parser.add_option("--snapshots", dest="snapshots",default=None,help="A comma separated list of generations at which the frequency of the SNPs should be recorded") (options, args) = parser.parse_args() repsim = int(options.repsim) twone = int(options.ne)*2 r = float(options.r) p1 = float(options.p1) p2 = float(options.p2) rsquared = float(options.rsquared) snapshots=set(map(int, options.snapshots.split(","))) maxgen = max(snapshots) selectiondictionary=FitnessFunctionParser.get_fitnessFunctionDictionary(options.selection) print "# snp_id\tgeneration\tfrequency\treplicate" for i in range(0,repsim): pop=PopGenerator.ini_ld(twone,p1,p2,rsquared) print "{0}\t{1}\t{2}\t{3}".format("A",0,pop.get_frequencyA() ,i+1) print "{0}\t{1}\t{2}\t{3}".format("B",0,pop.get_frequencyB() ,i+1) counter=0 ff=None while(True): if (counter+1) in selectiondictionary: ff=selectiondictionary[(counter+1)] pop=pop.getNextGeneration(twone,ff,r) counter+=1 if counter in snapshots: print "{0}\t{1}\t{2}\t{3}".format("A",counter,pop.get_frequencyA() ,i+1) print "{0}\t{1}\t{2}\t{3}".format("B",counter,pop.get_frequencyB() ,i+1) if counter>=maxgen: break
p2 = float(options.p2) maxgen = float(options.maxgen) assert p1 + p2 <= 1.0 ff = FitnessFunctionNormal(s1, h1, s2, h2) for i in range(0, repsim): sA = "S" sB = "S" sab = "S" genA = int(maxgen) genB = int(maxgen) genab = int(maxgen) pop = PopGenerator.ini_competition(twone, p1, p2) counter = 0 while not pop.is_fixed(): pop = pop.getNextGeneration(twone, ff, r) counter += 1 if sA == "S" and pop.is_fixedA(): sA = pop.status(pop.countA()) genA = counter if sB == "S" and pop.is_fixedB(): sB = pop.status(pop.countB()) genB = counter if sab == "S" and pop.is_fixedab(): sab = pop.status(pop.countab()) genab = counter if counter >= maxgen:
p1 = float(options.p1) p2 = float(options.p2) maxgen = float(options.maxgen) assert (p1 + p2 <= 1.0) ff = FitnessFunctionNormal(s1, h1, s2, h2) for i in range(0, repsim): sA = "S" sB = "S" sab = "S" genA = int(maxgen) genB = int(maxgen) genab = int(maxgen) pop = PopGenerator.ini_competition(twone, p1, p2) counter = 0 while (not pop.is_fixed()): pop = pop.getNextGeneration(twone, ff, r) counter += 1 if (sA == "S" and pop.is_fixedA()): sA = pop.status(pop.countA()) genA = counter if (sB == "S" and pop.is_fixedB()): sB = pop.status(pop.countB()) genB = counter if (sab == "S" and pop.is_fixedab()): sab = pop.status(pop.countab()) genab = counter if counter >= maxgen:
r = float(options.r) h1 = float(options.het1) h2 = float(options.het2) p = float(options.p) maxgen = float(options.maxgen) output = options.output ff=FitnessFunctionNormal(s1,h1,s2,h2) trajectories_selected1=[] trajectories_selected2=[] trajectories_AB=[] ld_decay=[] for i in range(0,repsim): pop=PopGenerator.ini_complete_linkage(twone,p) freqsA=[] freqsB=[] freqsAB=[] ld=[] freqsA.append(pop.get_frequencyA()) freqsB.append(pop.get_frequencyB()) freqsAB.append(pop.get_frequencyAB()) ld.append(pop.get_rsquared()) counter=0 while(not pop.is_fixed()): pop=pop.getNextGeneration(twone,ff,r) freqsA.append(pop.get_frequencyA()) freqsB.append(pop.get_frequencyB()) freqsAB.append(pop.get_frequencyAB()) ld.append(pop.get_rsquared())
r = float(options.r) h1 = float(options.het1) h2 = float(options.het2) p = float(options.p) maxgen = float(options.maxgen) output = options.output ff = FitnessFunctionNormal(s1, h1, s2, h2) trajectories_selected1 = [] trajectories_selected2 = [] trajectories_AB = [] ld_decay = [] for i in range(0, repsim): pop = PopGenerator.ini_complete_linkage(twone, p) freqsA = [] freqsB = [] freqsAB = [] ld = [] freqsA.append(pop.get_frequencyA()) freqsB.append(pop.get_frequencyB()) freqsAB.append(pop.get_frequencyAB()) ld.append(pop.get_rsquared()) counter = 0 while (not pop.is_fixed()): pop = pop.getNextGeneration(twone, ff, r) freqsA.append(pop.get_frequencyA()) freqsB.append(pop.get_frequencyB()) freqsAB.append(pop.get_frequencyAB()) ld.append(pop.get_rsquared())
r = float(options.r) h1 = float(options.het1) h2 = float(options.het2) p1 = float(options.p1) p2 = float(options.p2) snapshots=set(map(int, options.snapshots.split(","))) maxgen = max(snapshots) assert(p1+p2<=1.0) ff=FitnessFunctionNormal(s1,h1,s2,h2) print "# snp_id\tgeneration\tfrequency\treplicate" for i in range(0,repsim): pop=PopGenerator.ini_subfrequency(twone,p1,p2) print "{0}\t{1}\t{2}\t{3}".format("A",0,pop.get_frequencyA() ,i+1) print "{0}\t{1}\t{2}\t{3}".format("B",0,pop.get_frequencyB() ,i+1) counter=0 while(True): pop=pop.getNextGeneration(twone,ff,r) counter+=1 if counter in snapshots: print "{0}\t{1}\t{2}\t{3}".format("A",counter,pop.get_frequencyA() ,i+1) print "{0}\t{1}\t{2}\t{3}".format("B",counter,pop.get_frequencyB() ,i+1) if counter>=maxgen: break
s1 = float(options.s1) s2 = float(options.s2) r = float(options.r) h1 = float(options.het1) h2 = float(options.het2) p1 = float(options.p1) p2 = float(options.p2) snapshots = set(map(int, options.snapshots.split(","))) maxgen = max(snapshots) assert (p1 + p2 <= 1.0) ff = FitnessFunctionNormal(s1, h1, s2, h2) print "# snp_id\tgeneration\tfrequency\treplicate" for i in range(0, repsim): pop = PopGenerator.ini_subfrequency(twone, p1, p2) print "{0}\t{1}\t{2}\t{3}".format("A", 0, pop.get_frequencyA(), i + 1) print "{0}\t{1}\t{2}\t{3}".format("B", 0, pop.get_frequencyB(), i + 1) counter = 0 while (True): pop = pop.getNextGeneration(twone, ff, r) counter += 1 if counter in snapshots: print "{0}\t{1}\t{2}\t{3}".format("A", counter, pop.get_frequencyA(), i + 1) print "{0}\t{1}\t{2}\t{3}".format("B", counter, pop.get_frequencyB(), i + 1) if counter >= maxgen: break