コード例 #1
0
ファイル: ratemodel.py プロジェクト: Alwnikrotikz/lagrange
 def setup_Q(self):
     self.Q = scipy.zeros((self.nperiods, self.ndists, self.ndists))
     #D = self.D * self.Dmask
     for p in range(self.nperiods):
         for i, d1 in enumerate(self.dists):
             s1 = sum(d1)
             if s1 > 0:
                 for j, d2 in enumerate(self.dists):
                     s2 = sum(d2)
                     xor = scipy.logical_xor(d1, d2)
                     # only consider transitions between dists that are
                     # 1 step (dispersal or extinction) apart
                     if sum(xor) == 1:
                         dest = scipy.nonzero(xor)[0]
                         #prior = self.dist_priors[i]
                         if s1 < s2: # dispersal
                             rate = 0.0
                             for src in scipy.nonzero(d1)[0]:
                                 rate += self.D[p,src,dest] * \
                                         self.Dmask[p,src,dest]
                             # for each area in d1, add rate of
                             # dispersal to dest
                         else: # extinction
                             rate = self.E[p,dest]
                         #self.Q[i][j] = (prior * rate)
                         self.Q[p,i,j] = rate
         self.set_Qdiag(p)
コード例 #2
0
def alg(ring):
    # fill holes in binary objects and then see if anything got filled
    xor = scipy.logical_xor(ring, ndimage.binary_fill_holes(ring))
    if xor.any():
        return True
    else:
        return False
コード例 #3
0
def alg2(ring):
    # fill holes in binary objects
    filled = ndimage.binary_fill_holes(ring)    
    # substract original image with object \w holes from the filled-holes image to obtain holes only
    holes = scipy.logical_xor(ring, filled)
    # label all objects in the image to obtain the number of holes
    _, hole_count = ndimage.measurements.label(holes)
    
    return hole_count
コード例 #4
0
ファイル: ratemodel.py プロジェクト: Alwnikrotikz/lagrange
def iter_dist_splits(dist):
    if sum(dist) == 1:
        yield (dist, dist)
    else:
        for i in scipy.nonzero(dist)[0]:
            x = scipy.zeros((len(dist),), dtype="i")
            x[i] = 1
            x = tuple(x)
            yield (x, dist)
            yield (dist, x)
            y = tuple(scipy.array(scipy.logical_xor(dist, x), dtype="i"))
            yield (x, y)
            if sum(y) > 1:
                yield (y, x)
コード例 #5
0
def iter_dist_splits(dist):
    if sum(dist) == 1:
        yield (dist, dist)
    else:
        for i in scipy.nonzero(dist)[0]:
            x = scipy.zeros((len(dist), ), dtype="i")
            x[i] = 1
            x = tuple(x)
            yield (x, dist)
            yield (dist, x)
            y = tuple(scipy.array(scipy.logical_xor(dist, x), dtype="i"))
            yield (x, y)
            if sum(y) > 1:
                yield (y, x)
コード例 #6
0
def extract_holes(ring):
    """
    Check if an object in an image forms a ring with one single hole.
    
    @note if the number of holes equals 1, the supplied objects is either a ring (in 2D)
    or another shape with a single hole somewhere (low probability). If the number of 
    holes equals 0, the supplied object is of a shape containing no holes (e.g. an not
    completely closed ring). If the number is higher than 1, the object contains multiple
    holes. 
    
    @param ring a 2D array of type bool_ containing a single object 
    @type ring ndarray
    @return an 2D array containing all holes labeled consecutively from 1 as first and
            the number of found holes as second arguments 
    @rtype (ndarray, int)
    """
    # fill the holes in the binary array (using ndim*2 connectedness) and xor with original image
    holes = scipy.logical_xor(ring, ndimage.binary_fill_holes(ring))
    # find all objects (= holes in the original object) in the image
    return ndimage.measurements.label(holes)
コード例 #7
0
#center=(100,100);
radius1=200;
radius2=205;
siz=np.round(2*radius2*1.40);
img1=np.zeros((siz,siz));
img2=np.zeros((siz,siz));
center=np.round([siz/2,siz/2]);

rr1, cc1 = circle(center[0],center[1], radius1)
img1[rr1, cc1] = 1

rr2, cc2 = circle(center[0],center[1], radius2)
img2[rr2, cc2] = 1

circ=sc.logical_xor(img2,img1)
circ.astype(int)

plt.imshow(img1)
plt.show()
io.imshow(img2)
io.imshow(circ)
io.imsave('Circle_radius'+str(radius1)+'.png',circ)


 #          #angles on the circle
#          indices=np.where(xCenterLine==1)
##          randperm=np.random.permutation(len(indices[0]))
#          randperm=range(len(indices[0]))
#          
#          #consider 2% random points on the circle
コード例 #8
0
#center=(100,100);
radius1 = 200
radius2 = 205
siz = np.round(2 * radius2 * 1.40)
img1 = np.zeros((siz, siz))
img2 = np.zeros((siz, siz))
center = np.round([siz / 2, siz / 2])

rr1, cc1 = circle(center[0], center[1], radius1)
img1[rr1, cc1] = 1

rr2, cc2 = circle(center[0], center[1], radius2)
img2[rr2, cc2] = 1

circ = sc.logical_xor(img2, img1)
circ.astype(int)

plt.imshow(img1)
plt.show()
io.imshow(img2)
io.imshow(circ)
io.imsave('Circle_radius' + str(radius1) + '.png', circ)

#          #angles on the circle
#          indices=np.where(xCenterLine==1)
##          randperm=np.random.permutation(len(indices[0]))
#          randperm=range(len(indices[0]))
#
#          #consider 2% random points on the circle
#          numPts=np.ceil(1.00*len(randperm))
コード例 #9
0
    def doTestEdtWithHalo(self, haloSz=0):
        if (isinstance(haloSz, int) or ((sys.version_info.major < 3) and isinstance(haloSz, long))):
            if (haloSz < 0):
                haloSz = 0
            haloSz = sp.array((haloSz,)*3)
        
        subDirName = "doTestEdtWithHalo_%s" % ("x".join(map(str, haloSz)), )
        outDir = self.createTmpDir(subDirName)
        #outDir = subDirName
        if (mpi.world != None):
            if ((mpi.world.Get_rank() == 0) and (not os.path.exists(outDir))):
                os.makedirs(subDirName)
            mpi.world.barrier()

        segDds = mango.zeros(self.imgShape, mtype="segmented", halo=haloSz)
        segDds.setAllToValue(segDds.mtype.maskValue())
        mango.data.fill_ellipsoid(segDds, centre=self.centre, radius=(self.radius*1.05,)*3, fill=0)
        mango.data.fill_ellipsoid(segDds, centre=self.centre, radius=(self.radius,)*3, fill=1)
        mango.io.writeDds(os.path.join(outDir,"segmentedSphere.nc"), segDds)
        dtDds = mango.image.distance_transform_edt(segDds, 1)
        mango.io.writeDds(os.path.join(outDir,"distance_mapSphereEdt.nc"), dtDds)
        segDds.updateHaloRegions()
        dtDds.updateHaloRegions()
        segDds.setBorderToValue(segDds.mtype.maskValue())
        dtDds.setBorderToValue(dtDds.mtype.maskValue())
        
        slc = []
        for d in range(len(haloSz)):
            slc.append(slice(haloSz[d], segDds.asarray().shape[d]-haloSz[d]))
        
        slc = tuple(slc)

        arr = dtDds.subd_h.asarray()
        sbeg = dtDds.subd_h.origin
        send = sbeg + dtDds.subd_h.shape
        
        coords = np.ogrid[sbeg[0]:send[0],sbeg[1]:send[1],sbeg[2]:send[2]]
    
        distDds = mango.copy(dtDds)
        distArr = distDds.subd_h.asarray()
        distArr[...] = \
            sp.where(
                sp.logical_and(dtDds.subd_h.asarray() != dtDds.mtype.maskValue(), dtDds.subd_h.asarray() >= 0),
                self.radius
                -
                sp.sqrt(
                    ((coords[0]-self.centre[0])**2)
                    +
                    ((coords[1]-self.centre[1])**2)
                    +
                    ((coords[2]-self.centre[2])**2)
                ),
                dtDds.subd_h.asarray()
            )
        mango.io.writeDds(os.path.join(outDir,"distance_mapSphereDistRef.nc"), distDds)
    
        rootLogger.info("max diff = %s" % (np.max(sp.absolute(distArr - dtDds.subd_h.asarray())),))
        self.assertTrue(
            sp.all(
                sp.absolute(distArr - dtDds.subd_h.asarray())
                <=
                1.0
            )
        )
        self.assertTrue(
            sp.all(
                sp.logical_not(sp.logical_xor(
                    segDds.asarray() == 1,
                    dtDds.asarray()  >=  0
                ))
            )
        )

        self.assertTrue(
            sp.all(
                sp.logical_not(sp.logical_xor(
                    segDds.asarray() == segDds.mtype.maskValue(),
                    dtDds.asarray()  == dtDds.mtype.maskValue()
                ))
            )
        )

        self.assertTrue(
            sp.all(
                sp.logical_not(sp.logical_xor(
                    segDds.asarray() == 0,
                    dtDds.asarray()  == -1
                ))
            )
        )
        
        self.assertTrue(sp.all(segDds.halo == dtDds.halo))
        self.assertTrue(sp.all(segDds.shape == dtDds.shape))
        self.assertTrue(sp.all(segDds.origin == dtDds.origin), "%s != %s" % (segDds.origin, dtDds.origin))
        self.assertTrue(sp.all(segDds.mpi.shape == dtDds.mpi.shape))