def main(): pk=80 for pk in [80, 200, 500, 1024]: proj_test, labels = load_pca_proj(K=pk) shuffle_in_unison(proj_test, labels) for k in [1,2,3,4,5,6,7,8,9,15,20,25,30]: knn = KNeighborsClassifier(n_neighbors=k) scores = cross_validation.cross_val_score(knn, proj_test, labels, cv=10) print "K: " + str(k) print "PK: " + str(pk) print scores print np.mean(scores) print np.var(scores)
def main(): N_TREE = 1001 k = 200 rfc = RandomForestClassifier(n_estimators=N_TREE, criterion="entropy", max_features="auto") RandomForestClassifier proj_test, labels = load_pca_proj(K=k) shuffle_in_unison(proj_test, labels) scores = cross_validation.cross_val_score(rfc, proj_test, labels, cv=10) pt = load_pca_test(K=k) rfc.fit(proj_test, labels) pred = rfc.predict(pt) write_results(pred, "../rfc_res.csv") print scores print np.mean(scores) print np.var(scores)
def main(): N_TREE = 1001 k = 200 rfc = RandomForestClassifier(n_estimators=N_TREE, criterion='entropy', max_features="auto") RandomForestClassifier proj_test, labels = load_pca_proj(K=k) shuffle_in_unison(proj_test, labels) scores = cross_validation.cross_val_score(rfc, proj_test, labels, cv=10) pt = load_pca_test(K=k) rfc.fit(proj_test, labels) pred = rfc.predict(pt) write_results(pred, '../rfc_res.csv') print scores print np.mean(scores) print np.var(scores)
def main(): pk = 80 for pk in [80, 200, 500, 1024]: proj_test, labels = load_pca_proj(K=pk) shuffle_in_unison(proj_test, labels) for k in [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 20, 25, 30]: knn = KNeighborsClassifier(n_neighbors=k) scores = cross_validation.cross_val_score(knn, proj_test, labels, cv=10) print "K: " + str(k) print "PK: " + str(pk) print scores print np.mean(scores) print np.var(scores)
def main(): k=500 #images, labels = load_labeled_training(flatten=True) #images = standardize(images) #shuffle_in_unison(images, labels) #for k in [100,500,1024]: #proj_test, labels = load_pca_proj(K=k) #shuffle_in_unison(proj_test, labels) #for ker in ['linear', 'sigmoid', 'rbf']: #svc = SVC(kernel=ker) #scores = cross_validation.cross_val_score(svc, proj_test, labels, cv=10) #print "Kernel: " + ker #print "K: " + str(k) #print scores #print np.mean(scores) #print np.var(scores) proj_test, labels = load_pca_proj(K=k) shuffle_in_unison(proj_test, labels) svc = SVC() scores = cross_validation.cross_val_score(svc, proj_test, labels, cv=10) pt = load_pca_hidden(K=k) svc.fit(proj_test, labels) pred = svc.predict(pt) write_results(pred, '../svm_res.csv')
def main(): k = 500 #images, labels = load_labeled_training(flatten=True) #images = standardize(images) #shuffle_in_unison(images, labels) #for k in [100,500,1024]: #proj_test, labels = load_pca_proj(K=k) #shuffle_in_unison(proj_test, labels) #for ker in ['linear', 'sigmoid', 'rbf']: #svc = SVC(kernel=ker) #scores = cross_validation.cross_val_score(svc, proj_test, labels, cv=10) #print "Kernel: " + ker #print "K: " + str(k) #print scores #print np.mean(scores) #print np.var(scores) proj_test, labels = load_pca_proj(K=k) shuffle_in_unison(proj_test, labels) svc = SVC() scores = cross_validation.cross_val_score(svc, proj_test, labels, cv=10) pt = load_pca_hidden(K=k) svc.fit(proj_test, labels) pred = svc.predict(pt) write_results(pred, '../svm_res.csv')