コード例 #1
0
ファイル: decomp.py プロジェクト: mbentz80/jzigbeercp
def svd(a,full_matrices=1,compute_uv=1,overwrite_a=0):
    """Compute singular value decomposition (SVD) of matrix a.

    Description:

      Singular value decomposition of a matrix a is
        a = u * sigma * v^H,
      where v^H denotes conjugate(transpose(v)), u,v are unitary
      matrices, sigma is zero matrix with a main diagonal containing
      real non-negative singular values of the matrix a.

    Inputs:

      a -- An M x N matrix.
      compute_uv -- If zero, then only the vector of singular values
                    is returned.

    Outputs:

      u -- An M x M unitary matrix [compute_uv=1].
      s -- An min(M,N) vector of singular values in descending order,
           sigma = diagsvd(s).
      vh -- An N x N unitary matrix [compute_uv=1], vh = v^H.

    """
    # A hack until full_matrices == 0 support is fixed here.
    if full_matrices == 0:
        import numpy.linalg
        return numpy.linalg.svd(a, full_matrices=0, compute_uv=compute_uv)
    a1 = asarray_chkfinite(a)
    if len(a1.shape) != 2:
        raise ValueError, 'expected matrix'
    m,n = a1.shape
    overwrite_a = overwrite_a or (_datanotshared(a1,a))
    gesdd, = get_lapack_funcs(('gesdd',),(a1,))
    if gesdd.module_name[:7] == 'flapack':
        lwork = calc_lwork.gesdd(gesdd.prefix,m,n,compute_uv)[1]
        u,s,v,info = gesdd(a1,compute_uv = compute_uv, lwork = lwork,
                      overwrite_a = overwrite_a)
    else: # 'clapack'
        raise NotImplementedError,'calling gesdd from %s' % (gesdd.module_name)
    if info>0: raise LinAlgError, "SVD did not converge"
    if info<0: raise ValueError,\
       'illegal value in %-th argument of internal gesdd'%(-info)
    if compute_uv:
        return u,s,v
    else:
        return s
コード例 #2
0
def svd(a, full_matrices=True, compute_uv=True, overwrite_a=False):
    """
    Singular Value Decomposition.

    Factorizes the matrix a into two unitary matrices U and Vh, and
    a 1-D array s of singular values (real, non-negative) such that
    ``a == U*S*Vh``, where S is a suitably shaped matrix of zeros with
    main diagonal s.

    Parameters
    ----------
    a : ndarray
        Matrix to decompose, of shape ``(M,N)``.
    full_matrices : bool, optional
        If True, `U` and `Vh` are of shape ``(M,M)``, ``(N,N)``.
        If False, the shapes are ``(M,K)`` and ``(K,N)``, where
        ``K = min(M,N)``.
    compute_uv : bool, optional
        Whether to compute also `U` and `Vh` in addition to `s`.
        Default is True.
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.

    Returns
    -------
    U : ndarray
        Unitary matrix having left singular vectors as columns.
        Of shape ``(M,M)`` or ``(M,K)``, depending on `full_matrices`.
    s : ndarray
        The singular values, sorted in non-increasing order.
        Of shape (K,), with ``K = min(M, N)``.
    Vh : ndarray
        Unitary matrix having right singular vectors as rows.
        Of shape ``(N,N)`` or ``(K,N)`` depending on `full_matrices`.

    For ``compute_uv = False``, only `s` is returned.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.

    See also
    --------
    svdvals : Compute singular values of a matrix.
    diagsvd : Construct the Sigma matrix, given the vector s.

    Examples
    --------
    >>> from scipy import linalg
    >>> a = np.random.randn(9, 6) + 1.j*np.random.randn(9, 6)
    >>> U, s, Vh = linalg.svd(a)
    >>> U.shape, Vh.shape, s.shape
    ((9, 9), (6, 6), (6,))

    >>> U, s, Vh = linalg.svd(a, full_matrices=False)
    >>> U.shape, Vh.shape, s.shape
    ((9, 6), (6, 6), (6,))
    >>> S = linalg.diagsvd(s, 6, 6)
    >>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
    True

    >>> s2 = linalg.svd(a, compute_uv=False)
    >>> np.allclose(s, s2)
    True

    """
    a1 = asarray_chkfinite(a)
    if len(a1.shape) != 2:
        raise ValueError('expected matrix')
    m, n = a1.shape
    overwrite_a = overwrite_a or (_datacopied(a1, a))
    gesdd, = get_lapack_funcs(('gesdd', ), (a1, ))
    if gesdd.module_name[:7] == 'flapack':
        lwork = calc_lwork.gesdd(gesdd.prefix, m, n, compute_uv)[1]
        u, s, v, info = gesdd(a1,
                              compute_uv=compute_uv,
                              lwork=lwork,
                              full_matrices=full_matrices,
                              overwrite_a=overwrite_a)
    else:  # 'clapack'
        raise NotImplementedError('calling gesdd from %s' % gesdd.module_name)
    if info > 0:
        raise LinAlgError("SVD did not converge")
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal gesdd' %
                         -info)
    if compute_uv:
        return u, s, v
    else:
        return s
コード例 #3
0
def svd(a, full_matrices=True, compute_uv=True, overwrite_a=False):
    """Singular Value Decomposition.

    Factorizes the matrix a into two unitary matrices U and Vh and
    an 1d-array s of singular values (real, non-negative) such that
    a == U S Vh  if S is an suitably shaped matrix of zeros whose
    main diagonal is s.

    Parameters
    ----------
    a : array, shape (M, N)
        Matrix to decompose
    full_matrices : boolean
        If true,  U, Vh are shaped  (M,M), (N,N)
        If false, the shapes are    (M,K), (K,N) where K = min(M,N)
    compute_uv : boolean
        Whether to compute also U, Vh in addition to s (Default: true)
    overwrite_a : boolean
        Whether data in a is overwritten (may improve performance)

    Returns
    -------
    U:  array, shape (M,M) or (M,K) depending on full_matrices
    s:  array, shape (K,)
        The singular values, sorted so that s[i] >= s[i+1]. K = min(M, N)
    Vh: array, shape (N,N) or (K,N) depending on full_matrices

    For compute_uv = False, only s is returned.

    Raises LinAlgError if SVD computation does not converge

    Examples
    --------
    >>> from scipy import random, linalg, allclose, dot
    >>> a = random.randn(9, 6) + 1j*random.randn(9, 6)
    >>> U, s, Vh = linalg.svd(a)
    >>> U.shape, Vh.shape, s.shape
    ((9, 9), (6, 6), (6,))

    >>> U, s, Vh = linalg.svd(a, full_matrices=False)
    >>> U.shape, Vh.shape, s.shape
    ((9, 6), (6, 6), (6,))
    >>> S = linalg.diagsvd(s, 6, 6)
    >>> allclose(a, dot(U, dot(S, Vh)))
    True

    >>> s2 = linalg.svd(a, compute_uv=False)
    >>> allclose(s, s2)
    True

    See also
    --------
    svdvals : return singular values of a matrix
    diagsvd : return the Sigma matrix, given the vector s

    """
    # A hack until full_matrices == 0 support is fixed here.
    if full_matrices == 0:
        import numpy.linalg
        return numpy.linalg.svd(a, full_matrices=0, compute_uv=compute_uv)
    a1 = asarray_chkfinite(a)
    if len(a1.shape) != 2:
        raise ValueError('expected matrix')
    m, n = a1.shape
    overwrite_a = overwrite_a or (_datanotshared(a1, a))
    gesdd, = get_lapack_funcs(('gesdd', ), (a1, ))
    if gesdd.module_name[:7] == 'flapack':
        lwork = calc_lwork.gesdd(gesdd.prefix, m, n, compute_uv)[1]
        u, s, v, info = gesdd(a1,
                              compute_uv=compute_uv,
                              lwork=lwork,
                              overwrite_a=overwrite_a)
    else:  # 'clapack'
        raise NotImplementedError('calling gesdd from %s' % gesdd.module_name)
    if info > 0:
        raise LinAlgError("SVD did not converge")
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal gesdd' %
                         -info)
    if compute_uv:
        return u, s, v
    else:
        return s
コード例 #4
0
ファイル: decomp_svd.py プロジェクト: b-t-g/Sim
def svd(a, full_matrices=True, compute_uv=True, overwrite_a=False):
    """
    Singular Value Decomposition.

    Factorizes the matrix a into two unitary matrices U and Vh, and
    a 1-D array s of singular values (real, non-negative) such that
    ``a == U*S*Vh``, where S is a suitably shaped matrix of zeros with
    main diagonal s.

    Parameters
    ----------
    a : ndarray
        Matrix to decompose, of shape ``(M,N)``.
    full_matrices : bool, optional
        If True, `U` and `Vh` are of shape ``(M,M)``, ``(N,N)``.
        If False, the shapes are ``(M,K)`` and ``(K,N)``, where
        ``K = min(M,N)``.
    compute_uv : bool, optional
        Whether to compute also `U` and `Vh` in addition to `s`.
        Default is True.
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.

    Returns
    -------
    U : ndarray
        Unitary matrix having left singular vectors as columns.
        Of shape ``(M,M)`` or ``(M,K)``, depending on `full_matrices`.
    s : ndarray
        The singular values, sorted in non-increasing order.
        Of shape (K,), with ``K = min(M, N)``.
    Vh : ndarray
        Unitary matrix having right singular vectors as rows.
        Of shape ``(N,N)`` or ``(K,N)`` depending on `full_matrices`.

    For ``compute_uv = False``, only `s` is returned.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.

    See also
    --------
    svdvals : Compute singular values of a matrix.
    diagsvd : Construct the Sigma matrix, given the vector s.

    Examples
    --------
    >>> from scipy import linalg
    >>> a = np.random.randn(9, 6) + 1.j*np.random.randn(9, 6)
    >>> U, s, Vh = linalg.svd(a)
    >>> U.shape, Vh.shape, s.shape
    ((9, 9), (6, 6), (6,))

    >>> U, s, Vh = linalg.svd(a, full_matrices=False)
    >>> U.shape, Vh.shape, s.shape
    ((9, 6), (6, 6), (6,))
    >>> S = linalg.diagsvd(s, 6, 6)
    >>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
    True

    >>> s2 = linalg.svd(a, compute_uv=False)
    >>> np.allclose(s, s2)
    True

    """
    a1 = asarray_chkfinite(a)
    if len(a1.shape) != 2:
        raise ValueError('expected matrix')
    m,n = a1.shape
    overwrite_a = overwrite_a or (_datacopied(a1, a))
    gesdd, = get_lapack_funcs(('gesdd',), (a1,))
    if gesdd.module_name[:7] == 'flapack':
        lwork = calc_lwork.gesdd(gesdd.prefix, m, n, compute_uv)[1]
        u,s,v,info = gesdd(a1,compute_uv = compute_uv, lwork = lwork,
                           full_matrices=full_matrices, overwrite_a = overwrite_a)
    else: # 'clapack'
        raise NotImplementedError('calling gesdd from %s' % gesdd.module_name)
    if info > 0:
        raise LinAlgError("SVD did not converge")
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal gesdd'
                                                                    % -info)
    if compute_uv:
        return u, s, v
    else:
        return s
コード例 #5
0
def svd(a, full_matrices=True, compute_uv=True, overwrite_a=False):
    """Singular Value Decomposition.

    Factorizes the matrix a into two unitary matrices U and Vh and
    an 1d-array s of singular values (real, non-negative) such that
    a == U S Vh  if S is an suitably shaped matrix of zeros whose
    main diagonal is s.

    Parameters
    ----------
    a : array, shape (M, N)
        Matrix to decompose
    full_matrices : boolean
        If true,  U, Vh are shaped  (M,M), (N,N)
        If false, the shapes are    (M,K), (K,N) where K = min(M,N)
    compute_uv : boolean
        Whether to compute also U, Vh in addition to s (Default: true)
    overwrite_a : boolean
        Whether data in a is overwritten (may improve performance)

    Returns
    -------
    U:  array, shape (M,M) or (M,K) depending on full_matrices
    s:  array, shape (K,)
        The singular values, sorted so that s[i] >= s[i+1]. K = min(M, N)
    Vh: array, shape (N,N) or (K,N) depending on full_matrices

    For compute_uv = False, only s is returned.

    Raises LinAlgError if SVD computation does not converge

    Examples
    --------
    >>> from scipy import random, linalg, allclose, dot
    >>> a = random.randn(9, 6) + 1j*random.randn(9, 6)
    >>> U, s, Vh = linalg.svd(a)
    >>> U.shape, Vh.shape, s.shape
    ((9, 9), (6, 6), (6,))

    >>> U, s, Vh = linalg.svd(a, full_matrices=False)
    >>> U.shape, Vh.shape, s.shape
    ((9, 6), (6, 6), (6,))
    >>> S = linalg.diagsvd(s, 6, 6)
    >>> allclose(a, dot(U, dot(S, Vh)))
    True

    >>> s2 = linalg.svd(a, compute_uv=False)
    >>> allclose(s, s2)
    True

    See also
    --------
    svdvals : return singular values of a matrix
    diagsvd : return the Sigma matrix, given the vector s

    """
    # A hack until full_matrices == 0 support is fixed here.
    if full_matrices == 0:
        import numpy.linalg
        return numpy.linalg.svd(a, full_matrices=0, compute_uv=compute_uv)
    a1 = asarray_chkfinite(a)
    if len(a1.shape) != 2:
        raise ValueError('expected matrix')
    m,n = a1.shape
    overwrite_a = overwrite_a or (_datacopied(a1, a))
    gesdd, = get_lapack_funcs(('gesdd',), (a1,))
    gesdd_info = get_func_info(gesdd)
    if gesdd_info.module_name[:7] == 'flapack':
        lwork = calc_lwork.gesdd(gesdd_info.prefix, m, n, compute_uv)[1]
        u,s,v,info = gesdd(a1,compute_uv = compute_uv, lwork = lwork,
                                                overwrite_a = overwrite_a)
    else: # 'clapack'
        raise NotImplementedError('calling gesdd from %s' % gesdd_info.module_name)
    if info > 0:
        raise LinAlgError("SVD did not converge")
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal gesdd'
                                                                    % -info)
    if compute_uv:
        return u, s, v
    else:
        return s
コード例 #6
0
ファイル: svd.py プロジェクト: boisgera/wish
def svd(a, full_matrices=True, compute_uv=True, overwrite_a=False,
        check_finite=True, returns="U, S, V"):
    """
    Singular Value Decomposition.

    Factorizes the matrix a into two unitary matrices U and Vh, and
    a diagonal matrix S of suitable shape with non-negative real 
    numbers on the diagonal.
.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to decompose.
    full_matrices : bool, optional
        If True, `U` and `Vh` are of shape ``(M,M)``, ``(N,N)``.
        If False, the shapes are ``(M,K)`` and ``(K,N)``, where
        ``K = min(M,N)``.
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.
    check_finite : boolean, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
    returns: string, optional
        Select the returned values, among ``U``, ``S``, ``s``, ``V`` and ``Vh``,.
        Default is ``"U, S, Vh"``.
        
    Returns
    -------

    The selection of return values is configurable by the ``returns`` parameter.

    U : ndarray
        Unitary matrix having left singular vectors as columns.
        Of shape ``(M,M)`` or ``(M,K)``, depending on `full_matrices`.
    S : ndarray
        A matrix with the singular values of ``a``, sorted in non-increasing
        order, in the main diagonal and zeros elsewhere.
        Of shape ``(M,N)`` or ``(K,K)``, depending on `full_matrices`.
    V : ndarray
        Unitary matrix having right singular vectors as columns.
        Of shape ``(N,N)`` or ``(N, K)`` depending on `full_matrices`.
    s : ndarray, not returned by default
        The singular values, sorted in non-increasing order.
        Of shape (K,), with ``K = min(M, N)``.
    Vh : ndarray
        Unitary matrix having right singular vectors as rows.
        Of shape ``(N,N)`` or ``(N, K)`` depending on `full_matrices`.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.


    Examples
    --------
    >>> import numpy as np
    >>> from wish.examples import svd
    >>> a = np.random.randn(9, 6) + 1.j*np.random.randn(9, 6)
    >>> U, S, V = svd(a)
    >>> U.shape, S.shape, V.shape
    ((9, 9), (9, 6), (6, 6))

    >>> U, S, Vh = svd(a, full_matrices=False, returns="U, S, Vh")
    >>> U.shape, S.shape, Vh.shape
    ((9, 9), (9, 6), (6, 6))
    >>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
    True

    >>> s = svd(a, returns="s")
    >>> np.allclose(s, np.diagonal(S))
    True

    """
    wishlist = wish.make(returns)
    for name in wishlist: 
        if name not in ["U", "S", "V", "s", "Vh"]:
            error = "unexpected return value {name!r}"
            raise TypeError(error.format(name=name))

    if check_finite:
        a1 = asarray_chkfinite(a)
    else:
        a1 = asarray(a)
    if len(a1.shape) != 2:
        raise ValueError('expected matrix')
    m,n = a1.shape
    overwrite_a = overwrite_a or (_datacopied(a1, a))
    gesdd, = get_lapack_funcs(('gesdd',), (a1,))

    lwork = calc_lwork.gesdd(gesdd.typecode, m, n, compute_uv)[1]

    compute_uv = "U" in wishlist or "V" in wishlist or "Vh" in wishlist

    U,s,Vh,info = gesdd(a1,compute_uv=compute_uv, lwork=lwork,
                       full_matrices=full_matrices, overwrite_a=overwrite_a)

    if info > 0:
        raise LinAlgError("SVD did not converge")
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal gesdd'
                                                                    % -info)

    if "V" in wishlist:
        V = Vh.transpose().conjugate() 
    if "S" in wishlist:
        S = _diagsvd(s, U.shape[1], Vh.shape[0]) 
        # f**k, maybe not computed. Use shape of A. 
        # Interaction with full_matrices?

    return wishlist.grant()