def exclama_sentence(sentence): """ process exclamatively sentence Input=the sentence Output=class Sentence """ for i in ResourcePool().sentence_starts: if i[0] == sentence[0]: if i[1] == '0': analysis = Sentence(INTERJECTION, '', [], []) #We recover the subject sentence = analyse_nominal_structure.recover_ns(sentence, analysis, 1) return analysis elif i[1] == '2': #It is an exclamation sentence analysis = Sentence(EXCLAMATION, '', [], []) #We recover the subject sentence = analyse_nominal_structure.recover_ns(sentence, analysis, 0) return analysis #If we have an imperative it can be forced analysis = other_sentence(INTERJECTION, '', sentence) if analysis.data_type == INTERJECTION and not analysis.sv: pass else: analysis.data_type = IMPERATIVE return analysis
def exclama_sentence(sentence): """ process exclamatively sentence Input=the sentence Output=class Sentence """ for i in ResourcePool().sentence_starts: if i[0] == sentence[0]: if i[1] == '0': analysis = Sentence(INTERJECTION, '', [], []) #We recover the subject sentence = analyse_nominal_structure.recover_ns( sentence, analysis, 1) return analysis elif i[1] == '2': #It is an exclamation sentence analysis = Sentence(EXCLAMATION, '', [], []) #We recover the subject sentence = analyse_nominal_structure.recover_ns( sentence, analysis, 0) return analysis #If we have an imperative it can be forced analysis = other_sentence(INTERJECTION, '', sentence) if analysis.data_type == INTERJECTION and not analysis.sv: pass else: analysis.data_type = IMPERATIVE return analysis
def w_quest_whose(type, request, sentence): """ process many different type of whose question Input=type and requesting of sentence and the sentence Output=class Sentence """ #init vg = VerbalGroup(['be'], [], '', [], [], [], [], VerbalGroup.affirmative, []) analysis = Sentence(type, request, [], []) #We replace 'whose' by 'that' to have a nominal group sentence[0] = 'that' #We recover the subject sentence = analyse_nominal_structure.recover_ns(sentence, analysis, 0) if sentence[1] == 'not': vg.state = 'negative' analysis.sv = [vg] return analysis
def other_sentence(type, request, sentence): """ process the other from of a sentence Input=type and requesting of sentence and the sentence Output=class Sentence """ #init vg = VerbalGroup([], [], '', [], [], [], [], VerbalGroup.affirmative, []) analysis = Sentence(type, request, [], []) modal = [] if not sentence: return [] #We have to add punctuation if there is not if sentence[len(sentence) - 1] not in ['.', '?', '!']: sentence = sentence + ['.'] #We start with determination of probably second verb in subsentence sentence = other_functions.find_scd_verb_sub(sentence) #We search the subject sbj = analyse_nominal_group.find_sn_pos(sentence, 0) if sbj != [] or type == RELATIVE: #If we haven't a data type => it is a statement if type == '': analysis.data_type = STATEMENT #We have to separate the case using these, this or there if sentence[0] in ResourcePool().demonstrative_det and analyse_verb.infinitive([sentence[1]], 'present simple') == ['be']: #We recover this information and remove it analysis.sn = [NominalGroup([sentence[0]], [], [], [], [])] if sentence[0] == 'there' and sentence[1] == 'are': analysis.sn[0]._quantifier = 'SOME' sentence = sentence[1:] if not analysis.sn: #We recover the subject sentence = analyse_nominal_structure.recover_ns(sentence, analysis, 0) #End of the sentence? -> nominal sentence if sentence == [] or sentence[0] in ['.', '!', '?']: analysis.sv = [] return analysis #We have to know if there is a modal if sentence[0] in ResourcePool().modal: modal = sentence[0] if modal == 'can' or modal == 'must' or modal == 'shall' or modal == 'may': sentence = sentence[1:] #We must take into account all possible cases to recover the sentence's tense if len(sentence) > 1 and sentence[1] == 'not': vg.state = VerbalGroup.negative #Before the negative form we have an auxiliary for the negation if sentence[0] == 'do' or sentence[0] == 'does' or sentence[0] == 'did': vg.vrb_tense = analyse_verb.find_tense_statement([sentence[0]]) sentence = sentence[2:] sentence = analyse_verbal_structure.delete_unusable_word(sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) #There is a modal elif modal: sentence = [sentence[0]] + sentence[2:] sentence = analyse_verbal_structure.delete_unusable_word(sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) vg.vrb_tense = analyse_verb.find_tense_statement(sentence) else: #We remove 'not' and find the tense sentence = sentence[:1] + sentence[2:] sentence = analyse_verbal_structure.delete_unusable_word(sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) vg.vrb_tense = analyse_verb.find_tense_statement(sentence) #For the affirmative processing else: if sentence[0] == 'not': vg.state = VerbalGroup.negative sentence = sentence[1:] sentence = analyse_verbal_structure.delete_unusable_word(sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) vg.vrb_tense = analyse_verb.find_tense_statement(sentence) verb = analyse_verb.find_verb_statement(sentence, vg.vrb_tense) verb_main = analyse_verb.return_verb(sentence, verb, vg.vrb_tense) vg.vrb_main = [other_functions.convert_to_string(verb_main)] #We delete the verb sentence = sentence[sentence.index(verb[0]) + len(verb_main):] #We perform the processing with the modal if modal: vg.vrb_main = [modal + '+' + vg.vrb_main[0]] #This is a imperative form else: #re-init analysis.data_type = IMPERATIVE vg.vrb_tense = 'present simple' if sentence[0] in ResourcePool().proposals: sentence = ['.'] + sentence #Negative form if sentence[1] == 'not': sentence = sentence[sentence.index('not') + 1:] sentence = analyse_verbal_structure.delete_unusable_word(sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) vg.state = VerbalGroup.negative else: sentence = analyse_verbal_structure.delete_unusable_word(sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) #We process the verb verb = [sentence[0]] verb_main = analyse_verb.return_verb(sentence, verb, vg.vrb_tense) vg.vrb_main = [other_functions.convert_to_string(verb_main)] #We delete the verb sentence = sentence[sentence.index(verb[0]) + len(verb_main):] if sentence and sentence[-1] == '?': analysis.data_type = YES_NO_QUESTION #We recover the conjunctive subsentence sentence = analyse_verbal_structure.process_conjunctive_sub(sentence, vg) #It verifies if there is a secondary verb sec_vrb = analyse_verbal_structure.find_scd_vrb(sentence) if sec_vrb: sentence = analyse_verbal_structure.process_scd_sentence(sentence, vg, sec_vrb) #We recover the subsentence sentence = analyse_verbal_structure.process_subsentence(sentence, vg) if sentence != [] and vg.vrb_main != []: #Process relative changes sentence = analyse_verbal_structure.correct_i_compl(sentence, vg.vrb_main[0]) sentence = analyse_verbal_structure.process_compare(sentence, vg) sentence = analyse_nominal_group.find_plural(sentence) #We recover the direct, indirect complement and the adverbial sentence = analyse_verbal_structure.recover_obj_iobj(sentence, vg) #We have to take off abverbs form the sentence sentence = analyse_verbal_structure.find_adv(sentence, vg) #In case there is a state verb followed by an adjective sentence = analyse_verbal_structure.state_adjective(sentence, vg) #If there is a forgotten sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) vg = analyse_verbal_structure.DOC_to_IOC(vg) while len(sentence) > 1: stc = analyse_verbal_structure.create_nom_gr(sentence, request) #We recover the direct, indirect complement and the adverbial stc = analyse_verbal_structure.recover_obj_iobj(stc, vg) if stc == sentence: #We leave the loop break else: sentence = stc vg = analyse_verbal_structure.refine_indirect_complement(vg) vg = analyse_verbal_structure.refine_subsentence(vg) vg = analyse_verbal_structure.DOC_to_IOC(vg) analysis.sv = [vg] return analysis
def y_n_ques(type, request, sentence): """ process the yes or no question from of a sentence Input=type and requesting of sentence and the sentence Output=class Sentence """ #init vg = VerbalGroup([], [], '', [], [], [], [], VerbalGroup.affirmative, []) analysis = Sentence(type, request, [], []) modal = [] stc = sentence #We start with determination of probably second verb in subsentence sentence = other_functions.find_scd_verb_sub(sentence) #We have to add punctuation if there is not if sentence == [] or sentence[0] == '.' or sentence[0] == '?' or sentence[0] == '!': #We have probably the aim as an adverb analyse_verbal_structure.find_adv([request], vg) analysis.aim = 'thing' analysis.sv = [vg] return analysis #We recover the auxiliary aux = sentence[0] #We have to know if there is a modal if aux in ResourcePool().modal: modal = aux #If we have a negative form if sentence[1] == 'not': vg.state = VerbalGroup.negative #We remove 'not' sentence = sentence[:1] + sentence[2:] #Wrong is a noun but not followed by the determinant if sentence[1] == 'wrong' and request == 'thing': analysis.sn = [NominalGroup([], [], ['wrong'], [], [])] sentence = [sentence[0]] + sentence[2:] #In this case we have an imperative sentence elif analyse_nominal_group.find_sn_pos(sentence, 1) == [] and type != W_QUESTION: #We have to reput the 'not' if vg.state == VerbalGroup.negative: sentence = sentence[:1] + ['not'] + sentence[1:] return other_sentence(type, request, sentence) #We delete the auxiliary sentence = sentence[1:] #We have to separate the case using these, this or there if sentence[0] in ResourcePool().demonstrative_det and analyse_verb.infinitive([aux], 'present simple') == ['be']: #If we have a verb or an adverb just after (if not, we have a noun) if sentence[0].endswith('ed') or sentence[0].endswith('ing') or sentence[0].endswith('ly') or sentence[ 0] in ResourcePool().adverbs: #We recover this information and remove it analysis.sn = [NominalGroup([sentence[0]], [], [], [], [])] if sentence[0] == 'there' and aux == 'are': analysis.sn[0]._quantifier = 'SOME' sentence = sentence[1:] if not analysis.sn: #We recover the subject sentence = analyse_nominal_structure.recover_ns(sentence, analysis, 0) if aux == 'do' and not analyse_verbal_structure.can_be_imperative(sentence): return other_sentence('', '', stc) #If there is one element => it is an auxiliary => verb 'be' if len(sentence) == 0: vg.vrb_tense = analyse_verb.find_tense_statement(aux) vg.vrb_main = ['be'] else: sentence = analyse_verbal_structure.delete_unusable_word(sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) vg.vrb_tense = analyse_verb.find_tense_question(sentence, aux) #We process the verb verb = analyse_verb.find_verb_question(sentence, aux, vg.vrb_tense) verb_main = analyse_verb.return_verb(sentence, verb, vg.vrb_tense) vg.vrb_main = [other_functions.convert_to_string(verb_main)] #We delete the verb if the aux is not the verb 'be' if vg.vrb_main != ['be']: sentence = sentence[sentence.index(verb[0]) + len(verb_main):] elif sentence[0] == 'be': sentence = sentence[1:] #Here we have special processing for different cases if sentence: #For 'what' descrition case if sentence[0] == 'like' and aux != 'would': vg.vrb_main = ['like'] sentence = sentence[1:] #For 'how' questions with often elif sentence[0].endswith('ing') and not (sentence[0].endswith('thing')): vg.vrb_main[0] = vg.vrb_main[0] + '+' + sentence[0] sentence = sentence[1:] #We recover the conjunctive subsentence sentence = analyse_verbal_structure.process_conjunctive_sub(sentence, vg) #It verifies if there is a secondary verb sec_vrb = analyse_verbal_structure.find_scd_vrb(sentence) if sec_vrb: sentence = analyse_verbal_structure.process_scd_sentence(sentence, vg, sec_vrb) #We recover the subsentence sentence = analyse_verbal_structure.process_subsentence(sentence, vg) #Process relative changes sentence = analyse_verbal_structure.correct_i_compl(sentence, vg.vrb_main[0]) sentence = analyse_verbal_structure.process_compare(sentence, vg) sentence = analyse_nominal_group.find_plural(sentence) #We recover the direct, indirect complement and the adverbial sentence = analyse_verbal_structure.recover_obj_iobj(sentence, vg) #We have to take off adverbs form the sentence sentence = analyse_verbal_structure.find_adv(sentence, vg) #We perform the processing with the modal if modal: vg.vrb_main = [modal + '+' + vg.vrb_main[0]] #If there is a forgotten sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) #In case there is a state verb followed by an adjective sentence = analyse_verbal_structure.state_adjective(sentence, vg) #We have to correct the mistake of the subject for p in ResourcePool().demonstrative_det: if analysis.sn and analysis.sn[0].det == [p] and analysis.sn[0].noun == []: if sentence != [0] and sentence[0] == '.' and sentence[0] == '?' and sentence[0] == '!': if sentence[0] in ResourcePool().proposals: pass else: analysis.sn[0].noun = [sentence[0]] sentence = sentence[1:] sentence = analyse_verbal_structure.state_adjective(sentence, vg) vg = analyse_verbal_structure.DOC_to_IOC(vg) while len(sentence) > 1: stc = analyse_verbal_structure.create_nom_gr(sentence, request) #We recover the direct, indirect complement and the adverbial stc = analyse_verbal_structure.recover_obj_iobj(stc, vg) if stc == sentence: #We leave the loop break else: sentence = stc vg = analyse_verbal_structure.refine_indirect_complement(vg) vg = analyse_verbal_structure.refine_subsentence(vg) vg = analyse_verbal_structure.DOC_to_IOC(vg) analysis.sv = [vg] return analysis
def other_sentence(type, request, sentence): """ process the other from of a sentence Input=type and requesting of sentence and the sentence Output=class Sentence """ #init vg = VerbalGroup([], [], '', [], [], [], [], VerbalGroup.affirmative, []) analysis = Sentence(type, request, [], []) modal = [] if not sentence: return [] #We have to add punctuation if there is not if sentence[len(sentence) - 1] not in ['.', '?', '!']: sentence = sentence + ['.'] #We start with determination of probably second verb in subsentence sentence = other_functions.find_scd_verb_sub(sentence) #We search the subject sbj = analyse_nominal_group.find_sn_pos(sentence, 0) if sbj != [] or type == RELATIVE: #If we haven't a data type => it is a statement if type == '': analysis.data_type = STATEMENT #We have to separate the case using these, this or there if sentence[0] in ResourcePool( ).demonstrative_det and analyse_verb.infinitive( [sentence[1]], 'present simple') == ['be']: #We recover this information and remove it analysis.sn = [NominalGroup([sentence[0]], [], [], [], [])] if sentence[0] == 'there' and sentence[1] == 'are': analysis.sn[0]._quantifier = 'SOME' sentence = sentence[1:] if not analysis.sn: #We recover the subject sentence = analyse_nominal_structure.recover_ns( sentence, analysis, 0) #End of the sentence? -> nominal sentence if sentence == [] or sentence[0] in ['.', '!', '?']: analysis.sv = [] return analysis #We have to know if there is a modal if sentence[0] in ResourcePool().modal: modal = sentence[0] if modal == 'can' or modal == 'must' or modal == 'shall' or modal == 'may': sentence = sentence[1:] #We must take into account all possible cases to recover the sentence's tense if len(sentence) > 1 and sentence[1] == 'not': vg.state = VerbalGroup.negative #Before the negative form we have an auxiliary for the negation if sentence[0] == 'do' or sentence[0] == 'does' or sentence[ 0] == 'did': vg.vrb_tense = analyse_verb.find_tense_statement([sentence[0]]) sentence = sentence[2:] sentence = analyse_verbal_structure.delete_unusable_word( sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) #There is a modal elif modal: sentence = [sentence[0]] + sentence[2:] sentence = analyse_verbal_structure.delete_unusable_word( sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) vg.vrb_tense = analyse_verb.find_tense_statement(sentence) else: #We remove 'not' and find the tense sentence = sentence[:1] + sentence[2:] sentence = analyse_verbal_structure.delete_unusable_word( sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) vg.vrb_tense = analyse_verb.find_tense_statement(sentence) #For the affirmative processing else: if sentence[0] == 'not': vg.state = VerbalGroup.negative sentence = sentence[1:] sentence = analyse_verbal_structure.delete_unusable_word(sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) vg.vrb_tense = analyse_verb.find_tense_statement(sentence) verb = analyse_verb.find_verb_statement(sentence, vg.vrb_tense) verb_main = analyse_verb.return_verb(sentence, verb, vg.vrb_tense) vg.vrb_main = [other_functions.convert_to_string(verb_main)] #We delete the verb sentence = sentence[sentence.index(verb[0]) + len(verb_main):] #We perform the processing with the modal if modal: vg.vrb_main = [modal + '+' + vg.vrb_main[0]] #This is a imperative form else: #re-init analysis.data_type = IMPERATIVE vg.vrb_tense = 'present simple' if sentence[0] in ResourcePool().proposals: sentence = ['.'] + sentence #Negative form if sentence[1] == 'not': sentence = sentence[sentence.index('not') + 1:] sentence = analyse_verbal_structure.delete_unusable_word(sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) vg.state = VerbalGroup.negative else: sentence = analyse_verbal_structure.delete_unusable_word(sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) #We process the verb verb = [sentence[0]] verb_main = analyse_verb.return_verb(sentence, verb, vg.vrb_tense) vg.vrb_main = [other_functions.convert_to_string(verb_main)] #We delete the verb sentence = sentence[sentence.index(verb[0]) + len(verb_main):] if sentence and sentence[-1] == '?': analysis.data_type = YES_NO_QUESTION #We recover the conjunctive subsentence sentence = analyse_verbal_structure.process_conjunctive_sub(sentence, vg) #It verifies if there is a secondary verb sec_vrb = analyse_verbal_structure.find_scd_vrb(sentence) if sec_vrb: sentence = analyse_verbal_structure.process_scd_sentence( sentence, vg, sec_vrb) #We recover the subsentence sentence = analyse_verbal_structure.process_subsentence(sentence, vg) if sentence != [] and vg.vrb_main != []: #Process relative changes sentence = analyse_verbal_structure.correct_i_compl( sentence, vg.vrb_main[0]) sentence = analyse_verbal_structure.process_compare(sentence, vg) sentence = analyse_nominal_group.find_plural(sentence) #We recover the direct, indirect complement and the adverbial sentence = analyse_verbal_structure.recover_obj_iobj(sentence, vg) #We have to take off abverbs form the sentence sentence = analyse_verbal_structure.find_adv(sentence, vg) #In case there is a state verb followed by an adjective sentence = analyse_verbal_structure.state_adjective(sentence, vg) #If there is a forgotten sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) vg = analyse_verbal_structure.DOC_to_IOC(vg) while len(sentence) > 1: stc = analyse_verbal_structure.create_nom_gr(sentence, request) #We recover the direct, indirect complement and the adverbial stc = analyse_verbal_structure.recover_obj_iobj(stc, vg) if stc == sentence: #We leave the loop break else: sentence = stc vg = analyse_verbal_structure.refine_indirect_complement(vg) vg = analyse_verbal_structure.refine_subsentence(vg) vg = analyse_verbal_structure.DOC_to_IOC(vg) analysis.sv = [vg] return analysis
def y_n_ques(type, request, sentence): """ process the yes or no question from of a sentence Input=type and requesting of sentence and the sentence Output=class Sentence """ #init vg = VerbalGroup([], [], '', [], [], [], [], VerbalGroup.affirmative, []) analysis = Sentence(type, request, [], []) modal = [] stc = sentence #We start with determination of probably second verb in subsentence sentence = other_functions.find_scd_verb_sub(sentence) #We have to add punctuation if there is not if sentence == [] or sentence[0] == '.' or sentence[0] == '?' or sentence[ 0] == '!': #We have probably the aim as an adverb analyse_verbal_structure.find_adv([request], vg) analysis.aim = 'thing' analysis.sv = [vg] return analysis #We recover the auxiliary aux = sentence[0] #We have to know if there is a modal if aux in ResourcePool().modal: modal = aux #If we have a negative form if sentence[1] == 'not': vg.state = VerbalGroup.negative #We remove 'not' sentence = sentence[:1] + sentence[2:] #Wrong is a noun but not followed by the determinant if sentence[1] == 'wrong' and request == 'thing': analysis.sn = [NominalGroup([], [], ['wrong'], [], [])] sentence = [sentence[0]] + sentence[2:] #In this case we have an imperative sentence elif analyse_nominal_group.find_sn_pos(sentence, 1) == [] and type != W_QUESTION: #We have to reput the 'not' if vg.state == VerbalGroup.negative: sentence = sentence[:1] + ['not'] + sentence[1:] return other_sentence(type, request, sentence) #We delete the auxiliary sentence = sentence[1:] #We have to separate the case using these, this or there if sentence[0] in ResourcePool( ).demonstrative_det and analyse_verb.infinitive( [aux], 'present simple') == ['be']: #If we have a verb or an adverb just after (if not, we have a noun) if sentence[0].endswith('ed') or sentence[0].endswith( 'ing') or sentence[0].endswith( 'ly') or sentence[0] in ResourcePool().adverbs: #We recover this information and remove it analysis.sn = [NominalGroup([sentence[0]], [], [], [], [])] if sentence[0] == 'there' and aux == 'are': analysis.sn[0]._quantifier = 'SOME' sentence = sentence[1:] if not analysis.sn: #We recover the subject sentence = analyse_nominal_structure.recover_ns(sentence, analysis, 0) if aux == 'do' and not analyse_verbal_structure.can_be_imperative( sentence): return other_sentence('', '', stc) #If there is one element => it is an auxiliary => verb 'be' if len(sentence) == 0: vg.vrb_tense = analyse_verb.find_tense_statement(aux) vg.vrb_main = ['be'] else: sentence = analyse_verbal_structure.delete_unusable_word(sentence) sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) vg.vrb_tense = analyse_verb.find_tense_question(sentence, aux) #We process the verb verb = analyse_verb.find_verb_question(sentence, aux, vg.vrb_tense) verb_main = analyse_verb.return_verb(sentence, verb, vg.vrb_tense) vg.vrb_main = [other_functions.convert_to_string(verb_main)] #We delete the verb if the aux is not the verb 'be' if vg.vrb_main != ['be']: sentence = sentence[sentence.index(verb[0]) + len(verb_main):] elif sentence[0] == 'be': sentence = sentence[1:] #Here we have special processing for different cases if sentence: #For 'what' descrition case if sentence[0] == 'like' and aux != 'would': vg.vrb_main = ['like'] sentence = sentence[1:] #For 'how' questions with often elif sentence[0].endswith('ing') and not ( sentence[0].endswith('thing')): vg.vrb_main[0] = vg.vrb_main[0] + '+' + sentence[0] sentence = sentence[1:] #We recover the conjunctive subsentence sentence = analyse_verbal_structure.process_conjunctive_sub( sentence, vg) #It verifies if there is a secondary verb sec_vrb = analyse_verbal_structure.find_scd_vrb(sentence) if sec_vrb: sentence = analyse_verbal_structure.process_scd_sentence( sentence, vg, sec_vrb) #We recover the subsentence sentence = analyse_verbal_structure.process_subsentence(sentence, vg) #Process relative changes sentence = analyse_verbal_structure.correct_i_compl( sentence, vg.vrb_main[0]) sentence = analyse_verbal_structure.process_compare(sentence, vg) sentence = analyse_nominal_group.find_plural(sentence) #We recover the direct, indirect complement and the adverbial sentence = analyse_verbal_structure.recover_obj_iobj(sentence, vg) #We have to take off adverbs form the sentence sentence = analyse_verbal_structure.find_adv(sentence, vg) #We perform the processing with the modal if modal: vg.vrb_main = [modal + '+' + vg.vrb_main[0]] #If there is a forgotten sentence = analyse_verbal_structure.find_vrb_adv(sentence, vg) #In case there is a state verb followed by an adjective sentence = analyse_verbal_structure.state_adjective(sentence, vg) #We have to correct the mistake of the subject for p in ResourcePool().demonstrative_det: if analysis.sn and analysis.sn[0].det == [ p ] and analysis.sn[0].noun == []: if sentence != [0] and sentence[0] == '.' and sentence[ 0] == '?' and sentence[0] == '!': if sentence[0] in ResourcePool().proposals: pass else: analysis.sn[0].noun = [sentence[0]] sentence = sentence[1:] sentence = analyse_verbal_structure.state_adjective( sentence, vg) vg = analyse_verbal_structure.DOC_to_IOC(vg) while len(sentence) > 1: stc = analyse_verbal_structure.create_nom_gr(sentence, request) #We recover the direct, indirect complement and the adverbial stc = analyse_verbal_structure.recover_obj_iobj(stc, vg) if stc == sentence: #We leave the loop break else: sentence = stc vg = analyse_verbal_structure.refine_indirect_complement(vg) vg = analyse_verbal_structure.refine_subsentence(vg) vg = analyse_verbal_structure.DOC_to_IOC(vg) analysis.sv = [vg] return analysis