def rowxcol(row, col): """Multiply one row and one column.""" row = row.reshape(4, 4) col = col.reshape(4, 8) ret = uint2exprs(0, 8) for i in range(4): for j in range(4): if row[i, j]: ret ^= xtime(col[i], j) return ret
def test_uint2exprs(): assert_raises(ValueError, uint2exprs, -1) assert_raises(ValueError, uint2exprs, 42, 4) assert str(uint2exprs(0)) == "farray([0])" assert str(uint2exprs(1)) == "farray([1])" assert str(uint2exprs(2)) == "farray([0, 1])" assert str(uint2exprs(3)) == "farray([1, 1])" assert str(uint2exprs(4)) == "farray([0, 0, 1])" assert str(uint2exprs(4, 4)) == "farray([0, 0, 1, 0])"
def test_bin2gray(): B = exprvars('B', 4) G = bin2gray(B) gnums = [G.vrestrict({B: uint2exprs(i, 4)}).to_uint() for i in range(16)] assert gnums == [0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8]
def test_gray2bin(): G = exprvars('G', 4) B = gray2bin(G) gnums = [0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8] bnums = [B.vrestrict({G: uint2exprs(i, 4)}).to_uint() for i in gnums] assert bnums == list(range(16))
def xtime(b, n): """Repeated polynomial multiplication in GF(2^8).""" b = b.reshape(8) for _ in range(n): b = exprzeros(1) + b[:7] ^ uint2exprs(0x1b, 8) & b[7]*8 return b
_MA = [ 0x2311, 0x1231, 0x1123, 0x3112, ] _IMA = [ 0xebd9, 0x9ebd, 0xd9eb, 0xbd9e, ] # 16x16x8 SBOX = fcat(*[uint2exprs(x, 8) for x in _SBOX]).reshape(256, 8) ISBOX = fcat(*[uint2exprs(x, 8) for x in _ISBOX]).reshape(256, 8) # 255 RCON = fcat(*[uint2exprs(x, 8) for x in _RCON]).reshape(255, 8) # 4x16 MA = fcat(*[uint2exprs(x, 16) for x in _MA]).reshape(4, 16) IMA = fcat(*[uint2exprs(x, 16) for x in _IMA]).reshape(4, 16) def subword(w): """ Function used in the Key Expansion routine that takes a four-byte input word and applies an S-box to each of the four bytes to produce an output word. """ w = w.reshape(4, 8)
def test_farray(): # expected shape volume to match items assert_raises(ValueError, farray, [X[0], X[1]], shape=((0, 42), )) # could not determine ftype parameter assert_raises(ValueError, farray, []) # expected ftype to be a type assert_raises(TypeError, farray, [X[0], X[1]], ftype=42) # expected ftype to match items assert_raises(ValueError, farray, [X[0], X[1]], ftype=BinaryDecisionDiagram) # expected ftype to be a property subclass of Function assert_raises(TypeError, farray, [], ftype=int) # expected a sequence of Function assert_raises(TypeError, farray, 42) assert_raises(TypeError, farray, [1, 2, 3, 4]) # expected uniform dimensions assert_raises(ValueError, farray, [[a, b], [w, x, y, z], 42]) assert_raises(ValueError, farray, [[a, b], [w, x, y, z]]) # expected uniform types assert_raises(ValueError, farray, [[a, b], [c, bddvar('d')]]) assert_raises(ValueError, farray, [[a, b], [bddvar('c'), bddvar('d')]]) # _check_shape errors assert_raises(ValueError, farray, [a, b, c, d], shape=((-1, 3), )) assert_raises(ValueError, farray, [a, b, c, d], shape=((3, -1), )) assert_raises(ValueError, farray, [a, b, c, d], shape=((5, 1), )) assert_raises(TypeError, farray, [a, b, c, d], shape=(('foo', 'bar'), )) assert_raises(TypeError, farray, [a, b, c, d], shape=42) temp = farray([[a, b], [c, d]]) assert str(temp) == """\ farray([[a, b], [c, d]])\ """ # __str__ Z = exprvars('z', 2, 2, 2) assert str(Z) == """\ farray([[[z[0,0,0], z[0,0,1]], [z[0,1,0], z[0,1,1]]], [[z[1,0,0], z[1,0,1]], [z[1,1,0], z[1,1,1]]]])\ """ assert str(farray([], ftype=Expression)) == "farray([])" # __getitem__ # expected <= M slice dimensions, got N assert_raises(ValueError, X.__getitem__, (2, 2)) sel = exprvars('s', 2) assert str(X[sel]) == "Or(And(~s[0], ~s[1], x[0]), And(s[0], ~s[1], x[1]), And(~s[0], s[1], x[2]), And(s[0], s[1], x[3]))" assert str(X[:2][sel[0]]) == "Or(And(~s[0], x[0]), And(s[0], x[1]))" # expected clog2(N) bits assert_raises(ValueError, X.__getitem__, sel[0]) # slice step not supported assert_raises(ValueError, X.__getitem__, slice(None, None, 2)) # type error assert_raises(TypeError, X.__getitem__, 'foo') # norm_index assert X[-1] is X[3] assert_raises(IndexError, X.__getitem__, 42) # norm_indices assert X[-3:-1]._items == [X[-3], X[-2]] assert not X[-8:-10]._items assert not X[-10:-8]._items assert not X[8:10]._items assert not X[10:8]._items assert not X[3:1]._items # __setitem__ Z = exprzeros(4, 4) Z[0,0] = X[0] assert Z._items[0] is X[0] # expected item to be a Function assert_raises(TypeError, Z.__setitem__, (0, 0), 42) Z[0,:] = X[:4] assert Z._items[0:4] == [X[0], X[1], X[2], X[3]] # expected item to be an farray assert_raises(TypeError, Z.__setitem__, (0, slice(None, None, None)), 42) # expected item.size = ... assert_raises(ValueError, Z.__setitem__, ..., X[:2]) # slice step not supported assert_raises(ValueError, X.__setitem__, slice(None, None, 2), 42) # type error assert_raises(TypeError, X.__setitem__, 'foo', 42) # __add__ assert (0 + X)._items[0].is_zero() assert (X + 0)._items[4].is_zero() assert (Y[0] + X)._items[0] is Y[0] assert (X + Y[0])._items[4] is Y[0] assert (X[:2] + Y[2:])._items == [X[0], X[1], Y[2], Y[3]] # expected Function or farray assert_raises(TypeError, X.__add__, 42) assert_raises(TypeError, X.__radd__, 42) A = exprvars('a', 2, 5, 6) B = exprvars('b', 2, 5, 6) C = exprvars('c', (1, 3), 5, 6) # regular MDA will retain shape assert (A+B).shape == ((0, 4), (0, 5), (0, 6)) # irregular MDA will not assert (A+C).shape == ((0, 4*5*6), ) # regular MDA will retain shape assert (A*2).shape == ((0, 4), (0, 5), (0, 6)) # irregular MDA will not assert (C*2).shape == ((0, 4*5*6), ) # __mul__ # expected multiplier to be an int assert_raises(TypeError, X.__mul__, 'foo') # expected multiplier to be non-negative assert_raises(ValueError, X.__mul__, -2) assert (X[:2] * 2)._items == [X[0], X[1], X[0], X[1]] assert (2 * X[:2])._items == [X[0], X[1], X[0], X[1]] # offsets Z = exprzeros((1, 5), (17, 21)) assert Z.offsets == (1, 17) # reshape assert Z.reshape(4, 4).shape == ((0, 4), (0, 4)) # expected shape with equal volume assert_raises(ValueError, Z.reshape, 42, 42) # restrict assert str(X.vrestrict({X: '0101'})) == "farray([0, 1, 0, 1])" # compose assert X.compose({X[0]: Y[0]})._items[0] == Y[0] # to_uint / to_int assert uint2exprs(42).to_uint() == 42 assert uint2exprs(42, 8).to_uint() == 42 # expected all functions to be a constant (0 or 1) form assert_raises(ValueError, X.to_uint) # expected num >= 0 assert_raises(ValueError, uint2exprs, -1) # overflow assert_raises(ValueError, uint2exprs, 42, 2) assert_raises(ValueError, int2exprs, 42, 2) assert int2exprs(-42).to_int() == -42 assert int2exprs(-42, 8).to_int() == -42 assert int2exprs(42).to_int() == 42 assert int2exprs(42, 8).to_int() == 42 # zext, sext assert X.zext(1)[4].is_zero() assert X.sext(1)[4] is X[3] # __invert__, __or__, __and__, __xor__ assert str(~X) == "farray([~x[0], ~x[1], ~x[2], ~x[3]])" assert str(X | Y) == "farray([Or(x[0], y[0]), Or(x[1], y[1]), Or(x[2], y[2]), Or(x[3], y[3])])" assert str(X & Y) == "farray([And(x[0], y[0]), And(x[1], y[1]), And(x[2], y[2]), And(x[3], y[3])])" assert str(X ^ Y) == "farray([Xor(x[0], y[0]), Xor(x[1], y[1]), Xor(x[2], y[2]), Xor(x[3], y[3])])" # _op_shape # expected farray input assert_raises(TypeError, X.__or__, 42) Z = exprvars('z', 2, 2) assert str(X | Z) == "farray([Or(x[0], z[0,0]), Or(x[1], z[0,1]), Or(x[2], z[1,0]), Or(x[3], z[1,1])])" Z = exprvars('z', 2, 3) # expected operand sizes to match assert_raises(ValueError, X.__or__, Z) # lsh, rsh assert str(X.lsh(0)) == "(farray([x[0], x[1], x[2], x[3]]), farray([]))" assert str(X << 0) == "farray([x[0], x[1], x[2], x[3]])" assert str(X.lsh(2)) == "(farray([0, 0, x[0], x[1]]), farray([x[2], x[3]]))" assert str(X << 2) == "farray([0, 0, x[0], x[1]])" assert str(X << (2, Y[:2])) == "farray([y[0], y[1], x[0], x[1]])" assert str(X.rsh(0)) == "(farray([x[0], x[1], x[2], x[3]]), farray([]))" assert str(X >> 0) == "farray([x[0], x[1], x[2], x[3]])" assert str(X.rsh(2)) == "(farray([x[2], x[3], 0, 0]), farray([x[0], x[1]]))" assert str(X >> 2) == "farray([x[2], x[3], 0, 0])" assert str(X >> (2, Y[:2])) == "farray([x[2], x[3], y[0], y[1]])" assert_raises(TypeError, X.__lshift__, 'foo') assert_raises(ValueError, X.__lshift__, -1) assert_raises(ValueError, X.__lshift__, (2, Y)) assert_raises(TypeError, X.__rshift__, 'foo') assert_raises(ValueError, X.__rshift__, -1) assert_raises(ValueError, X.__rshift__, (2, Y)) # arsh assert str(X.arsh(0)) == "(farray([x[0], x[1], x[2], x[3]]), farray([]))" assert str(X.arsh(2)) == "(farray([x[2], x[3], x[3], x[3]]), farray([x[0], x[1]]))" assert_raises(ValueError, X.arsh, -1) # unary ops assert str(X.uor()) == "Or(x[0], x[1], x[2], x[3])" assert str(X.unor()) == "Not(Or(x[0], x[1], x[2], x[3]))" assert str(X.uand()) == "And(x[0], x[1], x[2], x[3])" assert str(X.unand()) == "Not(And(x[0], x[1], x[2], x[3]))" assert str(X.uxor()) == "Xor(x[0], x[1], x[2], x[3])" assert str(X.uxnor()) == "Not(Xor(x[0], x[1], x[2], x[3]))" # decode assert str(farray([], ftype=Expression).decode()) == "farray([1])" assert str(X[:2].decode()) == "farray([And(~x[0], ~x[1]), And(x[0], ~x[1]), And(~x[0], x[1]), And(x[0], x[1])])"
def xtime(b, n): """Repeated polynomial multiplication in GF(2^8).""" b = b.reshape(8) for _ in range(n): b = exprzeros(1) + b[:7] ^ uint2exprs(0x1b, 8) & b[7] * 8 return b
_MA = [ 0x2311, 0x1231, 0x1123, 0x3112, ] _IMA = [ 0xebd9, 0x9ebd, 0xd9eb, 0xbd9e, ] # 16x16x8 SBOX = fcat(*[uint2exprs(x, 8) for x in _SBOX]).reshape(256, 8) ISBOX = fcat(*[uint2exprs(x, 8) for x in _ISBOX]).reshape(256, 8) # 255 RCON = fcat(*[uint2exprs(x, 8) for x in _RCON]).reshape(255, 8) # 4x16 MA = fcat(*[uint2exprs(x, 16) for x in _MA]).reshape(4, 16) IMA = fcat(*[uint2exprs(x, 16) for x in _IMA]).reshape(4, 16) def subword(w): """ Function used in the Key Expansion routine that takes a four-byte input word and applies an S-box to each of the four bytes to produce an output word. """
def uint2bv(num, length=None): """Convert an unsigned integer to a BitVector.""" warn("vexpr.uint2bv is deprecated. Use bfarray.uint2exprs instead.") return bfarray.uint2exprs(num, length)
def uadd(S, A, B, aval, bval): N = len(A) R = S.vrestrict({A: uint2exprs(aval, N), B: uint2exprs(bval, N)}) return R.to_uint()
def uadd(s, a, b, aval, bval): n = len(a) r_ = s.vrestrict({a: uint2exprs(aval, n), b: uint2exprs(bval, n)}) return r_.to_uint()