Skip to content

darenr/optbinning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OptBinning

image

image

image

image

image

OptBinning is a library written in Python implementing a rigorous and flexible mathematical programming formulation to solving the optimal binning problem for a binary, continuous and multiclass target type, incorporating constraints not previously addressed.

image

Documentation: http://gnpalencia.org/optbinning/

Paper: Optimal binning: mathematical programming formulation. http://arxiv.org/abs/2001.08025

Installation

To install the current release of OptBinning:

pip install optbinning

To install from source, download or clone the git repository

git clone https://github.com/guillermo-navas-palencia/optbinning.git
cd optbinning
python setup.py install

Dependencies

OptBinning requires

  • matplotlib
  • numpy
  • ortools (>=7.2)
  • pandas
  • scikit-learn (>=0.20.0)
  • scipy

Getting started

If your are new to OptBinning, you can get started following the tutorials and checking the API references.

Example

Let's load a well-known dataset from the UCI repository and choose a variable to discretize and the binary target.

import pandas as pd
from sklearn.datasets import load_breast_cancer

data = load_breast_cancer()
df = pd.DataFrame(data.data, columns=data.feature_names)

variable = "mean radius"
x = df[variable].values
y = data.target

Import and instantiate an OptimalBinning object class. We pass the variable name, its data type, and a solver, in this case, we choose the constraint programming solver. Fit the optimal binning object with arrays x and y.

from optbinning import OptimalBinning
optb = OptimalBinning(name=variable, dtype="numerical", solver="cp")
optb.fit(x, y)

Check status and retrieve optimal split points

>>> optb.status
'OPTIMAL'

>>> optb.splits
array([11.42500019, 12.32999992, 13.09499979, 13.70499992, 15.04500008,
       16.92500019])

The optimal binning algorithms return a binning table; a binning table displays the binned data and several metrics for each bin. Call the method build, which returns a pandas.DataFrame.

>>> optb.binning_table.build()
Bin  Count  Count (%)  Non-event  Event  Event rate       WoE        IV        JS

0 [-inf, 11.43) 118 0.207381 3 115 0.974576 -3.12517 0.962483 0.087205 1 [11.43, 12.33) 79 0.138840 3 76 0.962025 -2.71097 0.538763 0.052198 2 [12.33, 13.09) 68 0.119508 7 61 0.897059 -1.64381 0.226599 0.025513 3 [13.09, 13.70) 49 0.086116 10 39 0.795918 -0.839827 0.052131 0.006331 4 [13.70, 15.05) 83 0.145870 28 55 0.662651 -0.153979 0.003385 0.000423 5 [15.05, 16.93) 54 0.094903 44 10 0.185185 2.00275 0.359566 0.038678 6 [16.93, inf) 118 0.207381 117 1 0.008475 5.28332 2.900997 0.183436 7 Special 0 0.000000 0 0 0.000000 0 0.000000 0.000000 8 Missing 0 0.000000 0 0 0.000000 0 0.000000 0.000000 Totals 569 1.000000 212 357 0.627417 5.043925 0.393784

You can use the method plot to visualize the histogram and WoE or event rate curve. Note that the Bin ID corresponds to the binning table index.

>>> optb.binning_table.plot(metric="woe")

image

Now that we have checked the binned data, we can transform our original data into WoE or event rate values.

x_transform_woe = optb.transform(x, metric="woe")
x_transform_event_rate = optb.transform(x, metric="event_rate")

The analysis method performs a statistical analysis of the binning table, computing the statistics Gini index, Information Value (IV), Jensen-Shannon divergence, and the quality score. Additionally, several statistical significance tests between consecutive bins of the contingency table are performed.

>>> optb.binning_table.analysis()
---------------------------------------------
OptimalBinning: Binary Binning Table Analysis
---------------------------------------------

  General metrics

    Gini index               0.87541620
    IV (Jeffrey)             5.04392547
    JS (Jensen-Shannon)      0.39378376
    HHI                      0.15727342
    HHI (normalized)         0.05193260
    Cramer's V               0.80066760
    Quality score            0.00000000

  Significance tests

     Bin A  Bin B  t-statistic       p-value  P[A > B]      P[B > A]
         0      1     0.252432  6.153679e-01  0.684380  3.156202e-01
         1      2     2.432829  1.188183e-01  0.948125  5.187465e-02
         2      3     2.345804  1.256207e-01  0.937874  6.212635e-02
         3      4     2.669235  1.023052e-01  0.955269  4.473083e-02
         4      5    29.910964  4.523477e-08  1.000000  9.814594e-12
         5      6    19.324617  1.102754e-05  0.999999  1.216668e-06

Print overview information about the options settings, problem statistics, and the solution of the computation.

>>> optb.information(print_level=2)
optbinning (Version 0.5.0)
Copyright (c) 2019-2020 Guillermo Navas-Palencia, Apache License 2.0

  Begin options
    name                         mean radius   * U
    dtype                          numerical   * d
    prebinning_method                   cart   * d
    solver                                cp   * d
    max_n_prebins                         20   * d
    min_prebin_size                     0.05   * d
    min_n_bins                            no   * d
    max_n_bins                            no   * d
    min_bin_size                          no   * d
    max_bin_size                          no   * d
    min_bin_n_nonevent                    no   * d
    max_bin_n_nonevent                    no   * d
    min_bin_n_event                       no   * d
    max_bin_n_event                       no   * d
    monotonic_trend                     auto   * d
    min_event_rate_diff                    0   * d
    max_pvalue                            no   * d
    max_pvalue_policy            consecutive   * d
    gamma                                  0   * d
    class_weight                          no   * d
    cat_cutoff                            no   * d
    user_splits                           no   * d
    user_splits_fixed                     no   * d
    special_codes                         no   * d
    split_digits                          no   * d
    mip_solver                           bop   * d
    time_limit                           100   * d
    verbose                            False   * d
  End options

  Name    : mean radius                     
  Status  : OPTIMAL                         

  Pre-binning statistics
    Number of pre-bins                     9
    Number of refinements                  1

  Solver statistics
    Type                                  cp
    Number of booleans                    26
    Number of branches                    58
    Number of conflicts                    0
    Objective value                  5043922
    Best objective bound             5043922

  Timing
    Total time                          0.06 sec
    Pre-processing                      0.00 sec   (  0.80%)
    Pre-binning                         0.00 sec   (  6.30%)
    Solver                              0.06 sec   ( 91.45%)
      model generation                  0.05 sec   ( 89.12%)
      optimizer                         0.01 sec   ( 10.88%)
    Post-processing                     0.00 sec   (  0.12%)

Benchmarks

The following table shows how OptBinning compares to scorecardpy 0.1.9.1.1 on a selection of variables from the public dataset, Home Credit Default Risk - Kaggle’s competition Link. This dataset contains 307511 samples.The experiments were run on Intel(R) Core(TM) i5-3317 CPU at 1.70GHz, using a single core, running Linux. For scorecardpy, we use default settings only increasing the maximum number of bins bin_num_limit=20. For OptBinning, we use default settings (max_n_prebins=20) only changing the maximum allowed p-value between consecutive bins, max_pvalue=0.05.

To compare softwares we use the shifted geometric mean, typically used in mathematical optimization benchmarks: http://plato.asu.edu/bench.html. Using the shifted (by 1 second) geometric mean we found that OptBinning is 17x faster than scorecardpy, with an average IV increase of 12%. Besides the speed and IV gains, OptBinning includes many more constraints and monotonicity options.

Variable scorecardpy_time scorecardpy_IV optbinning_time optbinning_IV
AMT_INCOME_TOTAL

6.18 s

0.010606

0.363 s

0.011705

NAME_CONTRACT_TYPE (C)

3.72 s

0.015039

0.148 s

0.015039

AMT_CREDIT

7.10 s

0.053593

0.634 s

0.059311

ORGANIZATION_TYPE (C)

6.31 s

0.063098

0.274 s

0.071520

AMT_ANNUITY

6.51 s

0.024295

0.648 s

0.031179

AMT_GOODS_PRICE

6.95 s

0.056923

0.401 s

0.092032

NAME_HOUSING_TYPE (C)

3.57 s

0.015055

0.140 s

0.015055

REGION_POPULATION_RELATIVE

4.33 s

0.026578

0.392 s

0.035567

DAYS_BIRTH

5.18 s

0.081270

0.564 s

0.086539

OWN_CAR_AGE

4.85 s

0.021429

0.055 s

0.021890

OCCUPATION_TYPE (C)

4.24 s

0.077606

0.201 s

0.079540

APARTMENTS_AVG

5.61 s

0.032247(*)

0.184 s

0.032415

BASEMENTAREA_AVG

5.14 s

0.022320

0.119 s

0.022639

YEARS_BUILD_AVG

4.49 s

0.016033

0.055 s

0.016932

EXT_SOURCE_2

5.21 s

0.298463

0.606 s

0.321417

EXT_SOURCE_3

5.08 s

0.316352

0.303 s

0.334975

TOTAL

84.47 s

1.130907 5.087 s 1.247756

(C): categorical variable. (*): max p-value between consecutive bins > 0.05.

Contributing

Found a bug? Want to contribute with a new feature, improve documentation, or add examples? We encourage you to create pull requests and/or open GitHub issues. Thanks! :octocat: 🎉 👍

Citation

If you use OptBinning in your research/work, please cite the paper using the following BibTeX:

@article{Navas-Palencia2020OptBinning,
  title     = {Optimal binning: mathematical programming formulation},
  author    = {Guillermo Navas-Palencia},
  year      = {2020},
  eprint    = {2001.08025},
  archivePrefix = {arXiv},
  primaryClass = {cs.LG},
  volume    = {abs/2001.08025},
  url       = {http://arxiv.org/abs/2001.08025},
}

Packages

No packages published

Languages

  • Python 100.0%