コード例 #1
0
def test_none_Constant():
    """ Tests equals

    We had an error in the past with unpickling
    """
    o1 = Constant(NoneTypeT(), None, name='NoneConst')
    o2 = Constant(NoneTypeT(), None, name='NoneConst')
    assert o1.equals(o2)
    assert NoneConst.equals(o1)
    assert o1.equals(NoneConst)
    assert NoneConst.equals(o2)
    assert o2.equals(NoneConst)

    # This trigger equals that returned the wrong answer in the past.
    import six.moves.cPickle as pickle
    import theano
    from theano import tensor

    x = tensor.vector('x')
    y = tensor.argmax(x)
    kwargs = {}
    # We can't pickle DebugMode
    if theano.config.mode in ["DebugMode", "DEBUG_MODE"]:
        kwargs = {'mode': 'FAST_RUN'}
    f = theano.function([x], [y], **kwargs)
    pickle.loads(pickle.dumps(f))
コード例 #2
0
ファイル: op.py プロジェクト: ionuttamas/Theano-PyMC
    def make_node(self, rv, val):
        """Make an `Observed` random variable.

        Parameters
        ----------
        rv: RandomVariable
            The distribution from which `val` is assumed to be a sample value.
        val: Variable
            The observed value.
        """
        val = as_tensor_variable(val)

        if rv is not None:
            if not hasattr(rv, "type") or rv.type.convert_variable(val) is None:
                raise TypeError(
                    (
                        "`rv` and `val` do not have compatible types:"
                        f" rv={rv}, val={val}"
                    )
                )
        else:
            rv = NoneConst.clone()

        inputs = [rv, val]

        return Apply(self, inputs, [val.type()])
コード例 #3
0
def test_none_Constant():
    """ Tests equals

    We had an error in the past with unpickling
    """
    o1 = Constant(NoneTypeT(), None, name='NoneConst')
    o2 = Constant(NoneTypeT(), None, name='NoneConst')
    assert o1.equals(o2)
    assert NoneConst.equals(o1)
    assert o1.equals(NoneConst)
    assert NoneConst.equals(o2)
    assert o2.equals(NoneConst)

    # This trigger equals that returned the wrong answer in the past.
    import cPickle
    import theano
    from theano import tensor

    x = tensor.vector('x')
    y = tensor.argmax(x)
    f = theano.function([x], [y])
    cPickle.loads(cPickle.dumps(f))