コード例 #1
0
def analyzeClusters(n_loops=1, cl=None, sp=None, shuffled=False, spShuff=False):
    results = {}
    n = n_loops

    bins = [i for i in drange(0.0, 1.0, 0.1)]
    total_hist = [0 for i in bins]

    data = win.getData(shuffle=shuffled, class_=cl, spec=sp)
    if spShuff is True:
        win.shuffleIt(data, mode=2)
    Z = hie.linkage(data, method='average', metric='correlation')
    D = hie.dendrogram(Z, orientation='left', no_plot=True)

    total_ys = [0 for d in D['dcoord']]
    total_z = [0 for d in Z[::-1, 2]]
    total_acc = [0 for d in np.diff(Z[::-1, 2], 2)]

    for ii in range(0, n):  # for loop added to average shuffled results
        # data = win.getData(shuffle=True, class_='J')
        # labels = win.getStudents(class_=classes[0])
        # labels = [str(st.class_) + " " + str(st.spec) for st in labels]

        Z = hie.linkage(data, method='average', metric='correlation')
        D = hie.dendrogram(Z, orientation='left', no_plot=True)

        # print(data[40, :])
        # print(data[42, :])

        # freq method
        ys = [d[1] for d in D['dcoord']]
        total_ys = [a + b for a, b in zip(ys, total_ys)]
        hist, bins = np.histogram(ys, bins=bins)
        total_hist = [a + b for a, b in zip(hist, total_hist)]

        # elbow method (sort of)
        z = Z[::-1, 2]
        total_z = [a + b for a, b in zip(z, total_z)]

        # inv elbow
        acceleration = np.diff(Z[::-1, 2], 2)  # 2nd derivative of distances
        total_acc = [a + b for a, b in zip(acceleration, total_acc)]
        if ii < n - 1:  # dont get new data if there wont be another loop
            data = win.getData(shuffle=shuffled, class_=cl, spec=sp)

    total_hist = [a / n for a in total_hist]
    total_ys = [a / n for a in total_ys]
    total_z = [a / n for a in total_z]
    total_acc = [a / n for a in total_acc]

    results['bins'] = (bins[:-1] + bins[1:]) / 2
    results['hist'] = total_hist
    results['ys'] = total_ys
    results['z'] = total_z
    results['acc'] = total_acc
    return results
コード例 #2
0

data = win.getData(class_=None)
co_corr = np.corrcoef(data, rowvar=0)
print(np.mean(co_corr), scp.sem(co_corr, axis=None), sep=' +/- ')
print('var: ', np.var(co_corr, axis=None))

n = 10000

'''c shuff'''
m = 0
e = 0
v = 0
for ii in range(n):
    data = win.getData(class_=None)
    win.shuffleIt(data, 2)
    co_corr = np.corrcoef(data, rowvar=0)
    m += np.mean(co_corr)
    e += scp.sem(co_corr, axis=None)
    v += np.var(co_corr, axis=None)
m /= n
e /= n
v /= n
print(m, e, sep=' +/- ')
print('var: ', v)

'''s shuff'''
m = 0
e = 0
v = 0
for ii in range(n):
コード例 #3
0
# for ii, st in enumerate(students):
#     if st.class_ != cl:
#         anno.append((ii - 1, students[ii - 1].class_))
#         cl = st.class_
#     if st.spec != sp:
#         anno2.append((ii - 1, students[ii - 1].spec))
#         sp = st.spec
# anno.append(((len(students) - 1), students[-1].class_))
# anno2.append(((len(students) - 1), students[-1].spec))
# anno = anno + anno2

"""set up ranges"""
students = win.getData()
co_corr = np.corrcoef(students, rowvar=0)
vmin, vmax = co_corr.min(), co_corr.max()
win.shuffleIt(students, 2)
co_corr = np.corrcoef(students, rowvar=0)
vmin = vmin if co_corr.min() >= vmin else co_corr.min()
vmax = vmax if co_corr.min() <= vmax else co_corr.max()
students = win.getData()
win.shuffleIt(students, 1)
co_corr = np.corrcoef(students, rowvar=0)
vmin = vmin if co_corr.min() >= vmin else co_corr.min()
vmax = vmax if co_corr.min() <= vmax else co_corr.max()
vmin, vmax = vmin - 0.0001, vmax + 0.0001

"""plot heatmap"""
font = {"family": "normal", "weight": "bold", "size": 22}

matplotlib.rc("font", **font)
matplotlib.rcParams["ps.useafm"] = True