_es_img, 1, 1, device, args.debug) #cv2.imshow("erosion 2",e2_img) device, e3_img = pcv.erode(tr_es_img, 1, 1, device, args.debug) #cv2.imshow("erosion 3",e3_img) device, e4_img = pcv.erode(tr_es_img, 1, 1, device, args.debug) #cv2.imshow("erosion 4",e4_img) # Combine eroded images device, c12_img = pcv.logical_or(e1_img, e2_img, device, args.debug) #cv2.imshow("c12",c12_img) device, c123_img = pcv.logical_or(c12_img, e3_img, device, args.debug) #cv2.imshow("c123",c123_img) device, c1234_img = pcv.logical_or(c123_img, e4_img, device, args.debug) #cv2.imshow("c1234",c1234_img) # Bring the two object identification approaches together. # Using a logical OR combine object identified by background subtraction and the object identified by derivative filter. device, comb_img = pcv.logical_or(c1234_img, bkg_sub_thres_img, device, args.debug) #cv2.imshow("comb_img",comb_img) # Get masked image, Essentially identify pixels corresponding to plant and keep those. device, masked_erd = pcv.apply_mask(img, comb_img, 'black', device, args.debug) #cv2.imshow("masked_erd",masked_erd) #cv2.imshow("imagen original chkar",img) # Need to remove the edges of the image, we did that by generating a set of rectangles to mask the edges # img is (254 X 320) # mask for the bottom of the image device, im2, box1_img, rect_contour1, hierarchy1 = pcv.rectangle_mask( img, (120, 184), (215, 252), device, args.debug, color='white') #cv2.imshow("im2",box1_img) # mask for the left side of the image device, im3, box2_img, rect_contour2, hierarchy2 = pcv.rectangle_mask( img, (1, 1), (85, 252), device, args.debug, color='white') #cv2.imshow("im3",box2_img) # mask for the right side of the image device, im4, box3_img, rect_contour3, hierarchy3 = pcv.rectangle_mask( img, (240, 1), (318, 252), device, args.debug, color='white') #cv2.imshow("im4",box3_img) # mask the edges device, im5, box4_img, rect_contour4, hierarchy4 = pcv.rectangle_mask( img, (1, 1), (318, 252), device, args.debug) #cv2.imshow("im5",box4_img) # combine boxes to filter the edges and car out of the photo device, bx12_img = pcv.logical_or(box1_img, box2_img, device, args.debug) device, bx123_img = pcv.logical_or(bx12_img, box3_img, device, args.debug) device, bx1234_img = pcv.logical_or(bx123_img, box4_img, device, args.debug) #cv2.imshow("combinacion logica or",bx1234_img) # invert this mask and then apply it the masked image. device, inv_bx1234_img = pcv.invert(bx1234_img, device, args.debug) # cv2.imshow("combinacion logica or invertida",inv_bx1234_img) device, edge_masked_img = pcv.apply_mask(masked_erd, inv_bx1234_img, 'black', device, args.debug) # cv2.imshow("edge_masked_img",edge_masked_img) # assign the coordinates of an area of interest (rectangle around the area you expect the plant to be in) device, im6, roi_img, roi_contour, roi_hierarchy = pcv.rectangle_mask( img, (120, 75), (200, 184), device, args.debug) #cv2.imshow("im6",roi_img) # get the coordinates of the plant from the masked object plant_objects, plant_hierarchy = cv2.findContours(edge_masked_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) # Obtain the coordinates of the plant object which are partially within the area of interest device, roi_objects, hierarchy5, kept_mask, obj_area = pcv.roi_objects( img, 'partial', roi_contour, roi_hierarchy, plant_objects, plant_hierarchy, device, args.debug) # Apply the box mask to the image to ensure no background device, masked_img = pcv.apply_mask(kept_mask, inv_bx1234_img, 'black', device, args.debug) #cv2.imshow("mascara final",masked_img) #///////////////////////////////////////////////////////////// #device, masked_img = pcv.apply_mask(kept_mask, inv_bx1234_img, 'black', device, args.debug) rgb = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) #cv2.imshow("rgb",rgb) # Generate a binary to send to the analysis function device, mask = pcv.binary_threshold(masked_img, 1, 255, 'light', device, args.debug) #cv2.imshow("mask",mask) mask3d = np.copy(mask) plant_objects_2, plant_hierarchy_2 = cv2.findContours( mask3d, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) device, o, m = pcv.object_composition(rgb, roi_objects, hierarchy5, device, args.debug) # Get final masked image device, masked_img = pcv.apply_mask(kept_mask, inv_bx1234_img, 'black', device, args.debug) #cv2.imshow("maskara final2",masked_img) ################### copia lo de arriba esta mal el tutorial # Obtain a 3 dimensional representation of this grayscale image (for pseudocoloring) #rgb = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB) # Generate a binary to send to the analysis function #device, mask = pcv.binary_threshold(masked_img, 1, 255, 'light', device, args.debug) # Make a copy of this mask for pseudocoloring #mask3d = np.copy(mask) # Extract coordinates of plant for pseudocoloring of plant #plant_objects_2, plant_hierarchy_2 = cv2.findContours(mask3d,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE) #device, o, m = pcv.object_composition(rgb, roi_objects, hierarchy5, device, args.debug) # Extract coordinates of plant for pseudocoloring of plant #plant_objects_2, plant_hierarchy_2 = cv2.findContours(mask3d,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE) #device, o, m = pcv.object_composition(rgb, roi_objects, hierarchy5, device, args.debug) #################################### ####################### ### Analysis ### # Perform signal analysis #################pruebas de que esta masl el tutorial"""""""""""""""" #ols=type(args.image) #print ols ##############pruebas de que no agarro device, hist_header, hist_data, h_norm = pcv.analyze_NIR_intensity(img, args.image, mask, 256, device, args.debug, args.outdir + '/' + img_name) #print(args.outdir+'/'+img_name) #print(args.debug) #al final si salio se agrego lo qyue esta debug= and filename= ##################################################### debug me marca True por ello puse pritn de mas #device, hist_header, hist_data, h_norm = pcv.analyze_NIR_intensity(img, rgb, mask, 256, device, debug='print', filename=False) device, hist_header, hist_data, h_norm = pcv.analyze_NIR_intensity( img, rgb, mask, 256, device, debug=args.debug, filename=args.outdir + '/' + img_name) # Perform shape analysis device, shape_header, shape_data, ori_img = pcv.analyze_object( rgb, args.image, o, m, device, debug=args.debug, filename=args.outdir + '/' + img_name) # Print the results to STDOUT pcv.print_results(args.image, hist_header, hist_data) pcv.print_results(args.image, shape_header, shape_data) cv2.waitKey() cv2.destroyAllWdindows()
def main(): # Get options args = options() if args.debug: print("Analyzing your image dude...") # Read image img = cv2.imread(args.image, flags=0) # if a region of interest is specified read it in roi = cv2.imread(args.roi) # Pipeline step device = 0 # Start by examining the distribution of pixel intensity values if args.debug: pcv.plot_hist(img, 'hist_img') # Will intensity transformation enhance your ability to isolate object of interest by thesholding? device, he_img = pcv.HistEqualization(img, device, args.debug) if args.debug: pcv.plot_hist(he_img, 'hist_img_he') # Laplace filtering (identify edges based on 2nd derivative) device, lp_img = pcv.laplace_filter(img, 1, 1, device, args.debug) if args.debug: pcv.plot_hist(lp_img, 'hist_lp') # Lapacian image sharpening, this step will enhance the darkness of the edges detected device, lp_shrp_img = pcv.image_subtract(img, lp_img, device, args.debug) if args.debug: pcv.plot_hist(lp_shrp_img, 'hist_lp_shrp') # Sobel filtering # 1st derivative sobel filtering along horizontal axis, kernel = 1, unscaled) device, sbx_img = pcv.sobel_filter(img, 1, 0, 1, 1, device, args.debug) if args.debug: pcv.plot_hist(sbx_img, 'hist_sbx') # 1st derivative sobel filtering along vertical axis, kernel = 1, unscaled) device, sby_img = pcv.sobel_filter(img, 0, 1, 1, 1, device, args.debug) if args.debug: pcv.plot_hist(sby_img, 'hist_sby') # Combine the effects of both x and y filters through matrix addition # This will capture edges identified within each plane and emphesize edges found in both images device, sb_img = pcv.image_add(sbx_img, sby_img, device, args.debug) if args.debug: pcv.plot_hist(sb_img, 'hist_sb_comb_img') # Use a lowpass (blurring) filter to smooth sobel image device, mblur_img = pcv.median_blur(sb_img, 1, device, args.debug) device, mblur_invert_img = pcv.invert(mblur_img, device, args.debug) # combine the smoothed sobel image with the laplacian sharpened image # combines the best features of both methods as described in "Digital Image Processing" by Gonzalez and Woods pg. 169 device, edge_shrp_img = pcv.image_add(mblur_invert_img, lp_shrp_img, device, args.debug) if args.debug: pcv.plot_hist(edge_shrp_img, 'hist_edge_shrp_img') # Perform thresholding to generate a binary image device, tr_es_img = pcv.binary_threshold(edge_shrp_img, 145, 255, 'dark', device, args.debug) # Prepare a few small kernels for morphological filtering kern = np.zeros((3,3), dtype=np.uint8) kern1 = np.copy(kern) kern1[1,1:3]=1 kern2 = np.copy(kern) kern2[1,0:2]=1 kern3 = np.copy(kern) kern3[0:2,1]=1 kern4 = np.copy(kern) kern4[1:3,1]=1 # Prepare a larger kernel for dilation kern[1,0:3]=1 kern[0:3,1]=1 # Perform erosion with 4 small kernels device, e1_img = pcv.erode(tr_es_img, kern1, 1, device, args.debug) device, e2_img = pcv.erode(tr_es_img, kern2, 1, device, args.debug) device, e3_img = pcv.erode(tr_es_img, kern3, 1, device, args.debug) device, e4_img = pcv.erode(tr_es_img, kern4, 1, device, args.debug) # Combine eroded images device, c12_img = pcv.logical_or(e1_img, e2_img, device, args.debug) device, c123_img = pcv.logical_or(c12_img, e3_img, device, args.debug) device, c1234_img = pcv.logical_or(c123_img, e4_img, device, args.debug) # Perform dilation device, dil_img = pcv.dilate(c1234_img, kern, 1, device, args.debug) # Get masked image # The dilated image may contain some pixels which are not plant device, masked_erd = pcv.apply_mask(img, c1234_img, 'black', device, args.debug) device, masked_erd_dil = pcv.apply_mask(img, dil_img, 'black', device, args.debug) # Need to remove the edges of the image, we did that by generating a set of rectangles to mask the edges # img is (254 X 320) device, box1_img, rect_contour1, hierarchy1 = pcv.rectangle_mask(img, (1,1), (64,252), device, args.debug) device, box2_img, rect_contour2, hierarchy2 = pcv.rectangle_mask(img, (256,1), (318,252), device, args.debug) device, box3_img, rect_contour3, hierarchy3 = pcv.rectangle_mask(img, (1,184), (318,252), device, args.debug) device, box4_img, rect_contour4, hierarchy4 = pcv.border_mask(img, (1,1), (318,252), device, args.debug) # combine boxes to filter the edges and car out of the photo device, bx12_img = pcv.logical_or(box1_img, box2_img, device, args.debug) device, bx123_img = pcv.logical_or(bx12_img, box3_img, device, args.debug) device, bx1234_img = pcv.logical_or(bx123_img, box4_img, device, args.debug) device, inv_bx1234_img = pcv.invert(bx1234_img, device, args.debug) # Apply the box mask to the image device, masked_img = pcv.apply_mask(masked_erd_dil, inv_bx1234_img, 'black', device, args.debug) # Generate a binary to send to the analysis function device, mask = pcv.binary_threshold(masked_img, 1, 255, 'light', device, args.debug) pcv.analyze_NIR_intensity(img, args.image, mask, 256, device, args.debug, 'example')