def generate(bits, randfunc=None, e=65537): """allow to generate small keys for test purposes """ if e % 2 == 0 or e < 3: raise ValueError( "RSA public exponent must be a positive, odd integer larger than 2." ) if randfunc is None: randfunc = Random.get_random_bytes d = n = Integer(1) e = Integer(e) while n.size_in_bits() != bits and d < (1 << (bits // 2)): # Generate the prime factors of n: p and q. # By construciton, their product is always # 2^{bits-1} < p*q < 2^bits. size_q = bits // 2 size_p = bits - size_q min_p = min_q = (Integer(1) << (2 * size_q - 1)).sqrt() if size_q != size_p: min_p = (Integer(1) << (2 * size_p - 1)).sqrt() def filter_p(candidate): return candidate > min_p and (candidate - 1).gcd(e) == 1 p = generate_probable_prime(exact_bits=size_p, randfunc=randfunc, prime_filter=filter_p) min_distance = Integer(1) << (max(bits // 2 - 100, 10)) def filter_q(candidate): return (candidate > min_q and (candidate - 1).gcd(e) == 1 and abs(candidate - p) > min_distance) q = generate_probable_prime(exact_bits=size_q, randfunc=randfunc, prime_filter=filter_q) n = p * q lcm = (p - 1).lcm(q - 1) d = e.inverse(lcm) if p > q: p, q = q, p u = p.inverse(q) return RSA.RsaKey(n=n, e=e, d=d, p=p, q=q, u=u)
def _generate_key_pair(self) -> Tuple[List[int], List[int]]: n_bits = self.params.key_bits pq_bits = (n_bits + 1) // 2 while True: p = int(generate_probable_prime(exact_bits=pq_bits)) q = int(generate_probable_prime(exact_bits=pq_bits)) n = p * q if p != q and n.bit_length() == n_bits: break n_chunks = self.serialize_pk(n, self.params.key_bytes) p_chunks = self.serialize_pk(p, self.params.key_bytes) q_chunks = self.serialize_pk(q, self.params.key_bytes) return n_chunks, p_chunks + q_chunks
def test_generate_prime_filter(self): def ending_with_one(number): return number % 10 == 1 for x in xrange(20): q = generate_probable_prime(exact_bits=160, prime_filter=ending_with_one) self.assertEqual(q % 10, 1)
def _generate_or_load_key_pair(self, address: str) -> KeyPair: seed = int(address, 16) rng = Random(seed) def rand_bytes(n: int) -> bytes: return bytes([rng.randrange(256) for _ in range(n)]) pk = int( generate_probable_prime(exact_bits=self.params.key_bits, randfunc=rand_bytes)) return KeyPair( PublicKeyValue(self.serialize_pk(pk, self.params.key_bytes), params=self.params), PrivateKeyValue(pk))
def generate(bits, randfunc=None, e=65537): """Create a new RSA key. The algorithm closely follows NIST `FIPS 186-4`_ in its sections B.3.1 and B.3.3. The modulus is the product of two non-strong probable primes. Each prime passes a suitable number of Miller-Rabin tests with random bases and a single Lucas test. :Parameters: bits : integer Key length, or size (in bits) of the RSA modulus. It must be at least 1024. The FIPS standard only defines 1024, 2048 and 3072. randfunc : callable Function that returns random bytes. The default is `Crypto.Random.get_random_bytes`. e : integer Public RSA exponent. It must be an odd positive integer. It is typically a small number with very few ones in its binary representation. The FIPS standard requires the public exponent to be at least 65537 (the default). :Return: An RSA key object (`RsaKey`). .. _FIPS 186-4: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf """ if bits < 1024: raise ValueError("RSA modulus length must be >= 1024") if e % 2 == 0 or e < 3: raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.") if randfunc is None: randfunc = Random.get_random_bytes d = n = Integer(1) e = Integer(e) while n.size_in_bits() != bits and d < (1 << (bits // 2)): # Generate the prime factors of n: p and q. # By construciton, their product is always # 2^{bits-1} < p*q < 2^bits. size_q = bits // 2 size_p = bits - size_q min_p = min_q = (Integer(1) << (2 * size_q - 1)).sqrt() if size_q != size_p: min_p = (Integer(1) << (2 * size_p - 1)).sqrt() def filter_p(candidate): return candidate > min_p and (candidate - 1).gcd(e) == 1 p = generate_probable_prime(exact_bits=size_p, randfunc=randfunc, prime_filter=filter_p) min_distance = Integer(1) << (bits // 2 - 100) def filter_q(candidate): return candidate > min_q and (candidate - 1).gcd(e) == 1 \ and abs(candidate - p) > min_distance q = generate_probable_prime(exact_bits=size_q, randfunc=randfunc, prime_filter=filter_q) n = p * q lcm = (p - 1).lcm(q - 1) d = e.inverse(lcm) if p > q: p, q = q, p u = p.inverse(q) key_dict = dict(zip(('n', 'e', 'd', 'p', 'q', 'u'), (n, e, d, p, q, u))) return RsaKey(key_dict)
def generate(bits, randfunc=None, e=65537): """Create a new RSA key pair. The algorithm closely follows NIST `FIPS 186-4`_ in its sections B.3.1 and B.3.3. The modulus is the product of two non-strong probable primes. Each prime passes a suitable number of Miller-Rabin tests with random bases and a single Lucas test. Args: bits (integer): Key length, or size (in bits) of the RSA modulus. It must be at least 1024, but **2048 is recommended.** The FIPS standard only defines 1024, 2048 and 3072. randfunc (callable): Function that returns random bytes. The default is :func:`Crypto.Random.get_random_bytes`. e (integer): Public RSA exponent. It must be an odd positive integer. It is typically a small number with very few ones in its binary representation. The FIPS standard requires the public exponent to be at least 65537 (the default). Returns: an RSA key object (:class:`RsaKey`, with private key). .. _FIPS 186-4: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf """ if bits < 1024: raise ValueError("RSA modulus length must be >= 1024") if e % 2 == 0 or e < 3: raise ValueError( "RSA public exponent must be a positive, odd integer larger than 2." ) if randfunc is None: randfunc = Random.get_random_bytes d = n = Integer(1) e = Integer(e) while n.size_in_bits() != bits and d < (1 << (bits // 2)): # Generate the prime factors of n: p and q. # By construciton, their product is always # 2^{bits-1} < p*q < 2^bits. size_q = bits // 2 size_p = bits - size_q min_p = min_q = (Integer(1) << (2 * size_q - 1)).sqrt() if size_q != size_p: min_p = (Integer(1) << (2 * size_p - 1)).sqrt() def filter_p(candidate): return candidate > min_p and (candidate - 1).gcd(e) == 1 p = generate_probable_prime(exact_bits=size_p, randfunc=randfunc, prime_filter=filter_p) min_distance = Integer(1) << (bits // 2 - 100) def filter_q(candidate): return (candidate > min_q and (candidate - 1).gcd(e) == 1 and abs(candidate - p) > min_distance) q = generate_probable_prime(exact_bits=size_q, randfunc=randfunc, prime_filter=filter_q) n = p * q lcm = (p - 1).lcm(q - 1) d = e.inverse(lcm) if p > q: p, q = q, p u = p.inverse(q) return RsaKey(n=n, e=e, d=d, p=p, q=q, u=u)
def test_generate_prime_bit_size(self): p = generate_probable_prime(exact_bits=512) self.assertEqual(p.size_in_bits(), 512)