コード例 #1
0
ファイル: birthdeath_sim.py プロジェクト: mdrasmus/spimap
    def test_birth_death_single2_sim(self):
        """test the single branch prior"""

        duprate = 2.0
        lossrate = .5
        T = 1.0

        
        stree = treelib.parse_newick("(A:1,B:1);")
        def gene2species(gene):
            return gene[:1].upper()
        s = stree.leaves()[0]

        b = birthDeathCount(1, T, duprate, lossrate)

        # 1
        tree = treelib.parse_newick("(a,b);")
        recon = phylo.reconcile(tree, stree, gene2species)
        p = birthDeathCount(1, T, duprate, lossrate) * b
        p2 = exp(calcBirthDeathPrior(tree, stree, recon, duprate, lossrate))
        p2 *= numRedunantTopology(tree.root, gene2species)
        print p, p2
        fequal(p, p2)
        
        # 2
        tree = treelib.parse_newick("((a,a),b);")
        recon = phylo.reconcile(tree, stree, gene2species)
        p = birthDeathCount(2, T, duprate, lossrate) * b
        p2 = exp(calcBirthDeathPrior(tree, stree, recon, duprate, lossrate))
        p2 *= numRedunantTopology(tree.root, gene2species)
        print p, p2
        fequal(p, p2)

        # 3
        tree = treelib.parse_newick("(((a,a),a),b);")
        recon = phylo.reconcile(tree, stree, gene2species)
        p = birthDeathCount(3, T, duprate, lossrate) * b
        p2 = exp(calcBirthDeathPrior(tree, stree, recon, duprate, lossrate))
        p2 *= numRedunantTopology(tree.root, gene2species)
        print p, p2
        fequal(p, p2)

        # 4
        tree = treelib.parse_newick("(((a,a),(a,a)),b);")
        recon = phylo.reconcile(tree, stree, gene2species)
        p = birthDeathCount(4, T, duprate, lossrate) * b / 3.0
        p2 = exp(calcBirthDeathPrior(tree, stree, recon, duprate, lossrate))
        p2 *= numRedunantTopology(tree.root, gene2species)
        print p, p2
        fequal(p, p2)
コード例 #2
0
ファイル: birthdeath_sim.py プロジェクト: mdrasmus/spimap
    def test_birth_death_single_sim(self):
        """test the single branch prior"""
        
        duprate = 2.0
        lossrate = .5
        ntrees = 1000
        tabsize = 100
        T = 1.0

        tops = []
        survivors = []
        lookup = {}

        # define species tree
        stree = treelib.parse_newick("(A:1);")
        def gene2species(gene):
            return gene[:1].upper()

        # simulate gene trees
        util.tic("simulating %d trees" % ntrees)
        for i in xrange(ntrees):
            tree, doom = birthdeath.sample_birth_death_tree(
                T, duprate, lossrate)

            if tree.root in doom:
                tops.append("()")
                survivors.append(0)
            else:
                rename_leaves(tree, stree, lambda x: "A")
                tops.append(phylo.hash_tree(tree, gene2species))
                survivors.append(len(tree.leaves()))
            lookup[tops[-1]] = tree
        util.toc()

        # setup test output
        outdir = "test/output/birthdeath_sim_simple"
        prep_dir(outdir)

        # histogram of topologies and survivors (# leaves)
        hist_tops = histtab(tops)
        hist_num = histtab(survivors)

        # compute survivor prior
        probs = []
        for row in hist_num:
            ngenes = row["item"]
            probs.append(birthDeathCount(ngenes, T, duprate, lossrate))

        # compute topologie priors
        probs_tops = []
        for row in hist_tops:
            tree = lookup[row["item"]]

            if tree.root.is_leaf():
                p = log(birthdeath.prob_birth_death1(
                    0, T, duprate, lossrate))
            else:
                nhist = numTopologyHistories(tree.root)
                s = len(tree.leaves())
                thist = factorial(s) * factorial(s-1) / 2**(s-1)
                r = numRedunantTopology(tree.root, gene2species,
                                        all_leaves=True)
                p = log(r * nhist / thist * birthdeath.prob_birth_death1(
                    s, T, duprate, lossrate))
            
            probs_tops.append(exp(p))

        self.calc_fit(outdir + "/sim_prior_ngenes", hist_num, probs)
        self.calc_fit(outdir + "/sim_prior_top", hist_tops, probs_tops)