コード例 #1
0
def save_features_in_contigs(results_dirpath, contigs_fpaths, feature_name,
                             feature_in_contigs, ref_feature_num):
    json_fpath = json_saver.save_features_in_contigs(results_dirpath,
                                                     contigs_fpaths,
                                                     feature_name,
                                                     feature_in_contigs,
                                                     ref_feature_num)
    if json_fpath:
        append(results_dirpath, json_fpath, feature_name + 'InContigs')
コード例 #2
0
ファイル: genome_analyzer.py プロジェクト: lucian-ilie/LASER
def do(ref_fpath, aligned_contigs_fpaths, output_dirpath, json_output_dirpath,
       genes_fpaths, operons_fpaths, detailed_contigs_reports_dirpath, genome_stats_dirpath):

    nucmer_path_dirpath = os.path.join(detailed_contigs_reports_dirpath, 'nucmer_output')
    from quast_libs import search_references_meta
    if search_references_meta.is_quast_first_run:
        nucmer_path_dirpath = os.path.join(nucmer_path_dirpath, 'raw')

    logger.print_timestamp()
    logger.main_info('Running Genome analyzer...')

    if not os.path.isdir(genome_stats_dirpath):
        os.mkdir(genome_stats_dirpath)

    reference_chromosomes = {}
    genome_size = 0
    for name, seq in fastaparser.read_fasta(ref_fpath):
        chr_name = name.split()[0]
        chr_len = len(seq)
        genome_size += chr_len
        reference_chromosomes[chr_name] = chr_len

    # reading genome size
    # genome_size = fastaparser.get_lengths_from_fastafile(reference)[0]
    # reading reference name
    # >gi|48994873|gb|U00096.2| Escherichia coli str. K-12 substr. MG1655, complete genome
    # ref_file = open(reference, 'r')
    # reference_name = ref_file.readline().split()[0][1:]
    # ref_file.close()

    # RESULTS file
    result_fpath = genome_stats_dirpath + '/genome_info.txt'
    res_file = open(result_fpath, 'w')

    genes_container = FeatureContainer(genes_fpaths, 'gene')
    operons_container = FeatureContainer(operons_fpaths, 'operon')
    for container in [genes_container, operons_container]:
        if not container.fpaths:
            logger.notice('No file with ' + container.kind + 's provided. '
                          'Use the -' + container.kind[0].capitalize() + ' option '
                          'if you want to specify it.', indent='  ')
            continue

        for fpath in container.fpaths:
            container.region_list += genes_parser.get_genes_from_file(fpath, container.kind)

        if len(container.region_list) == 0:
            logger.warning('No ' + container.kind + 's were loaded.', indent='  ')
            res_file.write(container.kind + 's loaded: ' + 'None' + '\n')
        else:
            logger.info('  Loaded ' + str(len(container.region_list)) + ' ' + container.kind + 's')
            res_file.write(container.kind + 's loaded: ' + str(len(container.region_list)) + '\n')
            container.chr_names_dict = chromosomes_names_dict(container.kind, container.region_list, reference_chromosomes.keys())

    for contigs_fpath in aligned_contigs_fpaths:
        report = reporting.get(contigs_fpath)
        if genes_container.fpaths:
            report.add_field(reporting.Fields.REF_GENES, len(genes_container.region_list))
        if operons_container.fpaths:
            report.add_field(reporting.Fields.REF_OPERONS, len(operons_container.region_list))

    # for cumulative plots:
    files_genes_in_contigs = {}   #  "filename" : [ genes in sorted contigs (see below) ]
    files_operons_in_contigs = {}

    # for histograms
    genome_mapped = []
    full_found_genes = []
    full_found_operons = []

    # process all contig files
    num_nf_errors = logger._num_nf_errors
    n_jobs = min(len(aligned_contigs_fpaths), qconfig.max_threads)
    from joblib import Parallel, delayed
    process_results = Parallel(n_jobs=n_jobs)(delayed(process_single_file)(
        contigs_fpath, index, nucmer_path_dirpath, genome_stats_dirpath,
        reference_chromosomes, genes_container, operons_container)
        for index, contigs_fpath in enumerate(aligned_contigs_fpaths))
    num_nf_errors += len([res for res in process_results if res is None])
    logger._num_nf_errors = num_nf_errors
    process_results = [res for res in process_results if res]
    if not process_results:
        logger.main_info('Genome analyzer failed for all the assemblies.')
        res_file.close()
        return

    ref_lengths = [process_results[i][0] for i in range(len(process_results))]
    results_genes_operons_tuples = [process_results[i][1] for i in range(len(process_results))]
    for ref in reference_chromosomes:
        ref_lengths_by_contigs[ref] = [ref_lengths[i][ref] for i in range(len(ref_lengths))]
    res_file.write('reference chromosomes:\n')
    for chr_name, chr_len in reference_chromosomes.iteritems():
        aligned_len = max(ref_lengths_by_contigs[chr_name])
        res_file.write('\t' + chr_name + ' (total length: ' + str(chr_len) + ' bp, maximal covered length: ' + str(aligned_len) + ' bp)\n')
    res_file.write('\n')
    res_file.write('total genome size: ' + str(genome_size) + '\n\n')
    res_file.write('gap min size: ' + str(qconfig.min_gap_size) + '\n')
    res_file.write('partial gene/operon min size: ' + str(qconfig.min_gene_overlap) + '\n\n')
    # header
    # header
    res_file.write('\n\n')
    res_file.write('%-25s| %-10s| %-12s| %-10s| %-10s| %-10s| %-10s| %-10s|\n'
        % ('assembly', 'genome', 'duplication', 'gaps', 'genes', 'partial', 'operons', 'partial'))
    res_file.write('%-25s| %-10s| %-12s| %-10s| %-10s| %-10s| %-10s| %-10s|\n'
        % ('', 'fraction', 'ratio', 'number', '', 'genes', '', 'operons'))
    res_file.write('================================================================================================================\n')

    for contigs_fpath, (results, genes_in_contigs, operons_in_contigs) in zip(aligned_contigs_fpaths, results_genes_operons_tuples):
        assembly_name = qutils.name_from_fpath(contigs_fpath)

        files_genes_in_contigs[contigs_fpath] = genes_in_contigs
        files_operons_in_contigs[contigs_fpath] = operons_in_contigs
        full_found_genes.append(sum(genes_in_contigs))
        full_found_operons.append(sum(operons_in_contigs))

        covered_bp = results["covered_bp"]
        gaps_count = results["gaps_count"]
        genes_full = results[reporting.Fields.GENES + "_full"]
        genes_part = results[reporting.Fields.GENES + "_partial"]
        operons_full = results[reporting.Fields.OPERONS + "_full"]
        operons_part = results[reporting.Fields.OPERONS + "_partial"]

        report = reporting.get(contigs_fpath)
        genome_fraction = float(covered_bp) * 100 / float(genome_size)
        duplication_ratio = (report.get_field(reporting.Fields.TOTALLEN) +
                             report.get_field(reporting.Fields.MISINTERNALOVERLAP) +
                             report.get_field(reporting.Fields.AMBIGUOUSEXTRABASES) -
                             report.get_field(reporting.Fields.UNALIGNEDBASES)) /\
                            ((genome_fraction / 100.0) * float(genome_size))

        res_file.write('%-25s| %-10s| %-12s| %-10s|'
        % (assembly_name[:24], '%3.5f%%' % genome_fraction, '%1.5f' % duplication_ratio, gaps_count))

        report.add_field(reporting.Fields.MAPPEDGENOME, '%.3f' % genome_fraction)
        report.add_field(reporting.Fields.DUPLICATION_RATIO, '%.3f' % duplication_ratio)
        genome_mapped.append(genome_fraction)

        for (field, full, part) in [(reporting.Fields.GENES, genes_full, genes_part),
            (reporting.Fields.OPERONS, operons_full, operons_part)]:
            if full is None and part is None:
                res_file.write(' %-10s| %-10s|' % ('-', '-'))
            else:
                res_file.write(' %-10s| %-10s|' % (full, part))
                report.add_field(field, '%s + %s part' % (full, part))
        res_file.write('\n')
    res_file.close()

    if genes_container.region_list:
        ref_genes_num = len(genes_container.region_list)
    else:
        ref_genes_num = None

    if operons_container.region_list:
        ref_operons_num = len(operons_container.region_list)
    else:
        ref_operons_num = None

    # saving json
    if json_output_dirpath:
        if genes_container.region_list:
            json_saver.save_features_in_contigs(json_output_dirpath, aligned_contigs_fpaths, 'genes', files_genes_in_contigs, ref_genes_num)
        if operons_container.region_list:
            json_saver.save_features_in_contigs(json_output_dirpath, aligned_contigs_fpaths, 'operons', files_operons_in_contigs, ref_operons_num)

    if qconfig.html_report:
        from quast_libs.html_saver import html_saver
        if genes_container.region_list:
            html_saver.save_features_in_contigs(output_dirpath, aligned_contigs_fpaths, 'genes', files_genes_in_contigs, ref_genes_num)
        if operons_container.region_list:
            html_saver.save_features_in_contigs(output_dirpath, aligned_contigs_fpaths, 'operons', files_operons_in_contigs, ref_operons_num)

    if qconfig.draw_plots:
        # cumulative plots:
        import plotter
        if genes_container.region_list:
            plotter.genes_operons_plot(len(genes_container.region_list), aligned_contigs_fpaths, files_genes_in_contigs,
                genome_stats_dirpath + '/genes_cumulative_plot', 'genes')
            plotter.histogram(aligned_contigs_fpaths, full_found_genes, genome_stats_dirpath + '/complete_genes_histogram',
                '# complete genes')
        if operons_container.region_list:
            plotter.genes_operons_plot(len(operons_container.region_list), aligned_contigs_fpaths, files_operons_in_contigs,
                genome_stats_dirpath + '/operons_cumulative_plot', 'operons')
            plotter.histogram(aligned_contigs_fpaths, full_found_operons, genome_stats_dirpath + '/complete_operons_histogram',
                '# complete operons')
        plotter.histogram(aligned_contigs_fpaths, genome_mapped, genome_stats_dirpath + '/genome_fraction_histogram',
            'Genome fraction, %', top_value=100)

    logger.main_info('Done.')
    return [genes_container, operons_container]
コード例 #3
0
ファイル: html_saver.py プロジェクト: ablab/quast
def save_features_in_contigs(results_dirpath, contigs_fpaths, feature_name, feature_in_contigs, ref_feature_num):
    json_fpath = json_saver.save_features_in_contigs(results_dirpath, contigs_fpaths, feature_name, feature_in_contigs, ref_feature_num)
    if json_fpath:
        append(results_dirpath, json_fpath, feature_name + 'InContigs')
コード例 #4
0
def do(ref_fpath, aligned_contigs_fpaths, output_dirpath, json_output_dirpath,
       genes_fpaths, operons_fpaths, detailed_contigs_reports_dirpath, genome_stats_dirpath):

    nucmer_path_dirpath = os.path.join(detailed_contigs_reports_dirpath, 'nucmer_output')
    from quast_libs import search_references_meta
    if search_references_meta.is_quast_first_run:
        nucmer_path_dirpath = os.path.join(nucmer_path_dirpath, 'raw')

    logger.print_timestamp()
    logger.main_info('Running Genome analyzer...')

    if not os.path.isdir(genome_stats_dirpath):
        os.mkdir(genome_stats_dirpath)

    reference_chromosomes = {}
    genome_size = 0
    for name, seq in fastaparser.read_fasta(ref_fpath):
        chr_name = name.split()[0]
        chr_len = len(seq)
        genome_size += chr_len
        reference_chromosomes[chr_name] = chr_len

    # reading genome size
    # genome_size = fastaparser.get_lengths_from_fastafile(reference)[0]
    # reading reference name
    # >gi|48994873|gb|U00096.2| Escherichia coli str. K-12 substr. MG1655, complete genome
    # ref_file = open(reference, 'r')
    # reference_name = ref_file.readline().split()[0][1:]
    # ref_file.close()

    # RESULTS file
    result_fpath = genome_stats_dirpath + '/genome_info.txt'
    res_file = open(result_fpath, 'w')

    genes_container = FeatureContainer(genes_fpaths, 'gene')
    operons_container = FeatureContainer(operons_fpaths, 'operon')
    for container in [genes_container, operons_container]:
        if not container.fpaths:
            logger.notice('No file with ' + container.kind + 's provided. '
                          'Use the -' + container.kind[0].capitalize() + ' option '
                          'if you want to specify it.', indent='  ')
            continue

        for fpath in container.fpaths:
            container.region_list += genes_parser.get_genes_from_file(fpath, container.kind)

        if len(container.region_list) == 0:
            logger.warning('No ' + container.kind + 's were loaded.', indent='  ')
            res_file.write(container.kind + 's loaded: ' + 'None' + '\n')
        else:
            logger.info('  Loaded ' + str(len(container.region_list)) + ' ' + container.kind + 's')
            res_file.write(container.kind + 's loaded: ' + str(len(container.region_list)) + '\n')
            container.chr_names_dict = chromosomes_names_dict(container.kind, container.region_list, list(reference_chromosomes.keys()))

    for contigs_fpath in aligned_contigs_fpaths:
        report = reporting.get(contigs_fpath)
        if genes_container.fpaths:
            report.add_field(reporting.Fields.REF_GENES, len(genes_container.region_list))
        if operons_container.fpaths:
            report.add_field(reporting.Fields.REF_OPERONS, len(operons_container.region_list))

    # for cumulative plots:
    files_genes_in_contigs = {}   #  "filename" : [ genes in sorted contigs (see below) ]
    files_operons_in_contigs = {}

    # for histograms
    genome_mapped = []
    full_found_genes = []
    full_found_operons = []

    # process all contig files
    num_nf_errors = logger._num_nf_errors
    n_jobs = min(len(aligned_contigs_fpaths), qconfig.max_threads)
    if is_python2():
        from joblib import Parallel, delayed
    else:
        from joblib3 import Parallel, delayed
    process_results = Parallel(n_jobs=n_jobs)(delayed(process_single_file)(
        contigs_fpath, index, nucmer_path_dirpath, genome_stats_dirpath,
        reference_chromosomes, genes_container, operons_container)
        for index, contigs_fpath in enumerate(aligned_contigs_fpaths))
    num_nf_errors += len([res for res in process_results if res is None])
    logger._num_nf_errors = num_nf_errors
    process_results = [res for res in process_results if res]
    if not process_results:
        logger.main_info('Genome analyzer failed for all the assemblies.')
        res_file.close()
        return

    ref_lengths = [process_results[i][0] for i in range(len(process_results))]
    results_genes_operons_tuples = [process_results[i][1] for i in range(len(process_results))]
    for ref in reference_chromosomes:
        ref_lengths_by_contigs[ref] = [ref_lengths[i][ref] for i in range(len(ref_lengths))]
    res_file.write('reference chromosomes:\n')
    for chr_name, chr_len in reference_chromosomes.items():
        aligned_len = max(ref_lengths_by_contigs[chr_name])
        res_file.write('\t' + chr_name + ' (total length: ' + str(chr_len) + ' bp, maximal covered length: ' + str(aligned_len) + ' bp)\n')
    res_file.write('\n')
    res_file.write('total genome size: ' + str(genome_size) + '\n\n')
    res_file.write('gap min size: ' + str(qconfig.min_gap_size) + '\n')
    res_file.write('partial gene/operon min size: ' + str(qconfig.min_gene_overlap) + '\n\n')
    # header
    # header
    res_file.write('\n\n')
    res_file.write('%-25s| %-10s| %-12s| %-10s| %-10s| %-10s| %-10s| %-10s|\n'
        % ('assembly', 'genome', 'duplication', 'gaps', 'genes', 'partial', 'operons', 'partial'))
    res_file.write('%-25s| %-10s| %-12s| %-10s| %-10s| %-10s| %-10s| %-10s|\n'
        % ('', 'fraction', 'ratio', 'number', '', 'genes', '', 'operons'))
    res_file.write('================================================================================================================\n')

    for contigs_fpath, (results, genes_in_contigs, operons_in_contigs) in zip(aligned_contigs_fpaths, results_genes_operons_tuples):
        assembly_name = qutils.name_from_fpath(contigs_fpath)

        files_genes_in_contigs[contigs_fpath] = genes_in_contigs
        files_operons_in_contigs[contigs_fpath] = operons_in_contigs
        full_found_genes.append(sum(genes_in_contigs))
        full_found_operons.append(sum(operons_in_contigs))

        covered_bp = results["covered_bp"]
        gaps_count = results["gaps_count"]
        genes_full = results[reporting.Fields.GENES + "_full"]
        genes_part = results[reporting.Fields.GENES + "_partial"]
        operons_full = results[reporting.Fields.OPERONS + "_full"]
        operons_part = results[reporting.Fields.OPERONS + "_partial"]

        report = reporting.get(contigs_fpath)
        genome_fraction = float(covered_bp) * 100 / float(genome_size)
        duplication_ratio = (report.get_field(reporting.Fields.TOTALLEN) +
                             report.get_field(reporting.Fields.MISINTERNALOVERLAP) +
                             report.get_field(reporting.Fields.AMBIGUOUSEXTRABASES) -
                             report.get_field(reporting.Fields.UNALIGNEDBASES)) /\
                            ((genome_fraction / 100.0) * float(genome_size))

        res_file.write('%-25s| %-10s| %-12s| %-10s|'
        % (assembly_name[:24], '%3.5f%%' % genome_fraction, '%1.5f' % duplication_ratio, gaps_count))

        report.add_field(reporting.Fields.MAPPEDGENOME, '%.3f' % genome_fraction)
        report.add_field(reporting.Fields.DUPLICATION_RATIO, '%.3f' % duplication_ratio)
        genome_mapped.append(genome_fraction)

        for (field, full, part) in [(reporting.Fields.GENES, genes_full, genes_part),
            (reporting.Fields.OPERONS, operons_full, operons_part)]:
            if full is None and part is None:
                res_file.write(' %-10s| %-10s|' % ('-', '-'))
            else:
                res_file.write(' %-10s| %-10s|' % (full, part))
                report.add_field(field, '%s + %s part' % (full, part))
        res_file.write('\n')
    res_file.close()

    if genes_container.region_list:
        ref_genes_num = len(genes_container.region_list)
    else:
        ref_genes_num = None

    if operons_container.region_list:
        ref_operons_num = len(operons_container.region_list)
    else:
        ref_operons_num = None

    # saving json
    if json_output_dirpath:
        if genes_container.region_list:
            json_saver.save_features_in_contigs(json_output_dirpath, aligned_contigs_fpaths, 'genes', files_genes_in_contigs, ref_genes_num)
        if operons_container.region_list:
            json_saver.save_features_in_contigs(json_output_dirpath, aligned_contigs_fpaths, 'operons', files_operons_in_contigs, ref_operons_num)

    if qconfig.html_report:
        from quast_libs.html_saver import html_saver
        if genes_container.region_list:
            html_saver.save_features_in_contigs(output_dirpath, aligned_contigs_fpaths, 'genes', files_genes_in_contigs, ref_genes_num)
        if operons_container.region_list:
            html_saver.save_features_in_contigs(output_dirpath, aligned_contigs_fpaths, 'operons', files_operons_in_contigs, ref_operons_num)

    if qconfig.draw_plots:
        # cumulative plots:
        from . import plotter
        if genes_container.region_list:
            plotter.genes_operons_plot(len(genes_container.region_list), aligned_contigs_fpaths, files_genes_in_contigs,
                genome_stats_dirpath + '/genes_cumulative_plot', 'genes')
            plotter.histogram(aligned_contigs_fpaths, full_found_genes, genome_stats_dirpath + '/complete_genes_histogram',
                '# complete genes')
        if operons_container.region_list:
            plotter.genes_operons_plot(len(operons_container.region_list), aligned_contigs_fpaths, files_operons_in_contigs,
                genome_stats_dirpath + '/operons_cumulative_plot', 'operons')
            plotter.histogram(aligned_contigs_fpaths, full_found_operons, genome_stats_dirpath + '/complete_operons_histogram',
                '# complete operons')
        plotter.histogram(aligned_contigs_fpaths, genome_mapped, genome_stats_dirpath + '/genome_fraction_histogram',
            'Genome fraction, %', top_value=100)

    logger.main_info('Done.')
    return [genes_container, operons_container]