コード例 #1
0
ファイル: profile-field.py プロジェクト: harpolea/MAESTRO
def create_profile(infile):
    ds = yt.load(infile)
    ad = ds.all_data()
    profile = yt.create_profile(ad, args.axis, fields=[args.field],
                                weight_field=None, n_bins=args.nbins,
                                logs={args.axis: args.axis_log,
                                      args.field: args.field_log})
    return profile
コード例 #2
0
def profile_plot(center_of_mass, filename):
    sp = ds.sphere(center_of_mass, (30, 'kpc'))
    profiles = yt.create_profile(sp, 'radius', fields.values())
    for fieldname, field in fields.iteritems():
        plt.loglog(profiles.x, profiles[field], label=fieldname)
    plt.xlim([profiles.x.min(), profiles.x.max()])
    plt.xlabel('Radius $[kpc]$')
    plt.ylabel('$\\rho [M_{\odot} kpc^{-3}]$')
    plt.legend(loc='best')
    plt.savefig(filename)
    plt.clf()
コード例 #3
0
def doit(filename):
    ds = yt.load(filename)
    ad = ds.all_data()
    profile = yt.create_profile(ad, args.binfields, args.fields,
                                n_bins=tuple(args.nbins),
                                weight_field=None)

    print(profile.keys())
    print(profile["enucdot"].shape)
    print(profile["y"].shape)
    for y, e in zip(profile["y"], profile["enucdot"]):
        print('({}, {})'.format(y, e))
    exit()
    return ds.time, emax, elocmax, efwhm
コード例 #4
0
ファイル: profiling.py プロジェクト: amacki3/yt-scripts
def det_fil_profile(start,end,var,weight,radius,ds):
	
	#Function to return a list of the weighted average of a variable for a list of concentric disks

	#Get the disk object

	cyl = gen_cyl(start,end,radius,ds)

	#Create a profile
	if weight == "":
		weight = None
	profile = yt.create_profile(cyl,"cylindrical_radius", var, weight_field=weight,n_bins=10,units={"cylindrical_radius":'Mpc'},extrema={"cylindrical_radius":(0.1,2.0)})
	
	return profile
コード例 #5
0
ファイル: glue_yt.py プロジェクト: jzuhone/glue-yt
 def compute_histogram(self,
                       cids,
                       range=None,
                       bins=None,
                       log=None,
                       subset_state=None):
     fields = [tuple(cid.label.split()) for cid in cids]
     profile = yt.create_profile(self.region,
                                 fields, ['ones'],
                                 n_bins=bins[0],
                                 extrema={fields[0]: range[0]},
                                 logs={fields[0]: log[0]},
                                 weight_field=None)
     return profile['ones']
コード例 #6
0
ファイル: New_profiler.py プロジェクト: kaylanb/orion2_yt
def make_prof_cut(Object, cut, fields):
    cr = ds.cut_region(Object, [cut])
    prof = yt.create_profile(
        data_source=cr,
        bin_fields=["radius"],
        fields=fields,
        n_bins=60.,
        units=dict(radius="kpc",
                   rv="km/s"),
        logs=dict(radius=False),
        weight_field='cell_volume',
        extrema=dict(radius=(0,2.2*Rvir.value)),
        )
    return prof
コード例 #7
0
def DM_dens_prof(ds,sph,simtype,curr_sim,curr_halo):
    print datetime.now().strftime('%H:%M:%S'),'Making DM Density Profile Plot of halo #%d'%(curr_halo)
    field_type = 'deposit'
    field = 'io_density'
    weight= None


    rp  = yt.create_profile(sph, 'radius', (field_type,field),weight_field=weight)
    output = yt.ProfilePlot(sph, "radius", (field_type,field),x_log=None,y_log=None)

    output.set_unit('radius', 'Mpccm/h')
    output.set_unit(field, 'Msun/kpc**3')
    output.set_log('radius',False)
    output.save('%s_%s_%d_prof_%s.png'%(simtype,curr_sim,curr_halo,field))
    return rp
コード例 #8
0
def ratio_pair(field,
               ad_pre=None,
               ad_cores=None,
               extrema={},
               zlim=[1e-2, 1e4]):
    pdf_pre = yt.create_profile(ad_pre, [field[0], field[1]],
                                field[2],
                                weight_field=None,
                                fractional=False,
                                extrema=extrema)
    fig, ax = plt.subplots()

    norm = colors.LogNorm(vmin=zlim[0], vmax=zlim[1])  # vmin=1e-4, vmax=1
    norm = None
    z_pre = pdf_pre[field[2]]
    pre_plot = ax.pcolormesh(z_pre, norm=norm)  ##changed plt to ax

    #pre_plot.set_norm(norm)
    #locator = LogLocator()
    #formatter = LogFormatter()
    #cbar = fig.colorbar(pre_plot,ax=ax,norm=norm)  ## can add ticks=[]
    #Set color to be used for low out-of-range values:
    #cbar.cmap.set_under('w')

    #cbar.locator = locator
    #cbar.formatter = formatter
    #cbar.update_normal(pre_plot)
    #cbar.set_cmap('arbre')
    #cbar.set_clim(vmin=1e-2,vmax=1e4)
    #cbar.ax.set_ylabel(r'density ($g/cm^3$)')  #(r'cell_volume ($cm^3$)')

    ax.set_xlabel(r'%s' % (field[0]))
    ax.set_ylabel(r'%s' % (field[1]))

    xticks = ax.get_xticks().astype('int')
    these_xbins = pdf_pre.x_bins
    new_labels = tick_fixer(xticks, these_xbins)
    ax.set_xticklabels(new_labels)

    yticks = ax.get_yticks().astype('int')
    these_ybins = pdf_pre.y_bins
    new_labels = tick_fixer(yticks, these_ybins)
    ax.set_yticklabels(new_labels, rotation='45')

    outname = '/home/dcollins4096/PigPen/plot_test_%s_%s_%s.png' % tuple(field)
    plt.savefig(outname)
    print(outname)
    return {'pdf_pre': pdf_pre, 'ax': ax}
コード例 #9
0
def prof_temp_halo(ds,sph,simtype,curr_sim,curr_halo):
    "This function makes a profile of the halo chosen, saves it, and returns the profile as an object for future use"
    print datetime.now().strftime('%H:%M:%S'),'Making gas temperature Profile Plot of halo #%d'%(curr_halo)
    fieldtype = 'gas'
    field = 'temperature'
    weight= None

    rp    = yt.create_profile(sph,'radius',(fieldtype,field),weight_field=weight)
    plot  = yt.ProfilePlot(sph,'radius',(fieldtype,field),weight_field=weight)

    plot.set_unit('radius', 'Mpccm/h')
    plot.set_unit(field, 'K')
    plot.set_log('radius',False)
    plot.save('%s_%s_%d_prof_%s.png'%(simtype,curr_sim,curr_halo,field))
    #Return the profile object for future use.
    return rp
コード例 #10
0
def doit(filename):
    ds = yt.load(filename)
    ad = ds.all_data()
    profile = yt.create_profile(ad,
                                args.binfields,
                                args.fields,
                                n_bins=tuple(args.nbins),
                                weight_field=None)

    print(profile.keys())
    print(profile["enucdot"].shape)
    print(profile["y"].shape)
    for y, e in zip(profile["y"], profile["enucdot"]):
        print('({}, {})'.format(y, e))
    exit()
    return ds.time, emax, elocmax, efwhm
コード例 #11
0
ファイル: yt_phase.py プロジェクト: ecostriker/py_TIGRESS
def main(**kwargs):

    dir = kwargs['base_directory'] + kwargs['directory']
    fname = glob.glob(dir + 'id0/' + kwargs['id'] + '.????.vtk')
    fname.sort()

    ngrids = len(glob.glob(dir + 'id*/' + kwargs['id'] + fname[-9:]))
    comm = yt.communication_system.communicators[-1]
    nprocs = comm.size
    print ngrids, nprocs

    if yt.is_root():
        if not os.path.isdir(dir + 'phase/'): os.mkdir(dir + 'phase/')

    for f in fname:
        phfname = dir + 'phase/' + kwargs['id'] + f[-9:-4] + '.phase.p'
        if os.path.isfile(phfname):
            print '%s is already there' % phfname
        else:
            if ngrids > nprocs: ds = yt.load(f, units_override=unit_base)
            else: ds = yt.load(f, units_override=unit_base, nprocs=nprocs * 8)
            le = np.array(ds.domain_left_edge)
            re = np.array(ds.domain_right_edge)
            sq = ds.box(le, re)
            pdfs = my_pdf(sq)

            for bf in bin_fields:
                n_bins = (aux[bf[0]]['n_bins'], aux[bf[1]]['n_bins'])
                logs = {}
                unit = {}
                extrema = {}
                for b in bf:
                    logs[b] = aux[b]['log']
                    if aux[b].has_key('unit'): unit[b] = aux[b]['unit']
                    if aux[b].has_key('limits'): extrema[b] = aux[b]['limits']
                pdf = yt.create_profile(sq,
                                        bf,
                                        fields=fields,
                                        n_bins=n_bins,
                                        logs=logs,
                                        extrema=extrema,
                                        units=unit,
                                        weight_field=None,
                                        fractional=True)
                pdfs.add_pdf(pdf, bf)
            if yt.is_root():
                pickle.dump(pdfs, open(phfname, 'wb'), pickle.HIGHEST_PROTOCOL)
コード例 #12
0
ファイル: test_profiles.py プロジェクト: jameslehoux/yt
def test_profile_zero_weight():
    def DMparticles(pfilter, data):
        filter = data[(pfilter.filtered_type, "particle_type")] == 1
        return filter

    def DM_in_cell_mass(field, data):
        return data["deposit", "DM_density"] * data["index", "cell_volume"]

    add_particle_filter("DM",
                        function=DMparticles,
                        filtered_type="io",
                        requires=["particle_type"])

    _fields = (
        "particle_position_x",
        "particle_position_y",
        "particle_position_z",
        "particle_mass",
        "particle_velocity_x",
        "particle_velocity_y",
        "particle_velocity_z",
        "particle_type",
    )
    _units = ("cm", "cm", "cm", "g", "cm/s", "cm/s", "cm/s", "dimensionless")
    ds = fake_random_ds(32,
                        particle_fields=_fields,
                        particle_field_units=_units,
                        particles=16)

    ds.add_particle_filter("DM")
    ds.add_field(
        ("gas", "DM_cell_mass"),
        units="g",
        function=DM_in_cell_mass,
        sampling_type="cell",
    )

    sp = ds.sphere(ds.domain_center, (10, "kpc"))

    profile = yt.create_profile(
        sp,
        [("gas", "density")],
        [("gas", "radial_velocity")],
        weight_field=("gas", "DM_cell_mass"),
    )

    assert not np.any(np.isnan(profile["gas", "radial_velocity"]))
コード例 #13
0
 def get_3d_profile(self, ds, variables):
     """
     get radial profiles from 3d data
     """
     source = ds.sphere([0, 0, 0], (self.rmax, "cm"))
     yt_profile = yt.create_profile(
         source,
         "radius",
         variables,
         n_bins=self.nbins,
         extrema={'radius': (self.dr / 2, self.rmax + self.dr / 2)},
         logs={'radius': False},
         weight_field='cell_mass',
         accumulation=False)
     for var in variables:
         self.profiles[var] = yt_profile[var].v
     return
コード例 #14
0
def make_profile(ds):
    slice = ds.r[:, :, z_position]
    L = ds.domain_width.v[0]
    print(L)
    center = [0.5 * L, 0.5 * L, 0]
    slice.set_field_parameter("center", center)
    rp = yt.create_profile(slice,
                           "cylindrical_radius",
                           fields=["rho", "S_azimuth"],
                           n_bins=N_bins,
                           weight_field="weighting_field",
                           extrema={"cylindrical_radius": (r_min, r_max)})
    rho = rp["rho"].value
    rho_J = rp["S_azimuth"].value
    J = rho_J / rho
    R = rp.x.value
    print("made profile")
    return (R, rho, J)
コード例 #15
0
def plot_entropy_profile_evolution(basename, RDnums, fileout):
    n = len(RDnums)
    colors = pl.cm.viridis(np.linspace(0, 1, n))
    #fig,ax = plt.subplots(2,1)
    for i in range(len(RDnums)):
        ds = yt.load(basename + ('/RD00' + str(RDnums[i])) * 2)
        center_guess = initial_center_guess(ds, track_name)
        halo_center, halo_velocity = get_halo_center(ds, center_guess)
        rb = sym_refine_box(ds, halo_center)
        rp = yt.create_profile(rb,
                               'radius', ['entropy', 'total_energy'],
                               units={'radius': 'kpc'},
                               logs={'radius': False})
        zhere = "%.2f" % ds.current_redshift

        plt.figure(1)
        plt.plot(rp.x.value,
                 rp['entropy'].value,
                 color=colors[i],
                 lw=2.0,
                 label=zhere)
        plt.xlim(0, 200)
        plt.figure(2)
        plt.plot(rp.x.value,
                 np.log10(rp['total_energy'].value),
                 color=colors[i],
                 lw=2.0,
                 label=zhere)

    plt.figure(1)
    plt.legend()
    plt.xlabel('Radius [kpc]')
    plt.ylabel('Entropy')
    plt.savefig(fileout + '_entropy.pdf')

    plt.figure(2)
    plt.legend()
    plt.xlabel('Radius [kpc]')
    plt.ylabel('Energy')
    plt.savefig(fileout + '_energy.pdf')

    plt.close()

    return
コード例 #16
0
def generate_profiles(ds,
                      field_list,
                      R = 2000,
                      n_bins = 100,
                      center_method = 'gpot'):
    start = time.time()

    # Find the gravitational potential minimum
    center = find_center(ds, center_method)

    # Make a sphere at this point
    sp = ds.sphere(center, ds.quan(R, 'kpc'))

    print('Creating profiles')
    profile = yt.create_profile(sp, 'radius', field_list, n_bins=n_bins)

    end = time.time()
    print('Finished creating profiles -- %f s' % (end-start))
    return profile, center
コード例 #17
0
def phase(filename,out_dir='',write_file=True,write_figure=True):
    ds=yt.load(filename,units_override=ya.unit_base,unit_system=tigress_unit_system)
    ya.add_yt_fields(ds,cooling=True,mhd=True,rotation=False)

    sp=ds.sphere(ds.domain_center,ds.domain_right_edge[0])

    total_mass=sp.sum('cell_mass')
    print total_mass.in_units('Msun')

    for bf in bin_fields:
        xbin,ybin=bf
        pdf=yt.create_profile(sp,bf,field,extrema=extrema,logs=logs,
                              n_bins=128,weight_field=None)
        outhead1='{}{}_{}_{}_{}'.format(out_dir,ds,xbin,ybin,field)
        if write_file: pdf.save_as_dataset(outhead1)
        if write_figure: 
            p=pdf.plot()
            outhead2='{}.png'.format(outhead1)
            p.save(outhead2)
コード例 #18
0
def _plot_ds_field(ds, field):
			disk = ds.disk(c, normal, radius, height)
			radial_profile = yt.create_profile(
				data_source=disk,
				bin_fields=["radius"],
				fields=field,
				n_bins=256,
				units=dict(radius="kpc"),
				logs=dict(radius=False),
				weight_field='cell_mass',
				extrema={'radius': (0, 300)},
				)
			p = yt.ProfilePlot.from_profiles(radial_profile)
			if (field != 'angular_momentum_magnitude'):
				p.set_ylim(field, -2e70, 2e70)
			else:
				p.set_ylim(field, 0, 1e70)
			p.set_log('%s' % field, False)
			p.save('radius_300/cell_mass/%s/%s' % (field, ds))
コード例 #19
0
def createNormalProfile(Param_Dict):
    """Create a Profile plot for the selected x-and y-field. Return an array
    containing the data and a label.
    Parameters:
        Param_Dict: For the fields and DataSets to be plotted.
    Returns:
        arr: list containing two YTArrays having the x-field as the first and
             the y-field as second entry.
    """
    # Create a data container to hold the whole dataset.
    ds = Param_Dict["CurrentDataSet"]
    ad = ds.all_data()
    # Create a 1d profile of density vs. temperature.
    prof = yt.create_profile(ad, Param_Dict["XAxis"],
                             fields=[Param_Dict["YAxis"]],
                             weight_field=Param_Dict["WeightField"])
    labels = [Param_Dict["YAxis"]]
    arr = [prof.x, prof[Param_Dict["YAxis"]]]
    return arr, labels
コード例 #20
0
def phase_part(ds, region, out_dir, params, overwrite=False):
    '''       
        calculate 2D joint PDFs using yt
                   
        Inputs
        ------
        ds: YTDataSet
            
        region: YTRegion
        
        out_dir: string
            directory name for output hdf files to be saved
            will be created if doesn't exist

        params: class (phase_parameters)

        Parameters
        ----------
        overwrite: bool
            if false, skip it if file exists
    '''
    logs = params.logs
    extrema = params.extrema
    bin_fields = params.bin_fields
    nbins = params.nbins

    if not os.path.isdir(out_dir): os.mkdir(out_dir)

    for bf in bin_fields:
        xbin, ybin = bf
        outhead1 = '{}{}-{}-{}'.format(out_dir, ds, xbin, ybin)
        if not os.path.isfile(outhead1 + '.h5') or overwrite:
            pdf = yt.create_profile(region,
                                    bf, ['cell_mass', 'cell_volume'],
                                    extrema=extrema,
                                    logs=logs,
                                    n_bins=nbins,
                                    weight_field=None)
            pdf.save_as_dataset(outhead1)
コード例 #21
0
def do_phase(ds,
             fields=['density', 'pressure', 'cell_volume'],
             phase_args={},
             weight_field=None,
             n_bins=[64, 64],
             prefix='RUN'):

    phase_args['bin_fields'] = [fields[0], fields[1]]
    phase_args['fields'] = [fields[2]]
    phase_args['weight_field'] = weight_field
    #phase_args['extrema']=local_extrema
    phase_args['n_bins'] = n_bins
    reg = ds.all_data()
    phase = yt.create_profile(reg, **phase_args)
    #self.phase = weakref.proxy(phase)
    pp = yt.PhasePlot.from_profile(phase)
    pp.set_xlabel(fields[0])
    pp.set_ylabel(fields[1])

    callback = equillibrium_callback()
    callback(pp)
    pp.save(prefix)
コード例 #22
0
def phase(sq,phfname,bin_fields,aux={}):
    pdfs=my_pdf(sq)

    for bf in bin_fields:
        nbin1, nbin2=(128, 128)
        if bf[0] in aux: nbin1=aux[bf[0]]['n_bins']
        if bf[1] in aux: nbin2=aux[bf[1]]['n_bins']
        n_bins=(nbin1, nbin2)
        logs={}
        unit={}
        extrema={}
        for b in bf: 
            logs[b]=False
            if b in aux:
                if 'log' in aux[b]: logs[b]=aux[b]['log'] 
                if 'unit' in aux[b]: unit[b]=aux[b]['unit'] 
                if 'limints' in aux[b]: extrema[b]=aux[b]['limits']
        pdf=yt.create_profile(sq,bf,fields=fields,
              n_bins=n_bins,logs=logs,extrema=extrema,units=unit,
              weight_field=None,fractional=True)
        pdfs.add_pdf(pdf,bf)
    if yt.is_root():
        pickle.dump(pdfs,open(phfname,'wb'),pickle.HIGHEST_PROTOCOL)
コード例 #23
0
def get_data(data_sub_dir, number, R_min, R_max):
    dsi = yt.load(data_root_path + "/" + data_sub_dir +
                  "/KerrSFp_{:06d}.3d.hdf5".format(number))
    print("loaded dataset number " + str(number) + " for " + data_sub_dir)
    slice = dsi.r[:, :, z_position]
    slice.set_field_parameter("center", center)
    # weighting field = (cell_volume)^(2/3) / (2*pi * r * dr)
    @derived_field(name="weighting_field", units="", force_override=True)
    def _weighting_field(field, data):
        return pow(data["cell_volume"].in_base("cgs"), 2.0 /
                   3) * N_bins / (2 * math.pi * data["cylindrical_radius"] *
                                  (R_max - R_min) * cm)

    rp = yt.create_profile(slice,
                           "cylindrical_radius",
                           fields=["phi"],
                           n_bins=128,
                           weight_field="weighting_field",
                           extrema={"cylindrical_radius": (R_min, R_max)})
    phi = rp["phi"].value
    R = rp.x.value
    print("made profile")
    return (R, phi)
コード例 #24
0
ファイル: plot_profiles.py プロジェクト: mepa/p3-radiation
print ds.print_stats()


# In[10]:

sp = ds.sphere("c", (100.0, "kpc"))


## Radius vs. Ionizing Species Abundances

# In[11]:

rmin = 1.0
rmax = 100.0
prof_h = yt.create_profile(sp, 'radius', ('flash', 'h   '),
                          units = {'radius': 'kpc'},
                          extrema = {'radius': ((rmin,'kpc'),(rmax,'kpc'))})
prof_hel = yt.create_profile(sp, 'radius', ('flash', 'hel '),
                          units = {'radius': 'kpc'},
                          extrema = {'radius': ((rmin,'kpc'),(rmax,'kpc'))})
prof_hplu = yt.create_profile(sp, 'radius', ('flash', 'hplu'),
                          units = {'radius': 'kpc'},
                          extrema = {'radius': ((rmin,'kpc'),(rmax,'kpc'))})
prof_hep = yt.create_profile(sp, 'radius', ('flash', 'hep '),
                          units = {'radius': 'kpc'},
                          extrema = {'radius': ((rmin,'kpc'),(rmax,'kpc'))})                                                              
prof_hepp = yt.create_profile(sp, 'radius', ('flash', 'hepp'),
                          units = {'radius': 'kpc'},
                          extrema = {'radius': ((rmin,'kpc'),(rmax,'kpc'))})                                                             
                                                                
コード例 #25
0
time = []
radius = []

for i in range(first, last + 1):
    amrfile = "DD%4.4d/data%4.4d" % (i, i)
    pf = yt.load(amrfile)

    x_bins_1d = 32
    r_min = pf.index.get_smallest_dx()
    r_max = pf.quan(1.0 - 1.0 / 64, 'code_length')

    sphere = pf.h.sphere(center, r_max)

    prof1d = yt.create_profile(sphere,
                               'radius',
                               fields=["Neutral_Fraction", "HI_kph"],
                               n_bins=x_bins_1d,
                               units={'radius': 'code_length'})

    # Find the radius of the I-front (f_HI=0.5)
    res = np.abs(prof1d["Neutral_Fraction"] - 0.5)
    ir = np.where(res == res.min())[0]
    r = np.interp(0.5, prof1d["Neutral_Fraction"], prof1d.x.value)
    r = pf.quan(r, 'code_length')
    time.append(pf.current_time.to('s'))
    radius.append(r.to('cm'))

    del pf
    del prof1d

time = np.array(time)
コード例 #26
0
def test_particle_profile_negative_field():
    # see Issue #1340
    n_particles = int(1e4)

    ppx, ppy, ppz = np.random.normal(size=[3, n_particles])
    pvx, pvy, pvz = -np.ones((3, n_particles))

    data = {
        'particle_position_x': ppx,
        'particle_position_y': ppy,
        'particle_position_z': ppz,
        'particle_velocity_x': pvx,
        'particle_velocity_y': pvy,
        'particle_velocity_z': pvz
    }

    bbox = 1.1 * np.array([[min(ppx), max(ppx)], [min(ppy), max(ppy)],
                           [min(ppz), max(ppz)]])
    ds = yt.load_particles(data, bbox=bbox)
    ad = ds.all_data()

    profile = yt.create_profile(ad,
                                ["particle_position_x", "particle_position_y"],
                                "particle_velocity_x",
                                logs={
                                    'particle_position_x': True,
                                    'particle_position_y': True,
                                    'particle_position_z': True
                                },
                                weight_field=None)
    assert profile['particle_velocity_x'].min() < 0
    assert profile.x_bins.min() > 0
    assert profile.y_bins.min() > 0

    profile = yt.create_profile(ad,
                                ["particle_position_x", "particle_position_y"],
                                "particle_velocity_x",
                                weight_field=None)
    assert profile['particle_velocity_x'].min() < 0
    assert profile.x_bins.min() < 0
    assert profile.y_bins.min() < 0

    # can't use CIC deposition with log-scaled bin fields
    with assert_raises(RuntimeError):
        yt.create_profile(ad, ["particle_position_x", "particle_position_y"],
                          "particle_velocity_x",
                          logs={
                              'particle_position_x': True,
                              'particle_position_y': False,
                              'particle_position_z': False
                          },
                          weight_field=None,
                          deposition='cic')

    # can't use CIC deposition with accumulation or fractional
    with assert_raises(RuntimeError):
        yt.create_profile(ad, ["particle_position_x", "particle_position_y"],
                          "particle_velocity_x",
                          logs={
                              'particle_position_x': False,
                              'particle_position_y': False,
                              'particle_position_z': False
                          },
                          weight_field=None,
                          deposition='cic',
                          accumulation=True,
                          fractional=True)
コード例 #27
0
ファイル: Bpdf.py プロジェクト: luzloujv/p19_newscripts
field_bins = np.logspace(np.log10(field_min), np.log10(field_max), Nbins)
bins = {
    'thetaz': theta_bins,
    'magnetic_field_strength': field_bins,
    'magnetic_field_z': field_bins
}

#
# Produce joint and marginalized distributions.
# Formally these are not PDFs since we don't explicityly normalize,
# BUT since the total volume is 1, they are in fact PDFs.
#
bin_fields = ['magnetic_field_strength', 'thetaz']
joint = yt.create_profile(region,
                          bin_fields=bin_fields,
                          fields=['cell_volume'],
                          weight_field=None,
                          override_bins=bins)
prof_mag = yt.create_profile(region,
                             bin_fields=['magnetic_field_strength'],
                             fields=['cell_volume'],
                             weight_field=None,
                             override_bins=bins)
prof_theta = yt.create_profile(region,
                               bin_fields=['thetaz'],
                               fields=['cell_volume'],
                               weight_field=None,
                               override_bins=bins)
prof_bz = yt.create_profile(region,
                            bin_fields=['magnetic_field_z'],
                            fields=['cell_volume'],
コード例 #28
0
# Load the dataset.
ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")

# Create a sphere of radius 1 Mpc centered on the max density location.
sp = ds.sphere("max", (1, "Mpc"))

# Calculate and store the bulk velocity for the sphere.
bulk_velocity = sp.quantities.bulk_velocity()
sp.set_field_parameter("bulk_velocity", bulk_velocity)

# Create a 1D profile object for profiles over radius
# and add a velocity profile.
prof = yt.create_profile(
    sp,
    "radius",
    ("gas", "velocity_magnitude"),
    units={"radius": "kpc"},
    extrema={"radius": ((0.1, "kpc"), (1000.0, "kpc"))},
    weight_field="cell_mass",
)

# Create arrays to plot.
radius = prof.x
mean = prof["gas", "velocity_magnitude"]
std = prof.standard_deviation["gas", "velocity_magnitude"]

# Plot the average velocity magnitude.
plt.loglog(radius, mean, label="Mean")
# Plot the variance of the velocity magnitude.
plt.loglog(radius, std, label="Standard Deviation")
plt.xlabel("r [kpc]")
plt.ylabel("v [cm/s]")
コード例 #29
0
import yt
import matplotlib.pyplot as plt

ds = yt.load("GasSloshing/sloshing_nomag2_hdf5_plt_cnt_0150")

# Get a sphere object

sp = ds.sphere(ds.domain_center, (500., "kpc"))

# Bin up the data from the sphere into a radial profile

rp = yt.create_profile(sp, 'radius', ['density', 'temperature'],
                       units = {'radius': 'kpc'},
                       logs = {'radius': False})

# Make plots using matplotlib

fig = plt.figure()
ax = fig.add_subplot(111)

# Plot the density as a log-log plot using the default settings
dens_plot = ax.loglog(rp.x.value, rp["density"].value)

# Here we set the labels of the plot axes

ax.set_xlabel(r"$\mathrm{r\ (kpc)}$")
ax.set_ylabel(r"$\mathrm{\rho\ (g\ cm^{-3})}$")

# Save the default plot

fig.savefig("density_profile_default.png" % ds)
コード例 #30
0
@derived_field(name="slice_weighting_field", units="")
def _slice_weighting_field(field, data):
    return pow(data["cell_volume"].in_base("cgs"), 2.0 /
               3) * N_bins / (2 * math.pi * (data["cylindrical_radius"]) *
                              (r_max - r_min) * cm)


sphere = ds.sphere(center, r_max)
slice = ds.r[:, :, z_position]
slice.set_field_parameter("center", center)

# make profile
rp_sphere = yt.create_profile(sphere,
                              "spherical_radius",
                              fields=["phi"],
                              n_bins=N_bins,
                              weight_field="sphere_weighting_field",
                              extrema={"spherical_radius": (r_min, r_max)})
rp_slice = yt.create_profile(slice,
                             "spherical_radius",
                             fields=["phi"],
                             n_bins=N_bins,
                             weight_field="slice_weighting_field",
                             extrema={"spherical_radius": (r_min, r_max)})

### plot profile
r_plus = 1 + math.sqrt(1 - a**2)

R_1 = rp_sphere.x.value
phi_1 = rp_sphere["phi"].value
r_BL_1 = R_1 * (1 + r_plus / (4 * R_1))**2
コード例 #31
0
import yt

# Load the dataset.
ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")

# Create a sphere of radius 1 Mpc centered on the max density location.
sp = ds.sphere("max", (1, "Mpc"))

# Calculate and store the bulk velocity for the sphere.
bulk_velocity = sp.quantities.bulk_velocity()
sp.set_field_parameter('bulk_velocity', bulk_velocity)

# Create a 1D profile object for profiles over radius
# and add a velocity profile.
prof = yt.create_profile(sp, 'radius', ('gas', 'velocity_magnitude'),
                         units = {'radius': 'kpc'},
                         extrema = {'radius': ((0.1, 'kpc'), (1000.0, 'kpc'))},
                         weight_field='cell_mass')

# Create arrays to plot.
radius = prof.x
mean = prof['gas', 'velocity_magnitude']
std = prof.standard_deviation['gas', 'velocity_magnitude']

# Plot the average velocity magnitude.
plt.loglog(radius, mean, label='Mean')
# Plot the variance of the velocity magnitude.
plt.loglog(radius, std, label='Standard Deviation')
plt.xlabel('r [kpc]')
plt.ylabel('v [cm/s]')
plt.legend()
コード例 #32
0
import yt
import yt.units as u

ds = yt.load("HiresIsolatedGalaxy/DD0044/DD0044")

center = [0.53, 0.53, 0.53]
normal = [0, 0, 1]
radius = 40 * u.kpc
height = 5 * u.kpc

disk = ds.disk(center, [0, 0, 1], radius, height)

profile = yt.create_profile(
    data_source=disk,
    bin_fields=[("index", "radius")],
    fields=[("gas", "velocity_cylindrical_theta")],
    n_bins=256,
    units=dict(radius="kpc", velocity_cylindrical_theta="km/s"),
    logs=dict(radius=False),
    weight_field=("gas", "mass"),
    extrema=dict(radius=(0, 40)),
)

plot = yt.ProfilePlot.from_profiles(profile)

plot.set_log(("gas", "velocity_cylindrical_theta"), False)
plot.set_ylim(("gas", "velocity_cylindrical_theta"), 60, 160)

plot.save()
コード例 #33
0
import yt
import matplotlib.pyplot as plt

ds = yt.load("GasSloshing/sloshing_nomag2_hdf5_plt_cnt_0150")

# Get a sphere object

sp = ds.sphere(ds.domain_center, (500., "kpc"))

# Bin up the data from the sphere into a radial profile

rp = yt.create_profile(sp,
                       'radius', ['density', 'temperature'],
                       units={'radius': 'kpc'},
                       logs={'radius': False})

# Make plots using matplotlib

fig = plt.figure()
ax = fig.add_subplot(111)

# Plot the density as a log-log plot using the default settings
dens_plot = ax.loglog(rp.x.value, rp["density"].value)

# Here we set the labels of the plot axes

ax.set_xlabel(r"$\mathrm{r\ (kpc)}$")
ax.set_ylabel(r"$\mathrm{\rho\ (g\ cm^{-3})}$")

# Save the default plot
コード例 #34
0
import yt.units as u

ds = yt.load('HiresIsolatedGalaxy/DD0044/DD0044')

center = [0.53, 0.53, 0.53]
normal = [0,0,1]
radius = 40*u.kpc
height = 2*u.kpc

disk = ds.disk(center, [0,0,1], radius, height)

profile = yt.create_profile(
    data_source=disk,
    bin_fields=["radius", "cylindrical_tangential_velocity"],
    fields=["cell_mass"],
    n_bins=256,
    units=dict(radius="kpc",
               cylindrical_tangential_velocity="km/s",
               cell_mass="Msun"),
    logs=dict(radius=False,
              cylindrical_tangential_velocity=False),
    weight_field=None,
    extrema=dict(radius=(0,40),
                 cylindrical_tangential_velocity=(-250, 250)),
    )

plot = yt.PhasePlot.from_profile(profile)
plot.set_cmap("cell_mass", "YlOrRd")

plot.save()
コード例 #35
0
# Load the dataset.
ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")

# Create a sphere of radius 1 Mpc centered on the max density location.
sp = ds.sphere("max", (1, "Mpc"))

# Calculate and store the bulk velocity for the sphere.
bulk_velocity = sp.quantities.bulk_velocity()
sp.set_field_parameter("bulk_velocity", bulk_velocity)

# Create a 1D profile object for profiles over radius
# and add a velocity profile.
prof = yt.create_profile(
    sp,
    "radius",
    ("gas", "velocity_magnitude"),
    units={"radius": "kpc"},
    extrema={"radius": ((0.1, "kpc"), (1000.0, "kpc"))},
    weight_field="cell_mass",
)

# Create arrays to plot.
radius = prof.x.value
mean = prof["gas", "velocity_magnitude"].value
variance = prof.variance["gas", "velocity_magnitude"].value

# Plot the average velocity magnitude.
plt.loglog(radius, mean, label="Mean")
# Plot the variance of the velocity magnitude.
plt.loglog(radius, variance, label="Standard Deviation")
plt.xlabel("r [kpc]")
plt.ylabel("v [cm/s]")
コード例 #36
0
ファイル: plot_r_X_profile.py プロジェクト: mepa/p3-radiation
import yt
from yt.units import kpc
import matplotlib.pyplot as plt

dirprefix = "/scratch/cerberus/d4/mepa/"
#dirname = "/scratch/01707/mepa/Rad_1Mpc/RadCosmoLW_res128/"
dirname = dirprefix + "data/RadCosmo_res128/stampede/"
filename = "radCosmoLW_hdf5_chk_0381"
fn = dirname + filename

ds = yt.load(fn)
sp = ds.sphere("max", (100.0, "kpc"))

prof1 = yt.create_profile(sp, 'radius', ('flash', 'h   '),
                         units = {'radius': 'kpc'},
                         extrema = {'radius': ((0.1, 'kpc'), (100.0, 'kpc'))})
prof2 = yt.create_profile(sp, 'radius', ('flash', 'hplu'),
                         units = {'radius': 'kpc'},
                         extrema = {'radius': ((0.1, 'kpc'), (100.0, 'kpc'))})
prof3 = yt.create_profile(sp, 'radius', ('flash', 'hel '),
                         units = {'radius': 'kpc'},
                         extrema = {'radius': ((0.1, 'kpc'), (100.0, 'kpc'))})
prof4 = yt.create_profile(sp, 'radius', ('flash', 'hep '),
                         units = {'radius': 'kpc'},
                         extrema = {'radius': ((0.1, 'kpc'), (100.0, 'kpc'))})
prof5 = yt.create_profile(sp, 'radius', ('flash', 'hepp'),
                         units = {'radius': 'kpc'},
                         extrema = {'radius': ((0.1, 'kpc'), (100.0, 'kpc'))})
radius = prof1.x.value
h = prof1['flash', 'h   '].value
hplu = prof2['flash', 'hplu'].value
コード例 #37
0
ファイル: average.py プロジェクト: abigailbishop/MAESTRO
import yt
import pylab

ds = yt.load("plt164582")

dd = ds.all_data()

p = yt.create_profile(dd,
                      "z",
                      "temperature",
                      n_bins=ds.domain_dimensions[2],
                      weight_field="cell_volume",
                      logs={"z": False})

#pylab.plot(p.x, p[("gas","temperature")])
pylab.plot(p.x, p.variance[("gas", "temperature")] / p[("gas", "temperature")])

ax = pylab.gca()
ax.set_yscale("log")

pylab.savefig("average.png")
コード例 #38
0
ファイル: testing.py プロジェクト: rasmi/cosmicray-galaxies
hc = HaloCatalog(data_ds=ds, halos_ds=halos_ds)
hc.load()
halos = hc.halo_list

fieldname = 'gas'
fieldvalue = fields[fieldname]
index = 0
halo = halos[index]

# PROJECTION PLOT
com = [halo.quantities['particle_position_x'], halo.quantities['particle_position_y'], halo.quantities['particle_position_z']]
sp = ds.sphere(com, (30, 'kpc'))
amv = sp.quantities.angular_momentum_vector()
amv = amv / np.sqrt((amv**2).sum())
center = sp.quantities.center_of_mass()
res = 1024
width = [0.01, 0.01, 0.01]
image = yt.off_axis_projection(ds, center, amv, width, res, fieldvalue)
yt.write_image(np.log10(image), '%s_%d_%s_offaxis_projection.png' % (ds, index, fieldname))

# PROFILE PLOT
com = [halo.quantities['particle_position_x'], halo.quantities['particle_position_y'], halo.quantities['particle_position_z']]
sp = ds.sphere(com, (30, 'kpc'))
profiles = yt.create_profile(sp, 'radius', fields.values())
for fieldname, field in fields.iteritems():
    plt.loglog(profiles.x, profiles[field], label=fieldname)
plt.xlim([profiles.x.min(), profiles.x.max()])
plt.xlabel('Radius $[kpc]$')
plt.ylabel('$\\rho [M_{\odot} kpc^{-3}]$')
plt.legend(loc='best')
plt.savefig('%s_%d_profile.png' % (ds, index))
コード例 #39
0
sp0 = ds.sphere(ds.domain_center, (500., "kpc"))

# Compute the bulk velocity from the cells in this sphere
bulk_vel = sp0.quantities.bulk_velocity()


# Get the second sphere
sp1 = ds.sphere(ds.domain_center, (500., "kpc"))

# Set the bulk velocity field parameter
sp1.set_field_parameter("bulk_velocity", bulk_vel)

# Radial profile without correction

rp0 = yt.create_profile(sp0, 'radius', 'radial_velocity',
                        units = {'radius': 'kpc'},
                        logs = {'radius': False})

# Radial profile with correction for bulk velocity

rp1 = yt.create_profile(sp1, 'radius', 'radial_velocity',
                        units = {'radius': 'kpc'},
                        logs = {'radius': False})

# Make a plot using matplotlib

fig = plt.figure()
ax = fig.add_subplot(111)

ax.plot(rp0.x.value, rp0["radial_velocity"].in_units("km/s").value,
        rp1.x.value, rp1["radial_velocity"].in_units("km/s").value)
コード例 #40
0
ファイル: Mdot.py プロジェクト: kaylanb/orion2_yt
                "time_unit":(UnitTime.value, UnitTime.units), 
                "mass_unit":(UnitMass.value, UnitMass.units)})

masses = {}
times = {}
radii = {}
i = rank
while i < len(ts[:]):
    ds = ts[i]
    sphere = ds.sphere([0.,0.,0.], (2.2*Rvir.value, "kpc"))
    profile = yt.create_profile(
        data_source=sphere,
        bin_fields=["radius"],
        fields=["cell_mass"],
        n_bins=60.,
        units=dict(radius="kpc",
                   cell_mass="Msun"),
        logs=dict(radius=False),
        weight_field=None,
        extrema=dict(radius=(0,2.2*Rvir.value)),
        accumulation=True
        )
    masses[i] = 1.*profile['cell_mass'].value
    times[i] = 1.*ds.current_time.in_units('yr').value
    radii[i] = 1.*profile.x.value
    i += size

masses = comm.gather(masses, root=0)
if rank == 0:
    all_masses = {}
    for d in masses:
        for k, v in d.iteritems():
コード例 #41
0
	return data["rho"]*pow(data["chi"],-3)

@derived_field(name = "rho_J_eff", units = "")
def _rho_J_eff(field, data):
        return data["S_azimuth"]*pow(data["chi"],-3)

@derived_field(name = "rho_J_prime_eff", units = "")
def _rho_J_prime_eff(field, data):
        return data["S_azimuth_prime"]*pow(data["chi"],-3)"""

# make slice 
slice = ds.r[:,:,z_position]
slice.set_field_parameter("center", center)

# make profile
rp_1 = yt.create_profile(slice, "spherical_radius", fields=["phi"], n_bins=128, weight_field="weighting_field", extrema={"spherical_radius" : (r_min, r_max)})

### plot profile
fig, ax1 = plt.subplots()

colours = ['r', 'b']

"""# plot phi
R = rp_1.x.value
r_plus = 1 + math.sqrt(1 - 0.99**2)
r_BL = R*(1 + r_plus/(4*R))**2
r_star = r_BL + np.log(r_BL)
r_3_4 = r_BL**(3.0/4)
ax1.plot(np.log(r_BL), rp_1["phi"].value, colours[0] + '-')
ax1.set_xlabel("$\\ln(r_{BL})$")
ax1.set_ylabel("$\\phi$")
コード例 #42
0
import yt
import yt.units as u

ds = yt.load('HiresIsolatedGalaxy/DD0044/DD0044')

center = [0.53, 0.53, 0.53]
normal = [0,0,1]
radius = 40*u.kpc
height = 5*u.kpc

disk = ds.disk(center, [0,0,1], radius, height)

profile = yt.create_profile(
    data_source=disk,
    bin_fields=["radius"],
    fields=["cylindrical_tangential_velocity_absolute"],
    n_bins=256,
    units=dict(radius="kpc",
               cylindrical_tangential_velocity_absolute="km/s"),
    logs=dict(radius=False),
    weight_field='cell_mass',
    extrema=dict(radius=(0,40)),
    )

plot = yt.ProfilePlot.from_profiles(profile)

plot.set_log('cylindrical_tangential_velocity_absolute', False)
plot.set_ylim('cylindrical_tangential_velocity_absolute', 60, 160)

plot.save()
コード例 #43
0
    file_names.append("../../DD" + `i`.zfill(4) + "/" + "cloud_collision_" + `i`.zfill(4))

labels = []
for file in file_names:

    ds = yt.load(file)
    sphere = ds.sphere('max', (75, 'pc'))

    # calculate and stor the bulk velocity of the sphere
    bulk_velocity = sphere.quantities.bulk_velocity()
    sphere.set_field_parameter('bulk_velocity', bulk_velocity)

    # create 1d profile object for profiles over radius
    # and add a velocity profile.
    prof = yt.create_profile(sphere, 'radius', ('gas', 'velocity_magnitude'),
        units = {'radius': 'pc'},
        extrema = {'radius': ((0.1, 'pc'), (75, 'pc'))},
        weight_field ='cell_mass')

    # create arrays to plot
    radius = prof.x.value
    mean = prof['gas', 'velocity_magnitude'].value
    variance = prof.variance['gas', 'velocity_magnitude'].value

    # plot the variance of the velocity magnitude
    plt.loglog(radius, variance*1.0E-5, label="Standarad Deviation")
    labels.append(r"%0.2f Myr" % ds.current_time.value)

plt.xlabel(r"Radius $(\mathrm{pc})$")
plt.ylabel('v [km/s]')
plt.xlim(1,75)
plt.legend(labels, loc="lower left", frameon=False)
コード例 #44
0
import yt

# Create a time-series object.
sim = yt.load_simulation("enzo_tiny_cosmology/32Mpc_32.enzo", "Enzo")
sim.get_time_series(redshifts=[5, 4, 3, 2, 1, 0])

# Lists to hold profiles, labels, and plot specifications.
profiles = []
labels = []
plot_specs = []

# Loop over each dataset in the time-series.
for ds in sim:
    # Create a data container to hold the whole dataset.
    ad = ds.all_data()
    # Create a 1d profile of density vs. temperature.
    profiles.append(
        yt.create_profile(ad, [("gas", "density")],
                          fields=[("gas", "temperature")]))
    # Add labels and linestyles.
    labels.append(f"z = {ds.current_redshift:.2f}")
    plot_specs.append(dict(linewidth=2, alpha=0.7))

# Create the profile plot from the list of profiles.
plot = yt.ProfilePlot.from_profiles(profiles,
                                    labels=labels,
                                    plot_specs=plot_specs)
# Save the image.
plot.save()
コード例 #45
0
            sp = ds.sphere(center, (float(rvir.in_units('kpc')) * 2.25, 'kpc'))

            radius_bins = ds.arr(
                np.linspace(0, float(rvir.in_units('kpc')) * 2.25, num=100),
                'kpc')
            print(rockstar_id)
            #print(radius_bins)

            #add set varialbles to none so if they do not get set, we see that when the get written

            rp_gas = yt.create_profile(sp,
                                       'radius', [('gas', 'cell_mass')],
                                       accumulation=True,
                                       units={
                                           'radius': 'kpc',
                                           'cell_mass': 'Msun'
                                       },
                                       weight_field=None,
                                       override_bins={'radius': radius_bins})

            rp_stars = yt.create_profile(sp, ('stars', 'particle_radius'),
                                         [('stars', 'particle_mass')],
                                         accumulation=True,
                                         units={
                                             ('stars', 'particle_radius'):
                                             'kpc',
                                             ('stars', 'particle_mass'): 'Msun'
                                         },
                                         weight_field=None,
                                         override_bins={
コード例 #46
0
ファイル: New_profiler.py プロジェクト: kaylanb/orion2_yt
ts = yt.load("id0/galaxyhalo.*.vtk", parameters=
               {"length_unit":(UnitLength.value, UnitLength.units),  
                "time_unit":(UnitTime.value, UnitTime.units), 
                "mass_unit":(UnitMass.value, UnitMass.units)})

i = rank
while i < len(ts):
    ds = ts[i]
    sphere = ds.sphere([0.,0.,0.], (2.2*Rvir.value, "kpc"))
    profile = yt.create_profile(
        data_source=sphere,
        bin_fields=["radius"],
        fields=["density", "pressure", "temperature", "rv", "entropy", "tcool"],
        n_bins=60.,
        units=dict(radius="kpc",
                   rv="km/s"),
        logs=dict(radius=False),
        weight_field='cell_volume',
        extrema=dict(radius=(0,2.2*Rvir.value)),
        )
    plt.loglog(profile.x, profile['density'])
    plt.xlabel('R[kpc]')
    plt.ylabel('Density [g/cm**3]')
    plt.savefig('Density_'+str(i).zfill(4)+'.png')
    plt.clf()
    
    plt.plot(profile.x, profile['rv'])
    plt.xlabel('R[kpc]')
    plt.ylabel('rv [km/s]')
    plt.savefig('rv_'+str(i).zfill(4)+'.png')