コード例 #1
0
def plot_index_size():
    compile_command = compile_base_command + " " + cpp_ipmt_source
    run(compile_command, print_output=True)

    for textfile_name in textfiles_names:
        textfile_path = textfiles_dir + textfile_name
        textfile_idx_path = textfiles_dir + textfile_name + ".idx"

        plot_values = []
        plot_labels = []
        for compression_algorithm in compression_algorithms:
            for index_algorithm in index_algorithms:
                plot_labels += [compression_algorithm + '-' + index_algorithm]

        for compression_algorithm in compression_algorithms:
            for index_algorithm in index_algorithms:
                index_command = "./a.out index -v %s --compression=%s --indextype=%s" % (
                    textfile_path, compression_algorithm, index_algorithm)

                run(index_command)
                index_size = os.path.getsize(textfile_idx_path)
                plot_values += [index_size]

        PlotUtils.bar_plot(plot_values=plot_values,
                           plot_labels=plot_labels,
                           colors=colors,
                           ylabel="size in bytes",
                           title="Index size of " + textfile_name,
                           save_filename='plots/index-size-' + textfile_name)
コード例 #2
0
def plot_index_time():
    compile_command = compile_base_command + " " + cpp_ipmt_source
    run(compile_command, print_output=True)

    for textfile_name in textfiles_names:
        textfile_path = textfiles_dir + textfile_name

        plot_values = []
        plot_labels = []
        for compression_algorithm in compression_algorithms:
            for index_algorithm in index_algorithms:
                plot_labels += [compression_algorithm + '-' + index_algorithm]

        for compression_algorithm in compression_algorithms:
            for index_algorithm in index_algorithms:
                index_command = "./a.out index -v %s --compression=%s --indextype=%s" % (
                    textfile_path, compression_algorithm, index_algorithm)

                r = functools.partial(run, index_command, print_output=True)
                run_time = get_run_time(r, runs=num_of_runs)

                plot_values += [run_time]
                # plot_data[textfile_name] += [gzip_compressed_size]

        PlotUtils.bar_plot(plot_values=plot_values,
                           plot_labels=plot_labels,
                           colors=colors,
                           ylabel="time in seconds",
                           title="Index time of " + textfile_name,
                           save_filename='plots/index-time-' + textfile_name)
コード例 #3
0
def plot_search_time():
    compile_command = compile_base_command + " " + cpp_ipmt_source
    run(compile_command, print_output=True)

    for textfile_name in textfiles_names:
        textfile_path = textfiles_dir + textfile_name
        textfile_idx_path = textfiles_dir + textfile_name + '.idx'

        plot_data = {}
        for compression_algorithm in compression_algorithms:
            for index_algorithm in index_algorithms:
                plot_data[compression_algorithm + '-' + index_algorithm] = {}
                plot_data[compression_algorithm + '-' +
                          index_algorithm]['x'] = pattern_sizes
                plot_data[compression_algorithm + '-' +
                          index_algorithm]['y'] = []

        plot_data['grep'] = {}
        plot_data['grep']['x'] = pattern_sizes
        plot_data['grep']['y'] = []

        for pattern_size in pattern_sizes:
            patterns_path = '%s-%d' % (textfile_path, pattern_size)

            for compression_algorithm in compression_algorithms:
                for index_algorithm in index_algorithms:
                    # index
                    index_command = "./a.out index -v %s --compression=%s --indextype=%s " % (
                        textfile_path, compression_algorithm, index_algorithm)
                    run(index_command, print_output=True)

                    # search
                    search_command = "./a.out search %s %s -c" % (
                        'pattern', textfile_idx_path)
                    search_command = "./a.out search -c --compression=%s --indextype=%s -p %s %s" % (
                        compression_algorithm, index_algorithm, patterns_path,
                        textfile_idx_path)

                    r = functools.partial(run,
                                          search_command,
                                          print_output=True)
                    run_time = get_run_time(r, runs=num_of_runs)

                    plot_data[compression_algorithm + '-' +
                              index_algorithm]['y'] += [run_time]

            grep_command = 'grep pattern "%s" -o | wc -l' % (textfile_path)
            # grep_command = 'grep -f "%s" "%s" -o | wc -l' % (patterns_path,
            #                                             textfile_path)
            r = functools.partial(run, grep_command)
            run_time = get_run_time(r, runs=num_of_runs)
            plot_data['grep']['y'] += [run_time]

        PlotUtils.line_plot(plots=plot_data,
                            xlabel='Pattern sizes',
                            ylabel='Time in seconds',
                            title='Search time ' + textfile_name,
                            save_filename='plots/search-time-' + textfile_name)
コード例 #4
0
    def evaluate(self, test_data, test_labels, batch_size=64, verbose=0):
        predictions_raw = self.model.predict(test_data,
                                             batch_size=batch_size,
                                             verbose=verbose)
        predictions_labels_indexes = np.argmax(predictions_raw, axis=1)
        test_labels_indexes = np.argmax(test_labels, axis=1)

        confusion_matrix = sklearn_cm(test_labels_indexes,
                                      predictions_labels_indexes)
        PlotUtils.plot_confusion_matrix(confusion_matrix, class_names=LABELS)

        return MathUtils.calculate_loss(
            test_labels, predictions_raw), MathUtils.calculate_accuracy(
                test_labels, predictions_raw), predictions_raw
コード例 #5
0
    def plot_trainingdata(self):
        count = self.trainingdata_count()
        fig, ax = PlotUtils.prepare_figure(len(count))
        ax.bar(range(0, len(count)), count, width=0.7)
        ax.bar(range(0, len(count)), count, width=0.7)
        plt.ylabel(_("Number of training data"))

        return fig
コード例 #6
0
def plot_decompression_time():
    compile_command = compile_base_command + " " + cpp_compression_source
    run(compile_command, print_output=True)

    for textfile_name in textfiles_names:
        textfile_path = textfiles_dir + textfile_name
        textfile_zip_path = textfile_path + ".myzip"

        plot_values = []
        plot_labels = []

        for algorithm in compression_algorithms:
            plot_labels += [algorithm]
        plot_labels += ['gzip']

        for algorithm in compression_algorithms:
            compression_command = run_base_command + ' %s %s compress' % (
                algorithm, textfile_path)
            decompression_command = run_base_command + ' %s %s decompress' % (
                algorithm, textfile_zip_path)
            run(compression_command, print_output=True)

            r = functools.partial(run,
                                  decompression_command,
                                  print_output=True)
            run_time = get_run_time(r, runs=num_of_runs)
            plot_values += [run_time]

        textfile_gzip_path = textfile_path + ".gz"
        gzip_compress_command = "gzip -k -f " + textfile_path
        gzip_decompress_command = "gzip -k -f -d " + textfile_gzip_path
        run(gzip_compress_command)
        r = functools.partial(run, gzip_decompress_command, print_output=True)
        run_time = get_run_time(r, runs=num_of_runs)
        plot_values += [run_time]

        print(plot_values)

        PlotUtils.bar_plot(plot_values=plot_values,
                           plot_labels=plot_labels,
                           colors=colors,
                           ylabel="time in seconds",
                           title="Decompression time of " + textfile_name,
                           save_filename='plots/decompress-time-' +
                           textfile_name)
コード例 #7
0
    def __init__(self, settings, function):  # TODO add settings parameter
        super(self.__class__, self).__init__()
        # read in settings

        num_dims = settings['number_of_dimensions']
        population_size = settings['population_size']
        bounds = settings['bounds']

        if settings['velocity_type'] == 'constriction':
            phi = max(settings['cp'] + settings['cg'], 4.0)
            self.k = 2.0 / abs(2.0 - phi - sqrt(phi * phi - 4.0 * phi))
        else:
            self.k = 1

        # check to make sure num_dims and number of bounds provided match
        if len(bounds) != num_dims:
            raise ValueError(
                "Number of dimensions doesn't match number of bounds provided")

        # set instance variables
        self.settings = settings
        self.function = function
        # initialize population
        self.population = PSO.__gen_population(bounds, population_size,
                                               function)
        self.total_population = population_size
        self.best_x = PSO.__get_best_particle(self.population)
        self.num_iterations = 1

        if settings['plot']:
            try:
                self.plotutils = PlotUtils(num_dims, bounds, function)
                self.__plot_state()
            except ValueError:
                print("Can not plot more than 2 dimensions")
                settings['plot'] = False

        if settings['print_iterations']:
            self.__display_state()

        if settings['step_through']:
            oa_utils.pause()
コード例 #8
0
def plot_compression_size():
    compile_command = '%s %s' % (compile_base_command, cpp_compression_source)
    run(compile_command, print_output=True)

    for textfile_name in textfiles_names:
        textfile_path = textfiles_dir + textfile_name
        textfile_zip_path = textfile_path + ".myzip"

        plot_values = []
        plot_labels = []
        for algorithm in compression_algorithms:
            plot_labels += [algorithm]
        plot_labels += ['gzip']

        for algorithm in compression_algorithms:
            run_command = run_base_command + ' %s %s compress' % (
                algorithm, textfile_path)

            if os.path.exists(textfile_zip_path):
                os.remove(textfile_zip_path)

            run(run_command, print_output=True)
            compressed_size = os.path.getsize(textfile_zip_path)
            plot_values += [compressed_size]

        gzip_command = "gzip -k -f " + textfile_path
        run(gzip_command)
        textfile_gzip_path = textfile_path + ".gz"
        gzip_size = os.path.getsize(textfile_gzip_path)
        plot_values += [gzip_size]

        print(plot_values)

        PlotUtils.bar_plot(plot_values,
                           plot_labels=plot_labels,
                           colors=colors,
                           ylabel="size in bytes",
                           title="Compression size of " + textfile_name,
                           save_filename='plots/compress-size-' +
                           textfile_name)
コード例 #9
0
    def __init__(self, settings, function): # TODO add settings parameter
        super(self.__class__, self).__init__()

        # read in settings
        num_dims        = settings['number_of_dimensions']
        population_size = settings['population_size']
        bounds          = settings['bounds']

        # check to make sure num_dims and number of bounds provided match
        if len(bounds) != num_dims:
            raise ValueError("Number of dimensions doesn't match number of bounds provided")

        # set instance variables
        self.settings        = settings
        self.function        = function
        # initialize population
        self.population      = GA.__gen_population(bounds, population_size, function)
        self.total_organisms = len(self.population)
        self.best_x          = self.population[0]
        self.num_generations = 1
        # stopping criteria variables
        self.func_val_improvement       = 0
        self.num_iter_since_improvement = 0

        if settings['plot']:
            try:
                self.plotutils = PlotUtils(num_dims, bounds, function)
                self.__plot_state()
            except ValueError:
                print("Can not plot more than 2 dimensions")
                settings['plot'] = False

        if settings['print_iterations']:
            self.__display_state()

        if settings['step_through']:
            oa_utils.pause()
コード例 #10
0
 def plot_y_stats(self):
     norm = self.y.norm()
     stdev = self.y.stdev_s()
     upper = [norm[i] + stdev[i] for i in range(0, len(stdev))]
     lower = [norm[i] - stdev[i] for i in range(0, len(stdev))]
     fig, ax = PlotUtils.prepare_figure(len(stdev))
     [
         ax.plot(self.y.data_by_year(year).values,
                 label='individual years',
                 color='blue',
                 alpha=.2)
         for year in range(self.y.timeseries.index[0].year,
                           self.y.timeseries.index[-1].year + 1)
     ]
     ax.plot(upper, color='black')
     ax.plot(lower, color='black', label="+/- STDEV")
     ax.plot(norm, label="NORM", color='red')
     handles, labels = ax.get_legend_handles_labels()
     ax.legend(handles[-3:], labels[-3:])
     plt.ylabel(self.y.label)
     return fig
コード例 #11
0
    def write_html(self,
                   username,
                   organization,
                   site_code,
                   site_name,
                   forecast_model_name,
                   forecast_method,
                   forecast_model_params,
                   forecast_method_params,
                   filename=None,
                   htmlpage=None,
                   language='en'):

        activate(language)

        if self.y.mode == 'p':
            frequency = 'fiveday'
        elif self.y.mode == 'd':
            frequency = 'decade'
        elif self.y.mode == 'm':
            frequency = 'monthly'

        page = self.load_template_file()
        scatter_plot = PlotUtils.plot_ts_comparison(
            self.y_adj.timeseries,
            self.forecast.timeseries,
            frequency,
            language=language,
        )

        scaled_error_title = _('Scaled Error [RMSE/STDEV]')
        scaled_error_plot = PlotUtils.plot_rel_error(self.rel_error,
                                                     frequency,
                                                     title=scaled_error_title)
        scaled_error_table = self.rel_error_table(frequency)

        p_plot_title = _('P% Plot')
        p_plot_plot = PlotUtils.plot_p(self.p, frequency, title=p_plot_title)
        p_plot_table = self.p_plot_table(frequency)

        quality_assessment_table = self.summary_table(frequency)

        report_data = {
            'SITE_INFO':
            _('Station: {code} - {name}').format(code=to_str(site_code),
                                                 name=to_str(site_name)),
            'USERNAME':
            username,
            'ORGANIZATION':
            organization,
            'TITLE':
            _('Forecast Model Training Report'),
            'REPORT_DATE':
            format_date(format='long', locale=language),
            'PLOTS_HEADER':
            _('{frequency} Forecast Model Quality Assessment').format(
                frequency=frequency.capitalize()),
            'SCATTER_PLOT_LABEL':
            _('Scatter Plot: Observed versus Predicted values'),
            'SCALED_ERROR_LABEL':
            scaled_error_title,
            'P_PLOT_LABEL':
            p_plot_title,
            'QUALITY_ASSESSMENT_LABEL':
            _('Quality Assessment'),
            'SCATTER_PLOT_IMAGE':
            scatter_plot,
            'SCALED_ERROR_PLOT_IMAGE':
            scaled_error_plot,
            'SCALED_ERROR_TABLE':
            scaled_error_table,
            'P_PLOT_IMAGE':
            p_plot_plot,
            'P_PLOT_TABLE':
            p_plot_table,
            'QUALITY_ASSESSMENT_TABLE':
            quality_assessment_table,
            'FORECAST_MODEL_INFO':
            _('Forecast model info:'),
            'FORECAST_MODEL_NAME':
            _('Name: ') + forecast_model_name,
            'FORECAST_METHOD':
            _('Method: ') + forecast_method,
            'FORECAST_MODEL_PARAMS':
            _('Model parameters: ') + str(forecast_model_params),
            'FORECAST_METHOD_PARAMS':
            _('Method parameters: ') + str(forecast_method_params),
        }

        report_data.update(self.get_spacers(frequency, language))

        self.encode_utf8(report_data)

        if filename:
            htmlpage = open(filename, 'w')
            htmlpage.write(page.safe_substitute(**report_data))
            htmlpage.close()
            return filename
        elif htmlpage:
            htmlpage.write(page.safe_substitute(**report_data))
            return htmlpage
コード例 #12
0
class GA(Timer, object):
    """A genetic algorithm class that contains methods for handling
    the population over generations/iterations

    Attributes:
        There are not attributes for this class. All settings/attributes
        are read in from ga_settings.py which should be located in the same
        directory as this file

    NOTE: The GA methods assume the population array is sorted
    """

    def __init__(self, settings, function): # TODO add settings parameter
        super(self.__class__, self).__init__()

        # read in settings
        num_dims        = settings['number_of_dimensions']
        population_size = settings['population_size']
        bounds          = settings['bounds']

        # check to make sure num_dims and number of bounds provided match
        if len(bounds) != num_dims:
            raise ValueError("Number of dimensions doesn't match number of bounds provided")

        # set instance variables
        self.settings        = settings
        self.function        = function
        # initialize population
        self.population      = GA.__gen_population(bounds, population_size, function)
        self.total_organisms = len(self.population)
        self.best_x          = self.population[0]
        self.num_generations = 1
        # stopping criteria variables
        self.func_val_improvement       = 0
        self.num_iter_since_improvement = 0

        if settings['plot']:
            try:
                self.plotutils = PlotUtils(num_dims, bounds, function)
                self.__plot_state()
            except ValueError:
                print("Can not plot more than 2 dimensions")
                settings['plot'] = False

        if settings['print_iterations']:
            self.__display_state()

        if settings['step_through']:
            oa_utils.pause()

#    def __del__(self):
#        del(self.plotutils)
#
    @staticmethod
    def __gen_organism(id, bounds, function):
        # use gen_random_numbers to get a list of positions within the bounds
        return Organism(id, oa_utils.gen_random_numbers(bounds), function)

    @staticmethod
    def __gen_population(bounds, size, function):
        b = bounds
        f = function
        # generate a list of organisms
        p = [GA.__gen_organism(i+1, b, f) for i in range(0, size)]
        return GA.__sort_population(p)

    @staticmethod
    def __sort_population(p):
        return sorted(p, key=lambda o: o.fitness)

    ###########################
    ###  GA steps and loop  ###
    ###########################

    '''
    Three possible ways of doing this.
    1. have a setting that says we kill of last 20% of array or population
    2. the further you are down the array the higher your probability of dieing
    3. kill off the worst based on their distance from the best
    TODO write a test for this. simple 10 population w/ .5 cutoff test will do
    '''
    @staticmethod
    def __selection(population, cutoff, print_action=False):
        size    = len(population)
        max_f = population[0].fitness
        min_f = population[size-1].fitness

        # denominator in probability of surviving
        den = (max_f - min_f)
        # if den == 0:
        #     print("Every organism has same objective function value.")

        for (i, organism) in enumerate(population):
            f = organism.fitness

            # check for division by zero
            if den == 0:
                normalized_f = 0
            else: # get normalized value
                normalized_f = float(f - min_f) / den

            if normalized_f > cutoff:
                # delete the organism from the population
                del population[i]

                if print_action:
                    print("Selection: Deleting organism %s" % str(organism))

        return population

    @staticmethod
    def __get_parent_index(cdf_value, arr):
        norm_sum = 0
        for i, o in enumerate(arr):
            norm_sum += o['probability']
            if norm_sum >= cdf_value:
                return i
        return -1

    @staticmethod
    def __mate_parents(id, parent1, parent2, function):
        n = len(parent1.pos)
        # randomly choose split position
        split = random.randint(0, n-1)
        # split parent positions
        pos1 = parent1.pos[0:split] + parent2.pos[split:]
        pos2 = parent2.pos[0:split] + parent1.pos[split:]
        # get id numbers
        id1 = id + 1
        id2 = id + 2
        # return the two newly created organisms
        return (Organism(id1, pos1, function), Organism(id2, pos2, function))

    """
        population: population
        size: size that the population should be after crossover
        NOTE: population must be sorted. crossover will return an unsorted
              array of the new population.
    """
    @staticmethod
    def __crossover(id, population, size, function, print_action=False):
        new_population = []
        length = len(population)
        max_f = population[length-1].fitness
        min_f = population[0].fitness

        den = max_f - min_f

        # if size is odd
        if size % 2 == 1:
            raise ValueError("Populations with an odd size hasn't been implemented. Talk to Jesse")

        # get inversed normalized values of fitness
        # normalized value of 1 is the best. 0 is the worst
        probabilities = []
        normalized_sum = 0.0
        for o in population:
            if den == 0:
                normalized_f = 1
            else:
                normalized_f = (max_f - o.fitness)/den
            normalized_sum += normalized_f
            probabilities.append({'normalized_f': normalized_f})

        # calculate weight of each normalized value
        for i, p in enumerate(probabilities):
            probabilities[i]['probability'] = probabilities[i]['normalized_f']/normalized_sum

        # generate new population
        while len(new_population) < size:
            # get cdf input values
            cdf1 = random.random()
            cdf2 = random.random()
            # get index of parent from output of cdf
            i = GA.__get_parent_index(cdf1, probabilities)
            j = GA.__get_parent_index(cdf2, probabilities)
            # mate parents
            child1, child2 = GA.__mate_parents(id, population[i], population[j], function)
            id += 2
            # append children to new_population
            new_population.extend((child1, child2))

        if print_action:
            for organism in new_population:
                print("Crossover: New oganism %s" % str(organism))

        return new_population

    @staticmethod
    def __mutation(population, bounds, rate, max_mutation_amount, print_action=False):
        for organism in population:
            if random.random() < rate:
                new_pos = []
                # for each dimension
                for i in range(0, len(bounds)):
                    # take some percentage of the max mutation amount
                    x = random.uniform(0.01, 1.00)
                    delta_pos = (-1.0*log(1-x))*max_mutation_amount
                    # should we go positive or negative
                    if random.randint(0,1) == 1: delta_pos = -1.0*delta_pos
                    new_dim_pos = organism.pos[i] + delta_pos
                    # cap where we can go if we are beyond the bounds of the design space
                    if new_dim_pos < bounds[i][0]:
                        new_dim_pos = bounds[i][0]
                    elif new_dim_pos > bounds[i][1]:
                        new_dim_pos = bounds[i][1]

                    new_pos.append(new_dim_pos)

                if print_action:
                    new_pos_str = "["
                    for x in new_pos:
                        new_pos_str += "%6.3f " % x
                    new_pos_str += "]"
                    print("Mutation: Moving organism %s to %s" % \
                          (str(organism), new_pos_str))

                organism.pos = new_pos
                organism.fitness = organism.get_fval()

        return population

    def __display_state(self):
        print("The best organism in generation %d is %s" \
                % (self.num_generations, str(self.get_best_x())))

    def __plot_state(self):
        pts = [(organism.pos[0], organism.pos[1]) for organism in self.population]
        self.plotutils.plot(pts)

    def __str__(self):
        return "Iteration %d Best Fitness: %8.4f by organism %s" % \
                (self.num_generations, self.get_best_f(), str(self.get_best_x()))

    ####################################
    # These are the only methods that  #
    # should be called outside of this #
    # class                            #
    ####################################
    def get_best_x(self):
        return self.best_x

    def get_best_f(self):
        return self.best_x.fitness

    def do_loop(self):
        population = self.population

        population = GA.__selection(population,                        \
                                    self.settings['selection_cutoff'], \
                                    self.settings['print_actions'])

        population = GA.__crossover(self.total_organisms, \
                                    population,           \
                                    self.settings['population_size'], \
                                    self.function,        \
                                    self.settings['print_actions'])
        self.total_organisms += len(population)

        population = GA.__mutation(population, \
                                   self.settings['bounds'], \
                                   self.settings['mutation_rate'],       \
                                   self.settings['max_mutation_amount'], \
                                   self.settings['print_actions'])

        self.population = GA.__sort_population(population)
        self.num_generations += 1

        if self.population[0].fitness < self.best_x.fitness:
            # add on the improvement in function value
            self.func_val_improvement += (self.best_x.fitness - self.population[0].fitness)
            self.best_x = self.population[0]

        if self.settings['plot']:
            self.__plot_state()

        if self.settings['print_iterations']:
            self.__display_state()

        if self.settings['step_through']:
            oa_utils.pause()

    def run(self):
        # iterate over generations
        while self.settings['num_iterations'] > self.num_generations:
            self.do_loop()

            # check if we've improved our function value
            if self.func_val_improvement > self.settings['stopping_criteria']:
                self.func_val_improvement = 0
                self.num_iter_since_improvement = 0
            else:
                self.num_iter_since_improvement += 1

            # check if we haven't improved at all in num of stopping criteria steps
            if self.num_iter_since_improvement > self.settings['num_iter_stop_criteria']:
                if self.settings['print_actions'] or self.settings['print_iterations']:
                    print("Stopping criteria met after %d number of iterations" % self.num_generations)
                break

            # pause for a bit if setting is set
            time.sleep(self.settings['time_delay'])

        if self.num_generations > self.settings['num_iterations']:
            if self.settings['print_actions'] or self.settings['print_iterations']:
                print("Maximum number of iterations hit (%d)" % self.num_generations)

    @staticmethod
    def get_name():
        return "Genetic Algorithm"
コード例 #13
0
class PSO(Timer, object):
    """A particle swarm class that contains methods for handling
    the population over iterations

    Attributes:
        There are not attributes for this class. All settings/attributes
        are read in from pso_settings.py which should be located in the same
        directory as this file
    """
    def __init__(self, settings, function):  # TODO add settings parameter
        super(self.__class__, self).__init__()
        # read in settings

        num_dims = settings['number_of_dimensions']
        population_size = settings['population_size']
        bounds = settings['bounds']

        if settings['velocity_type'] == 'constriction':
            phi = max(settings['cp'] + settings['cg'], 4.0)
            self.k = 2.0 / abs(2.0 - phi - sqrt(phi * phi - 4.0 * phi))
        else:
            self.k = 1

        # check to make sure num_dims and number of bounds provided match
        if len(bounds) != num_dims:
            raise ValueError(
                "Number of dimensions doesn't match number of bounds provided")

        # set instance variables
        self.settings = settings
        self.function = function
        # initialize population
        self.population = PSO.__gen_population(bounds, population_size,
                                               function)
        self.total_population = population_size
        self.best_x = PSO.__get_best_particle(self.population)
        self.num_iterations = 1

        if settings['plot']:
            try:
                self.plotutils = PlotUtils(num_dims, bounds, function)
                self.__plot_state()
            except ValueError:
                print("Can not plot more than 2 dimensions")
                settings['plot'] = False

        if settings['print_iterations']:
            self.__display_state()

        if settings['step_through']:
            oa_utils.pause()

    @staticmethod
    def __gen_particle(id, bounds, function):
        # use gen_random_numbers to get a list of positions within the bounds
        return Particle(id, oa_utils.gen_random_numbers(bounds), function)

    @staticmethod
    def __gen_population(bounds, size, function):
        b = bounds
        f = function
        # generate a list of organisms
        p = [PSO.__gen_particle(i + 1, b, f) for i in range(0, size)]
        return p

    ###########################
    ###  PSO steps and loop  ###
    ###########################
    @staticmethod
    def __update_velocity(population, velocity_type, print_actions, gbest, cp,
                          cg, k, w):
        for p in population:
            if (velocity_type == 'normal'):
                p.velocity = PSO.__get_velocity(1, cp, cg, gbest, p, 1)
            elif (velocity_type == 'inertia'):
                p.velocity = PSO.__get_velocity(k, cp, cg, gbest, p, w)
            elif (velocity_type == 'constriction'):
                p.velocity = PSO.__get_velocity(k, cp, cg, gbest, p, 1)
        return population

    @staticmethod
    def __get_velocity(k, c1, c2, gbest, p, w):
        velocity_array = []
        for i, v in enumerate(p.velocity):
            velocity_array.append(
                k * (w * v + c1 * random.random() *
                     (p.pbest[i] - p.pos[i]) + c2 * random.random() *
                     (gbest[i] - p.pos[i])))
        return velocity_array

    @staticmethod
    def __update_position(
            population):  # TODO put bounds on what position can be updated to
        for p in population:
            p.pos = list(map(add, p.pos, p.velocity))
            p.fval = p.get_fval()
        return population

    @staticmethod
    def __get_best_particle(population):
        return copy.deepcopy(min(population, key=attrgetter('fval')))

    def __display_state(self):
        print("The best organism in generation %d is %s" \
                % (self.num_generations, str(self.get_best_x())))

    def __plot_state(self):
        pts = [(organism.pos[0], organism.pos[1])
               for organism in self.population]
        self.plotutils.plot(pts)

    def __str__(self):
        return "Best Fitness: %8.4f by particle %s" % \
                (self.get_best_f(), str(self.get_best_x()))

    ####################################
    # These are the only methods that  #
    # should be called outside of this #
    # class                            #
    ####################################
    def get_best_x(self):
        return self.best_x

    def get_best_f(self):
        return self.best_x.fval

    def do_loop(self):
        population = self.population

        population = PSO.__update_velocity(population,              \
                                    self.settings['velocity_type'], \
                                    self.settings['print_actions'], \
                                    self.get_best_x().pos,          \
                                    self.settings['cp'],            \
                                    self.settings['cg'],            \
                                    self.k,                         \
                                    self.settings['weight'])

        if self.settings['cg_plus']:
            self.settings['cg'] += 0.1
            phi = max(self.settings['cp'] + self.settings['cg'], 4.0)
            self.k = 2.0 / abs(2.0 - phi - sqrt(phi * phi - 4.0 * phi))

        population = PSO.__update_position(population)

        self.num_iterations += 1

        self.population = population

        current_best = PSO.__get_best_particle(self.population)

        if current_best.get_fval() < self.best_x.get_fval():
            self.best_x = current_best

        if self.settings['plot']:
            self.__plot_state()

        if self.settings['print_iterations']:
            self.__display_state()

        if self.settings['step_through']:
            oa_utils.pause()

    def run(self):
        # iterate over generations
        while self.settings['num_iterations'] > self.num_iterations:
            self.do_loop()
            time.sleep(self.settings['time_delay'])

    @staticmethod
    def get_name():
        return "Particle Swarm"
コード例 #14
0
# then we can import PlotUtils
from plot_utils import PlotUtils

# you could import settings from a separate file like so
from settings import settings

# plot util variable. probably make this an instance
# variable in a class
plotutils = None

if settings['plot']:
    try:
        # Create PlotUtils instance
        # 2 params. number of dimensions and an array of 2D lists with
        # the bounds for each dimension. ex [(-10,10), (-10,10)]
        plotutils = PlotUtils(settings['num_dims'], settings['bounds'])
    except ValueError:
        print("Can not plot more than 2 dimensions!")
        # set this to false so that we don't try to use
        # the plotutils variable later on
        settings['plot'] = False

# data should be an array of 2D lists with x1 and x2 data
data = [(1, 1), (8, 4), (-4, -9)]

# open or update plot
if settings['plot']:
    plotutils.plot(data)

# you can put plotutils.plot(data) in a loop and continually update
# the plot. Here I just wait for you to press enter, after which the