예제 #1
0
    def __init__(self,
                 state_size,
                 action_size,
                 random_seed,
                 memory,
                 hyper_param=None):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """

        if hyper_param is None:
            hyper_param = HyperParam()
            hyper_param.actor_fc1 = 128
            hyper_param.actor_fc2 = 128
            hyper_param.critic_fc1 = 128
            hyper_param.critic_fc2 = 128
            hyper_param.lr_actor = LR_ACTOR
            hyper_param.lr_critic = LR_CRITIC
            hyper_param.tau = TAU

        self.hyper_param = hyper_param

        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)

        # Actor Network (w/ Target Network)
        self.actor_local = Actor(state_size, action_size, random_seed,
                                 hyper_param.actor_fc1,
                                 hyper_param.actor_fc2).to(device)
        self.actor_target = Actor(state_size, action_size, random_seed,
                                  hyper_param.actor_fc1,
                                  hyper_param.actor_fc2).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=hyper_param.lr_actor)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(state_size, action_size,
                                   random_seed).to(device)
        self.critic_target = Critic(state_size, action_size,
                                    random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=LR_CRITIC,
                                           weight_decay=WEIGHT_DECAY)

        # Initialize and local to target to be the same
        # self.soft_update(self.critic_local, self.critic_target, tau=1.0)
        # self.soft_update(self.actor_local, self.actor_target, tau=1.0)

        # Noise process
        self.noise = OUNoise(action_size, random_seed)
        self.memory = memory  # ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed)
예제 #2
0
    def __init__(self, state_size, action_size, random_seed):
        # Initialize an Agent object.
        # Params
        # ======
        #     state_size (int): dimension of each state
        #     action_size (int): dimension of each action
        #     random_seed (int): random seed
        #
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)

        self.actor_local = Actor(state_size, action_size, random_seed).to(device)
        self.actor_target = Actor(state_size, action_size, random_seed).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR)

        self.critic_local = Critic(state_size, action_size, random_seed).to(device)
        self.critic_target = Critic(state_size, action_size, random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC)

        self.noise = OUNoise(action_size, random_seed)

        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed)
예제 #3
0
class DDPGAgent():
    # Interacts with and learns from the environment

    def __init__(self, state_size, action_size, random_seed):
        # Initialize an Agent object.
        # Params
        # ======
        #     state_size (int): dimension of each state
        #     action_size (int): dimension of each action
        #     random_seed (int): random seed
        #
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)

        self.actor_local = Actor(state_size, action_size, random_seed).to(device)
        self.actor_target = Actor(state_size, action_size, random_seed).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR)

        self.critic_local = Critic(state_size, action_size, random_seed).to(device)
        self.critic_target = Critic(state_size, action_size, random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC)

        self.noise = OUNoise(action_size, random_seed)

        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed)

    def step(self, time_step, state, action, reward, next_state, done):
        # Save experience in replay memory, and use random sample from buffer to learn
        self.memory.add(state, action, reward, next_state, done)

        if time_step % N_TIME_STEPS != 0:
            return

        if len(self.memory) > BATCH_SIZE:
            for i in range(N_LEARN_UPDATES):
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, add_noise=True):
        # Returns actions for given state as per current policy
        state = torch.from_numpy(state).float().to(device)
        self.actor_local.eval()
        with torch.no_grad():
            action = self.actor_local(state).cpu().data.numpy()
        self.actor_local.train()
        if add_noise:
            action += self.noise.sample()
        return np.clip(action, -1, 1)

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma):
        # Update policy and value parameters using given batch of experience tuples.
        # Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        # where:
        #     actor_target(state) -> action
        #     critic_target(state, action) -> Q-value
        # Params
        # ======
        #     experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
        #     gamma (float): discount factor
        #
        states, actions, rewards, next_states, dones = experiences

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.actor_target(next_states)
        Q_targets_next = self.critic_target(next_states, actions_next)
        # Compute Q targets for current states (y_i)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # Compute critic loss
        Q_expected = self.critic_local(states, actions)
        critic_loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
        self.critic_optimizer.step()

        # ---------------------------- update actor ---------------------------- #
        # Compute actor loss
        actions_pred = self.actor_local(states)
        actor_loss = -self.critic_local(states, actions_pred).mean()
        # Minimize the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

        # ----------------------- update target networks ----------------------- #
        self.soft_update(self.critic_local, self.critic_target, TAU)
        self.soft_update(self.actor_local, self.actor_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        # Soft update model parameters.
        # θ_target = τ*θ_local + (1 - τ)*θ_target
        # Params
        # ======
        #     local_model: PyTorch model (weights will be copied from)
        #     target_model: PyTorch model (weights will be copied to)
        #     tau (float): interpolation parameter
        #
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
예제 #4
0
class DDPGAgent():
    """Interacts with and learns from the environment."""
    memory = None
    actor_local = None
    actor_target = None
    actor_optimizer = None

    critic_local = None
    critic_target = None
    critic_optimizer = None

    def __init__(self,
                 state_size,
                 action_size,
                 random_seed,
                 memory,
                 hyper_param=None):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """

        if hyper_param is None:
            hyper_param = HyperParam()
            hyper_param.actor_fc1 = 128
            hyper_param.actor_fc2 = 128
            hyper_param.critic_fc1 = 128
            hyper_param.critic_fc2 = 128
            hyper_param.lr_actor = LR_ACTOR
            hyper_param.lr_critic = LR_CRITIC
            hyper_param.tau = TAU

        self.hyper_param = hyper_param

        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)

        # Actor Network (w/ Target Network)
        self.actor_local = Actor(state_size, action_size, random_seed,
                                 hyper_param.actor_fc1,
                                 hyper_param.actor_fc2).to(device)
        self.actor_target = Actor(state_size, action_size, random_seed,
                                  hyper_param.actor_fc1,
                                  hyper_param.actor_fc2).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=hyper_param.lr_actor)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(state_size, action_size,
                                   random_seed).to(device)
        self.critic_target = Critic(state_size, action_size,
                                    random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=LR_CRITIC,
                                           weight_decay=WEIGHT_DECAY)

        # Initialize and local to target to be the same
        # self.soft_update(self.critic_local, self.critic_target, tau=1.0)
        # self.soft_update(self.actor_local, self.actor_target, tau=1.0)

        # Noise process
        self.noise = OUNoise(action_size, random_seed)
        self.memory = memory  # ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed)

    def step(self, time_step):
        """Save experience in replay memory, and use random sample from buffer to learn."""
        # self.memory.add(state, action, reward, next_state, done)

        if time_step % N_TIME_STEPS != 0:
            return

        if len(self.memory) > BATCH_SIZE:
            for i in range(N_LEARN_UPDATES):
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""
        state = torch.from_numpy(state).float().to(device)
        self.actor_local.eval()
        with torch.no_grad():
            action = self.actor_local(state).cpu().data.numpy()
        self.actor_local.train()
        if add_noise:
            action += self.noise.sample()
        return np.clip(action, -1, 1)

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.actor_target(next_states)
        Q_targets_next = self.critic_target(next_states, actions_next)
        # Compute Q targets for current states (y_i)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # Compute critic loss
        Q_expected = self.critic_local(states, actions)
        critic_loss = F.mse_loss(Q_targets, Q_expected)
        # Minimize the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
        self.critic_optimizer.step()

        # ---------------------------- update actor ---------------------------- #
        # Compute actor loss
        actions_pred = self.actor_local(states)
        actor_loss = -self.critic_local(states, actions_pred).mean()
        # Minimize the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

        # ----------------------- update target networks ----------------------- #
        self.soft_update(self.critic_local, self.critic_target, TAU)
        self.soft_update(self.actor_local, self.actor_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
예제 #5
0
    def __init__(self,
                 state_size,
                 action_size,
                 num_agents,
                 random_seed,
                 hyper_param=None):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)
        self.num_agents = num_agents

        if hyper_param is None:
            hyper_param = HyperParam()
            hyper_param.epsilon = True
            hyper_param.epsilon_decay = EXPLORE_EXPLOIT_DECAY
            hyper_param.epsilon_spaced_init = 100
            hyper_param.epsilon_spaced_decay = 1.5
            hyper_param.actor_fc1 = 128
            hyper_param.actor_fc2 = 128
            hyper_param.critic_fc1 = 128
            hyper_param.critic_fc2 = 128
            hyper_param.lr_actor = 1e-3
            hyper_param.lr_critic = 1e-3
            hyper_param.tau = 1e-4
            hyper_param.batch_size = 128
            hyper_param.n_learn_updates = 10
            hyper_param.n_time_steps = 20

        self.hyper_param = hyper_param

        self.device = device
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE,
                                   hyper_param.batch_size, random_seed)

        # Actor Network (w/ Target Network)
        self.actor_local = Actor(state_size, action_size, random_seed,
                                 hyper_param.actor_fc1,
                                 hyper_param.actor_fc2).to(device)
        self.actor_target = Actor(state_size, action_size, random_seed,
                                  hyper_param.actor_fc1,
                                  hyper_param.actor_fc2).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=hyper_param.lr_actor)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(state_size * num_agents,
                                   action_size * num_agents,
                                   random_seed).to(device)
        self.critic_target = Critic(state_size * num_agents,
                                    action_size * num_agents,
                                    random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=hyper_param.lr_critic,
                                           weight_decay=WEIGHT_DECAY)

        # self.epsilon = SpacedRepetitionDecay(ExponentialDecay(1.0, 0.0, hyper_param.epsilon_decay),
        #                                      hyper_param.epsilon_spaced_init, hyper_param.epsilon_spaced_decay)

        self.epsilon = PositiveMemoriesFactorExplorationDecay(
            0.5, 0, 0.0002, 0.12, self.memory)

        self.noise = OUNoise(action_size, random_seed)

        self.train_mode = True

        self.actor_loss = []
        self.critic_loss = []
예제 #6
0
class MADDPGAgent2():
    """Interacts with and learns from the environment."""
    def __init__(self,
                 state_size,
                 action_size,
                 num_agents,
                 random_seed,
                 hyper_param=None):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)
        self.num_agents = num_agents

        if hyper_param is None:
            hyper_param = HyperParam()
            hyper_param.epsilon = True
            hyper_param.epsilon_decay = EXPLORE_EXPLOIT_DECAY
            hyper_param.epsilon_spaced_init = 100
            hyper_param.epsilon_spaced_decay = 1.5
            hyper_param.actor_fc1 = 128
            hyper_param.actor_fc2 = 128
            hyper_param.critic_fc1 = 128
            hyper_param.critic_fc2 = 128
            hyper_param.lr_actor = 1e-3
            hyper_param.lr_critic = 1e-3
            hyper_param.tau = 1e-4
            hyper_param.batch_size = 128
            hyper_param.n_learn_updates = 10
            hyper_param.n_time_steps = 20

        self.hyper_param = hyper_param

        self.device = device
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE,
                                   hyper_param.batch_size, random_seed)

        # Actor Network (w/ Target Network)
        self.actor_local = Actor(state_size, action_size, random_seed,
                                 hyper_param.actor_fc1,
                                 hyper_param.actor_fc2).to(device)
        self.actor_target = Actor(state_size, action_size, random_seed,
                                  hyper_param.actor_fc1,
                                  hyper_param.actor_fc2).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=hyper_param.lr_actor)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(state_size * num_agents,
                                   action_size * num_agents,
                                   random_seed).to(device)
        self.critic_target = Critic(state_size * num_agents,
                                    action_size * num_agents,
                                    random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=hyper_param.lr_critic,
                                           weight_decay=WEIGHT_DECAY)

        # self.epsilon = SpacedRepetitionDecay(ExponentialDecay(1.0, 0.0, hyper_param.epsilon_decay),
        #                                      hyper_param.epsilon_spaced_init, hyper_param.epsilon_spaced_decay)

        self.epsilon = PositiveMemoriesFactorExplorationDecay(
            0.5, 0, 0.0002, 0.12, self.memory)

        self.noise = OUNoise(action_size, random_seed)

        self.train_mode = True

        self.actor_loss = []
        self.critic_loss = []

    def train(self, mode=True):
        self.train_mode = mode

    def step(self, time_step, state, action, reward, next_state, done):
        """Save experience in replay memory, and use random sample from buffer to learn."""
        self.memory.add(
            np.reshape(state, (self.state_size * self.num_agents, )),
            np.reshape(action, (self.action_size * self.num_agents, )),
            np.reshape(reward, (self.num_agents, )),
            np.reshape(next_state, (self.state_size * self.num_agents, )),
            np.reshape(done, (self.num_agents, )))

        # if time_step % self.hyper_param.n_time_steps != 0:
        #     return

        if len(self.memory) > self.hyper_param.batch_size:
            # for i in range(self.hyper_param.n_learn_updates):
            experiences = self.memory.sample()
            self.learn(experiences, GAMMA)

    def _act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""
        if self.hyper_param.epsilon and self.train_mode and random.random(
        ) < self.epsilon.next():
            return 2 * np.random.random_sample(self.action_size) - 1

        state = torch.from_numpy(state).float().to(device)
        self.actor_local.eval()
        with torch.no_grad():
            action = self.actor_local(state).cpu().data.numpy()
        self.actor_local.train()
        if add_noise:
            action += self.noise.sample()
        return np.clip(action, -1, 1)

    def act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""
        return [self._act(state[i], add_noise) for i in range(self.num_agents)]

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states_sum, actions_sum, rewards_sum, next_states_sum, dones_sum = experiences

        batch_size = len(states_sum)

        states = np.reshape(states_sum, (self.num_agents, batch_size, -1))
        actions = np.reshape(actions_sum, (self.num_agents, batch_size, -1))
        rewards = np.reshape(rewards_sum, (self.num_agents, batch_size, -1))
        next_states = np.reshape(next_states_sum,
                                 (self.num_agents, batch_size, -1))
        dones = np.reshape(dones_sum, (self.num_agents, batch_size, -1))

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = [
            self.actor_target(next_states[i]) for i in range(self.num_agents)
        ]
        actions_next = torch.cat(actions_next, dim=1)
        actions_next_sum = actions_next.view(
            (batch_size, self.action_size * self.num_agents))

        Q_targets_next_sum = self.critic_target(next_states_sum,
                                                actions_next_sum)

        # Compute Q targets for current states (y_i)
        Q_targets_sum = rewards_sum + (gamma * Q_targets_next_sum *
                                       (1 - dones_sum))
        # Compute critic loss
        Q_expected_sum = self.critic_local(states_sum, actions_sum)
        critic_loss = F.mse_loss(Q_targets_sum, Q_expected_sum)
        self.critic_loss.append(critic_loss.cpu().data.numpy())

        # Minimize the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
        self.critic_optimizer.step()

        # ---------------------------- update actor ---------------------------- #
        # Compute actor loss
        actions_pred = [
            self.actor_local(states[i]) for i in range(self.num_agents)
        ]
        actions_pred = torch.cat(actions_pred, dim=1)
        actions_pred_sum = actions_pred.view(
            (batch_size, self.action_size * self.num_agents))
        actor_loss = -self.critic_local(states_sum, actions_pred_sum).mean()
        self.actor_loss.append(actor_loss.cpu().data.numpy())

        # Minimize the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        # torch.nn.utils.clip_grad_norm_(self.actor_local.parameters(), 1)
        self.actor_optimizer.step()

        # ----------------------- update target networks ----------------------- #
        self.soft_update(self.critic_local, self.critic_target,
                         self.hyper_param.tau)
        self.soft_update(self.actor_local, self.actor_target,
                         self.hyper_param.tau)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
예제 #7
0
    def __init__(self,
                 state_size,
                 action_size,
                 num_agents,
                 random_seed,
                 hyper_param=None):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)
        self.num_agents = num_agents

        if hyper_param is None:
            hyper_param = HyperParam()
            hyper_param.epsilon = False
            hyper_param.actor_fc1 = 128
            hyper_param.actor_fc2 = 128
            hyper_param.critic_fc1 = 128
            hyper_param.critic_fc2 = 128
            hyper_param.lr_actor = 1e-3
            hyper_param.lr_critic = 1e-3
            hyper_param.eps_actor = 1e-7
            hyper_param.eps_critic = 1e-7
            hyper_param.tau = 1e-4
            hyper_param.buffer_size = int(1e6)
            hyper_param.batch_size = 128
            hyper_param.n_learn_updates = 10
            hyper_param.n_time_steps = 20
            hyper_param.gamma = 0.99

        self.hyper_param = hyper_param

        self.device = device
        self.memory = ReplayBuffer(action_size, self.hyper_param.buffer_size,
                                   self.hyper_param.batch_size, random_seed)

        # Actor Network (w/ Target Network)
        self.actor_local = Actor(state_size, action_size, random_seed,
                                 hyper_param.actor_fc1,
                                 hyper_param.actor_fc2).to(device)
        self.actor_target = Actor(state_size, action_size, random_seed,
                                  hyper_param.actor_fc1,
                                  hyper_param.actor_fc2).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=hyper_param.lr_actor,
                                          eps=hyper_param.eps_actor)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(state_size, action_size,
                                   random_seed).to(device)
        self.critic_target = Critic(state_size, action_size,
                                    random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=hyper_param.lr_critic,
                                           eps=hyper_param.eps_critic)

        self.hard_update(self.actor_target, self.actor_local)
        self.hard_update(self.critic_target, self.critic_local)

        self.noise = OUNoise(action_size, random_seed, mu=0.0)

        self.train_mode = True

        self.actor_loss = []
        self.critic_loss = []

        self.orig_actions = [[0.0, 0.0], [0.0, 0.0]]

        if hyper_param.epsilon:
            self.epsilon = hyper_param.epsilon_model(self.memory)
예제 #8
0
class MADDPGAgent3():
    """Interacts with and learns from the environment."""
    def __init__(self,
                 state_size,
                 action_size,
                 num_agents,
                 random_seed,
                 hyper_param=None):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)
        self.num_agents = num_agents

        if hyper_param is None:
            hyper_param = HyperParam()
            hyper_param.epsilon = False
            hyper_param.actor_fc1 = 128
            hyper_param.actor_fc2 = 128
            hyper_param.critic_fc1 = 128
            hyper_param.critic_fc2 = 128
            hyper_param.lr_actor = 1e-3
            hyper_param.lr_critic = 1e-3
            hyper_param.eps_actor = 1e-7
            hyper_param.eps_critic = 1e-7
            hyper_param.tau = 1e-4
            hyper_param.buffer_size = int(1e6)
            hyper_param.batch_size = 128
            hyper_param.n_learn_updates = 10
            hyper_param.n_time_steps = 20
            hyper_param.gamma = 0.99

        self.hyper_param = hyper_param

        self.device = device
        self.memory = ReplayBuffer(action_size, self.hyper_param.buffer_size,
                                   self.hyper_param.batch_size, random_seed)

        # Actor Network (w/ Target Network)
        self.actor_local = Actor(state_size, action_size, random_seed,
                                 hyper_param.actor_fc1,
                                 hyper_param.actor_fc2).to(device)
        self.actor_target = Actor(state_size, action_size, random_seed,
                                  hyper_param.actor_fc1,
                                  hyper_param.actor_fc2).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=hyper_param.lr_actor,
                                          eps=hyper_param.eps_actor)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(state_size, action_size,
                                   random_seed).to(device)
        self.critic_target = Critic(state_size, action_size,
                                    random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=hyper_param.lr_critic,
                                           eps=hyper_param.eps_critic)

        self.hard_update(self.actor_target, self.actor_local)
        self.hard_update(self.critic_target, self.critic_local)

        self.noise = OUNoise(action_size, random_seed, mu=0.0)

        self.train_mode = True

        self.actor_loss = []
        self.critic_loss = []

        self.orig_actions = [[0.0, 0.0], [0.0, 0.0]]

        if hyper_param.epsilon:
            self.epsilon = hyper_param.epsilon_model(self.memory)

    def train(self, mode=True):
        self.train_mode = mode

    def step(self, time_step, state, action, reward, next_state, done):
        """Save experience in replay memory, and use random sample from buffer to learn."""
        if self.train_mode is False:
            return

        for i in range(self.num_agents):
            self.memory.add(state[i], action[i], reward[i], next_state[i],
                            done[i])

        if time_step % self.hyper_param.n_time_steps != 0:
            return

        if len(self.memory) > self.hyper_param.batch_size:
            for i in range(self.hyper_param.n_learn_updates):
                experiences = self.memory.sample()
                self.learn(experiences, self.hyper_param.gamma)

    def _act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""
        batch_state = np.reshape(state, (1, self.state_size))
        state = torch.from_numpy(batch_state).float().to(device)
        self.actor_local.eval()
        with torch.no_grad():
            action = self.actor_local(state).cpu().data.numpy()
        self.actor_local.train()

        action = np.reshape(action, (self.action_size, ))
        self.orig_actions = copy.copy(action)

        if add_noise and self.train_mode:
            eps = self.epsilon.next()
            action = (1.0 - eps) * action + eps * self.noise.sample()

            if self.hyper_param.epsilon:
                random_action = 2 * np.random.random_sample(
                    self.action_size) - 1
                action = (1.0 - eps) * action + eps * random_action

        return np.clip(action, -1, 1)

    def act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""
        return [self._act(state[i], add_noise) for i in range(self.num_agents)]

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.actor_target(next_states)
        Q_targets_next = self.critic_target(next_states, actions_next)
        # Compute Q targets for current states (y_i)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # Compute critic loss
        Q_expected = self.critic_local(states, actions)
        critic_loss = F.smooth_l1_loss(Q_targets, Q_expected)
        # critic_loss = F.mse_loss(Q_targets, Q_expected)
        self.critic_loss.append(critic_loss.cpu().data.numpy())

        # Minimize the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
        self.critic_optimizer.step()

        # ---------------------------- update actor ---------------------------- #
        # Compute actor loss
        actions_pred = self.actor_local(states)
        actor_loss = -self.critic_local(states, actions_pred).mean()
        self.actor_loss.append(actor_loss.cpu().data.numpy())

        # Minimize the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        # torch.nn.utils.clip_grad_norm_(self.actor_local.parameters(), 0.5)
        self.actor_optimizer.step()

        # ----------------------- update target networks ----------------------- #
        self.soft_update(self.critic_local, self.critic_target,
                         self.hyper_param.tau)
        self.soft_update(self.actor_local, self.actor_target,
                         self.hyper_param.tau)

    def soft_update(self, from_model, to_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter
        """
        for to_param, from_param in zip(to_model.parameters(),
                                        from_model.parameters()):
            to_param.data.copy_(tau * from_param.data +
                                (1.0 - tau) * to_param.data)

    def hard_update(self, target, source):
        for target_param, param in zip(target.parameters(),
                                       source.parameters()):
            target_param.data.copy_(param.data)