def tabular_view(request, facility, report_type="exercise"): """Tabular view also gets data server-side.""" # Get a list of topics (sorted) and groups topics = get_knowledgemap_topics() (groups, facilities) = get_accessible_objects_from_logged_in_user(request) context = plotting_metadata_context(request, facility=facility) context.update({ "report_types": ("exercise", "video"), "request_report_type": report_type, "topics": topics, }) # get querystring info topic_id = request.GET.get("topic", "") # No valid data; just show generic if not topic_id or not re.match("^[\w\-]+$", topic_id): return context group_id = request.GET.get("group", "") if group_id: # Narrow by group users = FacilityUser.objects.filter( group=group_id, is_teacher=False).order_by("last_name", "first_name") elif facility: # Narrow by facility search_groups = [ dict["groups"] for dict in groups if dict["facility"] == facility.id ] assert len(search_groups) <= 1, "should only have one or zero matches." # Return groups and ungrouped search_groups = search_groups[ 0] # make sure to include ungrouped students users = FacilityUser.objects.filter( Q(group__in=search_groups) | Q(group=None, facility=facility), is_teacher=False).order_by("last_name", "first_name") else: # Show all (including ungrouped) for groups_dict in groups: search_groups += groups_dict["groups"] users = FacilityUser.objects.filter( Q(group__in=search_groups) | Q(group=None), is_teacher=False).order_by("last_name", "first_name") # We have enough data to render over a group of students # Get type-specific information if report_type == "exercise": # Fill in exercises exercises = get_topic_exercises(topic_id=topic_id) exercises = sorted( exercises, key=lambda e: (e["h_position"], e["v_position"])) context["exercises"] = exercises # More code, but much faster exercise_names = [ex["name"] for ex in context["exercises"]] # Get students context["students"] = [] exlogs = ExerciseLog.objects \ .filter(user__in=users, exercise_id__in=exercise_names) \ .order_by("user__last_name", "user__first_name")\ .values("user__id", "struggling", "complete", "exercise_id") exlogs = list(exlogs) # force the query to be evaluated exlog_idx = 0 for user in users: log_table = {} while exlog_idx < len( exlogs) and exlogs[exlog_idx]["user__id"] == user.id: log_table[exlogs[exlog_idx]["exercise_id"]] = exlogs[exlog_idx] exlog_idx += 1 context["students"].append({ # this could be DRYer "first_name": user.first_name, "last_name": user.last_name, "username": user.username, "name": user.get_name(), "id": user.id, "exercise_logs": log_table, }) elif report_type == "video": # Fill in videos context["videos"] = get_topic_videos(topic_id=topic_id) # More code, but much faster video_ids = [vid["youtube_id"] for vid in context["videos"]] # Get students context["students"] = [] vidlogs = VideoLog.objects \ .filter(user__in=users, youtube_id__in=video_ids) \ .order_by("user__last_name", "user__first_name")\ .values("user__id", "complete", "youtube_id", "total_seconds_watched", "points") vidlogs = list(vidlogs) # force the query to be executed now vidlog_idx = 0 for user in users: log_table = {} while vidlog_idx < len( vidlogs) and vidlogs[vidlog_idx]["user__id"] == user.id: log_table[vidlogs[vidlog_idx] ["youtube_id"]] = vidlogs[vidlog_idx] vidlog_idx += 1 context["students"].append({ # this could be DRYer "first_name": user.first_name, "last_name": user.last_name, "username": user.username, "name": user.get_name(), "id": user.id, "video_logs": log_table, }) else: raise Http404("Unknown report_type: %s" % report_type) if "facility_user" in request.session: try: # Log a "begin" and end here user = request.session["facility_user"] UserLog.begin_user_activity(user, activity_type="coachreport") UserLog.update_user_activity( user, activity_type="login" ) # to track active login time for teachers UserLog.end_user_activity(user, activity_type="coachreport") except ValidationError as e: # Never report this error; don't want this logging to block other functionality. logging.debug( "Failed to update Teacher userlog activity login: %s" % e) return context
def student_view_context(request, xaxis="pct_mastery", yaxis="ex:attempts"): """ Context done separately, to be importable for similar pages. """ user = get_user_from_request(request=request) topic_slugs = [t["id"] for t in get_knowledgemap_topics()] topics = [NODE_CACHE["Topic"][slug] for slug in topic_slugs] user_id = user.id exercise_logs = list(ExerciseLog.objects \ .filter(user=user) \ .values("exercise_id", "complete", "points", "attempts", "streak_progress", "struggling", "completion_timestamp")) video_logs = list(VideoLog.objects \ .filter(user=user) \ .values("youtube_id", "complete", "total_seconds_watched", "points", "completion_timestamp")) exercise_sparklines = dict() stats = dict() topic_exercises = dict() topic_videos = dict() exercises_by_topic = dict() videos_by_topic = dict() # Categorize every exercise log into a "midlevel" exercise for elog in exercise_logs: parents = NODE_CACHE["Exercise"][elog["exercise_id"]]["parents"] topic = set(parents).intersection(set(topic_slugs)) if not topic: logging.error("Could not find a topic for exercise %s (parents=%s)" % (elog["exercise_id"], parents)) continue topic = topic.pop() if not topic in topic_exercises: topic_exercises[topic] = get_topic_exercises( path=NODE_CACHE["Topic"][topic]["path"]) exercises_by_topic[topic] = exercises_by_topic.get(topic, []) + [elog] # Categorize every video log into a "midlevel" exercise. for vlog in video_logs: parents = NODE_CACHE["Video"][ID2SLUG_MAP[ vlog["youtube_id"]]]["parents"] topic = set(parents).intersection(set(topic_slugs)) if not topic: logging.error("Could not find a topic for video %s (parents=%s)" % (vlog["youtube_id"], parents)) continue topic = topic.pop() if not topic in topic_videos: topic_videos[topic] = get_topic_videos( path=NODE_CACHE["Topic"][topic]["path"]) videos_by_topic[topic] = videos_by_topic.get(topic, []) + [vlog] # Now compute stats for topic in topic_slugs: #set(topic_exercises.keys()).union(set(topic_videos.keys())): n_exercises = len(topic_exercises.get(topic, [])) n_videos = len(topic_videos.get(topic, [])) exercises = exercises_by_topic.get(topic, []) videos = videos_by_topic.get(topic, []) n_exercises_touched = len(exercises) n_videos_touched = len(videos) exercise_sparklines[topic] = [ el["completion_timestamp"] for el in filter(lambda n: n["complete"], exercises) ] # total streak currently a pct, but expressed in max 100; convert to # proportion (like other percentages here) stats[topic] = { "ex:pct_mastery": 0 if not n_exercises_touched else sum([el["complete"] for el in exercises]) / float(n_exercises), "ex:pct_started": 0 if not n_exercises_touched else n_exercises_touched / float(n_exercises), "ex:average_points": 0 if not n_exercises_touched else sum([el["points"] for el in exercises]) / float(n_exercises_touched), "ex:average_attempts": 0 if not n_exercises_touched else sum([el["attempts"] for el in exercises]) / float(n_exercises_touched), "ex:average_streak": 0 if not n_exercises_touched else sum([el["streak_progress"] for el in exercises]) / float(n_exercises_touched) / 100., "ex:total_struggling": 0 if not n_exercises_touched else sum( [el["struggling"] for el in exercises]), "ex:last_completed": None if not n_exercises_touched else max_none( [el["completion_timestamp"] or None for el in exercises]), "vid:pct_started": 0 if not n_videos_touched else n_videos_touched / float(n_videos), "vid:pct_completed": 0 if not n_videos_touched else sum([vl["complete"] for vl in videos]) / float(n_videos), "vid:total_minutes": 0 if not n_videos_touched else sum([vl["total_seconds_watched"] for vl in videos]) / 60., "vid:average_points": 0. if not n_videos_touched else float( sum([vl["points"] for vl in videos]) / float(n_videos_touched)), "vid:last_completed": None if not n_videos_touched else max_none( [vl["completion_timestamp"] or None for vl in videos]), } context = plotting_metadata_context(request) return { "form": context["form"], "groups": context["groups"], "facilities": context["facilities"], "student": user, "topics": topics, "exercises": topic_exercises, "exercise_logs": exercises_by_topic, "video_logs": videos_by_topic, "exercise_sparklines": exercise_sparklines, "no_data": not exercise_logs and not video_logs, "stats": stats, "stat_defs": [ # this order determines the order of display { "key": "ex:pct_mastery", "title": _("% Mastery"), "type": "pct" }, { "key": "ex:pct_started", "title": _("% Started"), "type": "pct" }, { "key": "ex:average_points", "title": _("Average Points"), "type": "float" }, { "key": "ex:average_attempts", "title": _("Average Attempts"), "type": "float" }, { "key": "ex:average_streak", "title": _("Average Streak"), "type": "pct" }, { "key": "ex:total_struggling", "title": _("Struggling"), "type": "int" }, { "key": "ex:last_completed", "title": _("Last Completed"), "type": "date" }, { "key": "vid:pct_completed", "title": _("% Completed"), "type": "pct" }, { "key": "vid:pct_started", "title": _("% Started"), "type": "pct" }, { "key": "vid:total_minutes", "title": _("Average Minutes Watched"), "type": "float" }, { "key": "vid:average_points", "title": _("Average Points"), "type": "float" }, { "key": "vid:last_completed", "title": _("Last Completed"), "type": "date" }, ] }