def scene(): color = [ 1.0, 1.0, 1.0, 1.0 ] #color = [ 1.0, 0.0, 0.0, 1.0 ] glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, color) #glEnable(GL_ALPHA_TEST) glEnable(GL_TEXTURE_2D) glEnable(GL_TEXTURE_GEN_S) glEnable(GL_TEXTURE_GEN_T) glEnable(GL_TEXTURE_GEN_R) glEnable(GL_TEXTURE_GEN_Q) glPushMatrix() glTranslated(-1.2, 0.0, 0.0) box(1.0, 1.0, 1.0) glPopMatrix() glPushMatrix() glTranslated(1.2, 0.0, 0.0) box(1.0, 1.0, 1.0) glPopMatrix() glDisable(GL_TEXTURE_GEN_S) glDisable(GL_TEXTURE_GEN_T) glDisable(GL_TEXTURE_GEN_R) glDisable(GL_TEXTURE_GEN_Q) glDisable(GL_TEXTURE_2D)
def scene(): color = [ 1.0, 1.0, 1.0, 1.0 ] #color = [ 1.0, 0.0, 0.0, 1.0 ] glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, color) glEnable(GL_ALPHA_TEST) glEnable(GL_TEXTURE_2D) box(1.0, 1.0, 1.0) glDisable(GL_TEXTURE_2D) glDisable(GL_ALPHA_TEST)
def main(): pygame.init() screen = display.set_mode((640, 480)) display.set_caption('shard gui') screen.fill(colours['white']) pygame.display.update() t = toolbar(things = [box('label.png'), box('label.png')]) c = cancel('label.png') cl = clear('label.png') f = forward('label.png') b = back('label.png') t.add([c, cl, b, f]) g = grid(screen, 0, t.height, screen.get_width(), screen.get_height()-t.height) con = container(t, g, screen) done = False while not done: rs = con.draw(screen) display.update(rs) events = pygame.event.get() for e in events: if(e.type == QUIT): done = True break elif(e.type == KEYDOWN): if(e.key == K_ESCAPE): done = True break else: con.handleEvent(e) return
def report_error(message, filename, line=None, src='', traceback=None, prefix=u'ERROR'): """ Helper for reporting error to logging module. Inputs: message[str]: The message to report, ERROR is automatically appended page[pages.Page]: The page that created the error info[Information]: The lexer information object traceback: The traceback (should be a string from traceback.format_exc()) """ title = '{}: {}'.format(prefix, message) if src: src = mooseutils.colorText(box(src, line=line, width=100), 'LIGHT_CYAN') if line is not None: filename = mooseutils.colorText('{}:{}\n'.format(filename, line), 'RESET') else: filename = mooseutils.colorText('{}\n'.format(filename), 'RESET') trace = u'\n' + mooseutils.colorText(traceback, 'GREY') if traceback else '' return u'\n{}\n{}{}{}\n'.format(title, filename, src, trace)
def calc_box_ema_spectra_mse(Neff, Nbox, Nwindow): "Mean-Squared Error\ 1) generates h_ema and h_box given the input parameters;\ 2) takes the amplitude of the FFT for each response\ 3) computes the cumulative sum of each gain spectrum\ 4) computes and retuns the MSE of the two cumulative gain spectra" h_box = box(Nbox, Nwindow) h_ema = ema(Neff, Nwindow) h_box_fft = np.fft.fft(h_box) h_ema_fft = np.fft.fft(h_ema) h_box_fft_abs = np.absolute(h_box_fft) h_ema_fft_abs = np.absolute(h_ema_fft) h_box_fft_abs_sum = np.cumsum(h_box_fft_abs) h_ema_fft_abs_sum = np.cumsum(h_ema_fft_abs) mse = np.sum(np.square(h_box_fft_abs_sum - h_ema_fft_abs_sum)) / Nwindow return mse
S = cv.getTrackbarPos('S', 'thresh') V = cv.getTrackbarPos('V', 'thresh') hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) thresh = cv.inRange(hsv, (h, s, v), (H, S, V)) #cv.imshow('thresh', thresh) show(thresh) whites = cv.inRange(hsv, (0, 0, v), (H, S, V)) show(whites ^ thresh) order = sort.shorted(img, thresh) pt1 = order[0][2] print('point 1:', pt1) mid_box = box.box(img) for i in range(1, len(order)): pt2 = order[i][2] mid = ((pt2[0] + pt1[0]) / 2, (pt2[1] + pt1[1]) / 2) angle = math.atan2(pt2[1] - pt1[1], pt2[0] - pt1[0]) dist = [] for pts in mid_box: dist.append(math.hypot(mid[0] - pts[0], mid[1] - pts[1])) min_dist = min(dist) j = dist.index(min_dist) #april_ang, april_center = april.april(img) #theta = angle - april_ang
else: # show index of accounts if instanceName == '' and numberOfAccounts == 1: count = 1 max_count = int(addon.getSetting(PLUGIN_NAME+'_numaccounts')) loop = True while loop: instanceName = PLUGIN_NAME+str(count) try: username = addon.getSetting(instanceName+'_username') if username != '': #let's log in oc = box.box(PLUGIN_URL,addon,instanceName, user_agent) loop = False except: break if count == max_count: break count = count + 1 # no accounts defined elif numberOfAccounts == 0: #legacy account conversion try: username = addon.getSetting('username')
def ImageDetect(pimg, box_list): img = pimg[:] (thresh, img_bin) = cv2.threshold( img, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # Thresholding the image img_bin = 255 - img_bin # Invert the Image_bin #cv2.imwrite("Image_bin.jpg",img_bin) # Defining a kernel length kernel_length = np.array(img).shape[1] // 40 # A verticle kernel of (1 X kernel_length), which will detect all the verticle lines from the image. verticle_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, kernel_length)) # A horizontal kernel of (kernel_length X 1), which will help to detect all the horizontal line from the image. hori_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_length, 1)) # A kernel of (3 X 3) ones. kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) # Morphological operation to detect verticle lines from an image img_temp1 = cv2.erode(img_bin, verticle_kernel, iterations=3) verticle_lines_img = cv2.dilate(img_temp1, verticle_kernel, iterations=3) #cv2.imwrite("verticle_lines.jpg",verticle_lines_img) # Morphological operation to detect horizontal lines from an image img_temp2 = cv2.erode(img_bin, hori_kernel, iterations=3) horizontal_lines_img = cv2.dilate(img_temp2, hori_kernel, iterations=3) #cv2.imwrite("horizontal_lines.jpg",horizontal_lines_img) # Weighting parameters, this will decide the quantity of an image to be added to make a new image. alpha = 0.5 beta = 1.0 - alpha # This function helps to add two image with specific weight parameter to get a third image as summation of two image. img_final_bin = cv2.addWeighted(verticle_lines_img, alpha, horizontal_lines_img, beta, 0.0) img_final_bin = cv2.erode(~img_final_bin, kernel, iterations=2) (thresh, img_final_bin) = cv2.threshold(img_final_bin, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # For Debugging # Enable this line to see verticle and horizontal lines in the image which is used to find boxes #cv2.imwrite("img_final_bin.jpg",img_final_bin) contours, hierarchy = cv2.findContours(img_final_bin, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Sort all the contours by top to bottom. #(contours, boundingBoxes) = sort_contours(contours, method="top-to-bottom") _, _, page_width, _ = cv2.boundingRect(contours[0]) for c in range(1, len(contours), 2): # Returns the location and width,height for every contour x, y, w, h = cv2.boundingRect(contours[c]) if (w > 20 and h > 20): box_Object = box.box(x, y, x + w, y + h, "Image", None, -1) box_list.append(box_Object) return (box_list, page_width)
else: # show index of accounts if instanceName == '' and numberOfAccounts == 1: count = 1 max_count = int(addon.getSetting(PLUGIN_NAME + '_numaccounts')) loop = True while loop: instanceName = PLUGIN_NAME + str(count) try: username = addon.getSetting(instanceName + '_username') if username != '': #let's log in oc = box.box(PLUGIN_URL, addon, instanceName, user_agent) loop = False except: break if count == max_count: break count = count + 1 # no accounts defined elif numberOfAccounts == 0: #legacy account conversion try: username = addon.getSetting('username')
import socket import re import logging from box import Box as box from colorama import Back, Fore, init, Style from aiohttp import client_exceptions as clientExcps init(autoreset=True) colorSchemes = { 'SUCCESS': f"{Back.GREEN}{Fore.BLACK}{Style.NORMAL}", 'FAILURE': f"{Back.RED}{Fore.WHITE}{Style.BRIGHT}", 'WARNING': f"{Back.YELLOW}{Fore.BLACK}{Style.BRIGHT}", 'RESET': f"{Style.RESET_ALL}" } colorSchemes = box(colorSchemes) logging.basicConfig(format=f'{colorSchemes.FAILURE}[%(levelname) 5s/%(asctime)s] %(name)s: %(message)s', level=logging.ERROR) bot = discord.Client() baseUrl = f"https://api.telegram.org/bot{config.TELEGRAM_BOT_TOKEN}" def replaceMentions(mentions, msg, channel): if channel: for ch in mentions: # msg = msg.replace(str(f"#{ch.id}"), '') msg = re.sub(f"<#{ch.id}>", '', msg) msg = re.sub(f"<{ch.id}>", '', msg)
def test_negative_input(self): self.assertEqual(box(self.data[4][0], self.data[4][1]), None)
try: z_cord = sum(z_cutoff) / len(z_cutoff) except ZeroDivisionError: continue com.append([x_cord, y_cord, z_cord]) out1 = open(os.path.join(curdir, new + 'out' + '_com ' + '.txt'), 'w') out1.write(str(com)) out1.close() one_comp = box.box([x_cord, y_cord, z_cord]) out2 = open(os.path.join(curdir, new + 'out' + '_box ' + '.txt'), 'w') out2.write(str(one_comp)) out2.close() x_max = max(one_comp[0]) x_min = min(one_comp[0]) y_max = max(one_comp[1]) y_min = min(one_comp[1]) z_max = max(one_comp[2]) z_min = min(one_comp[2]) ranges = [x_max, x_min, y_max, y_min, z_max, z_min] out3 = open(os.path.join(curdir, new + 'out' + '_range ' + '.txt'), 'w')
merge = open('%s/plr.txt' % srce).readlines() final = [] for info in merge[:]: final_lists = list(info.split()[1:]) final.append(final_lists) for resi in final[:]: resi = '\t'.join([str(x) for x in resi]) plr_list.write("%s\n" % resi) plr_list.close() ax.scatter([x for x in xcors], [y for y in ycors], [z for z in zcors], alpha=0.2, color="r") comname = range_paths[i].split('/')[-1].split('_')[0] + "_com .txt" compath = srce + '/' + comname comfiles = open(compath).read().strip('[').strip(']').split(',') points = box.box( [float(comfiles[0]), float(comfiles[1]), float(comfiles[2])]) plt.savefig('filter.png') plt.close("all")
from box import box obj = box(12, 33, "RED") print("Box1") print("The length of the box is :", obj.length) print("The width of the box is :", obj.width) print("The colour of the box is :", obj.colour) print("The Area of the box is:", obj.area) print("The Parameter of the box is:", obj.parameter) obj2 = box(10, 2, "RED") print("\n Box2") print("The length of the box is :", obj2.length) print("The width of the box is :", obj2.width) print("The colour of the box is :", obj2.colour) print("The Area of the box is:", obj2.area) print("The Parameter of the box is:", obj2.parameter)
def generate_boxes(self, row, column): boxes = [] for row in range(row): for col in range(column): boxes.append(box(row, col)) return boxes
if __name__ == "__main__": N = 10000 L = 10 | units.parsec rho = 1.14 * 1 | units.amu / units.cm**3 u = (5.e11 | units.erg / units.g).in_(units.cm**2 / units.s**2) # =5000K tend = 1. | units.Myr dt = 10000 | units.yr print(u**0.5).in_(units.kms) print((L / u**0.5) / dt) particles = box(N, L, rho, u) UnitLength = L UnitMass = particles.mass.sum() UnitVelocity = units.kms convert = generic_unit_converter.ConvertBetweenGenericAndSiUnits( UnitLength, UnitMass, UnitVelocity) sph = Gadget2(convert, mode='periodic_nogravity') #,redirection='none') sph.parameters.periodic_box_size = L sph.gas_particles.add_particles(particles) i = 0 t = 0. | units.Myr
def test_raises_exception_with_bad_arguments(self): with self.assertRaises(Exception): box(length=0, width=0, height=0)
def test_creates_box_with_valid_arguments(self): result = box(1, 1, 1) self.assertIsNotNone(result['model']) self.assertIsNotNone(result['computed']) self.assertEqual(result['computed']['volume'], 1)
axarr[0, 0].set_ylim(0, 1.1) axarr[0, 0].set_title("Ideal delay") axarr[0, 0].plot(impulse_response_fde) axarr[0, 0].plot(impulse_response_direct, 'o', markerfacecolor='none') # b) Box Nbox = 32 lag = 1 impulse = np.zeros(Nwindow) impulse[lag] = 1 candidate = apply_box_filter(impulse, Nbox) impulse_response_fde = candidate[lag:] impulse_response_direct = box(Nbox, Nwindow) axarr[0, 1].set_title("Box") axarr[0, 1].plot(impulse_response_fde) axarr[0, 1].plot(impulse_response_direct, 'o', markerfacecolor='none') # c) Ema Neff = 32 lag = 1 impulse = np.zeros(Nwindow) impulse[lag] = 1 candidate = apply_ema_filter(impulse, Neff) impulse_response_fde = candidate[lag:]
if item.startswith('ATOM'): item = item.replace('',"") item = item.split() if item[4] == chain_name: #print item x.append(float(item[6])) y.append(float(item[7])) z.append(float(item[8])) for item in z[:]: if -15.0<= item and item <=15.0: z_select.append(item) x_cord = sum(x)/len(x) y_cord = sum(y)/len(y) z_cord = sum(z_select)/len(z_select) one_comp = box.box((x_cord,y_cord,z_cord)) out1 = open(names + '_box ' + '.txt','w') out1.write(str(one_comp)) out1.close() ##########################3d-plot################################### centre = ax.scatter([x_cord],[y_cord],[z_cord],color="g",s=100) points = box.box((x_cord,y_cord,z_cord)) scatterfile = ax.scatter(points[0], points[1], points[2],color = "r") plt.show() invokepores.invoke()
import numpy as np import matplotlib.pyplot as plt from ema import ema from box import box from comb import comb Nwindow = 1024 # (a) Ema and box Neff = 32 h_ema = ema(Neff, Nwindow) Nbox = Neff / (1-np.exp(-1)) h_box = box(Nbox, Nwindow) # (b) Comb with period = 256 Nperiod = 256 h_comb = comb(Nperiod, Nwindow) # (c-f) Convolution candidate1 = np.convolve(h_comb, h_ema) candidate2 = np.convolve(h_comb, h_box) h_ema_replicated = candidate1[:Nwindow] h_box_replicated = candidate2[:Nwindow] H_ema = np.absolute(np.fft.fft(h_ema)) H_box = np.absolute(np.fft.fft(h_box)) H_ema_replicated = np.absolute(np.fft.fft(h_ema_replicated)) / Nperiod
# Image aspect_ratio = 16 / 9 width = 400 height = int(width / aspect_ratio) samples_per_pixel = None # World background = glm.vec3(1, 1, 1) # background color diffuse_material = lambertian(glm.vec3(.5, .2, .1)) world = cornell_box() world.add(sphere(glm.vec3(-1.0, -.5, -1.5), .5, diffuse_material)) world.add(box(glm.vec3(.5, -.9, -2.5), glm.vec3(1, -.4, -2), diffuse_material)) metallic_material = metal(.01, glm.vec3(0.5, 0.5, 0.2)) world.add(sphere(glm.vec3(.0, -.5, -1.5), .5, metallic_material)) # Camera cam = camera() output_file = sys.argv[1] if len(sys.argv) > 1 else 'problem1' + '.ppm' samples_per_pixel = int(sys.argv[2].strip()) if len(sys.argv) > 2 else 1 max_depth = int(sys.argv[3].strip()) if len(sys.argv) > 3 else 100 with open(output_file, 'w') as f: f.write('P3\n%d %d\n255\n' % (width, height)) for j in tqdm(range(height - 1, -1, -1), desc='loading:'): for i in range(width): color = glm.vec3(0, 0, 0)
# init sender for pitch and volume sender = com.ThereminCommunication() sender.connect() # get the camera cap = cv2.VideoCapture(0) fps = fpsCounter.FpsCounter() # determine the image resolution width = int(cap.get(3)) height = int(cap.get(4)) print("This Video Resulation is " + str(width) + " by " + str(height)) # init box with image resolution boxer = box.box(width, height) while (True): # Capture new frame fps.newFrame() ret, frame = cap.read() frame = cv2.flip(frame, 1) # get individual sections for pitch and volume volSection, pitchSection = boxer.getVolPitchSection(frame) # find colored points in each sections pointsVol = cf.findColor(volSection, 'red', False) pointsPitch = cf.findColor(pitchSection, 'red', False) # transform coordinates back to the full frame
global_vars.batch = pyglet.graphics.Batch() global_vars.background = pyglet.graphics.OrderedGroup(0) global_vars.foreground = pyglet.graphics.OrderedGroup(1) Objects = [] Player = player(400, 250, 'playerr1.png', Objects) Platform1 = platform(80, 280, 'platform.png', 30, 260, Objects) Platform2 = platform(110, 260, 'platform.png', 60, 260, Objects) Platform3 = platform(140, 240, 'platform.png', 90, 260, Objects) Platform4 = platform(170, 220, 'platform.png', 120, 260, Objects) Platform5 = platform(200, 200, 'platform.png', 150, 360, Objects) Box = box(450, 400, 'box.png', Objects) Box = box(470, 400, 'box.png', Objects) Box = box(490, 400, 'box.png', Objects) Box = box(510, 400, 'box.png', Objects) Box = box(530, 400, 'box.png', Objects) Box = box(550, 400, 'box.png', Objects) Box = box(570, 400, 'box.png', Objects) Box = box(590, 400, 'box.png', Objects) Box = box(450, 440, 'box.png', Objects) Box = box(470, 440, 'box.png', Objects) Box = box(490, 440, 'box.png', Objects) Box = box(510, 440, 'box.png', Objects) Box = box(530, 440, 'box.png', Objects) Box = box(550, 440, 'box.png', Objects) Box = box(570, 440, 'box.png', Objects) Box = box(590, 440, 'box.png', Objects)
axarr[0, 0].set_ylim(0, 1.1) axarr[0, 0].set_title("Ideal delay") axarr[0, 0].plot(impulse_response_fde) axarr[0, 0].plot(impulse_response_direct, 'o', markerfacecolor='none') # b) Box Nbox = 32 lag = 1 impulse = np.zeros(Nwindow) impulse[lag] = 1 candidate = apply_box_filter(impulse, Nbox) impulse_response_fde = candidate[lag:] impulse_response_direct = box(Nbox, Nwindow) axarr[0, 1].set_title("Box") axarr[0, 1].plot(impulse_response_fde) axarr[0, 1].plot(impulse_response_direct, 'o',markerfacecolor='none') # c) Ema Neff = 32 lag = 1 impulse = np.zeros(Nwindow) impulse[lag] = 1 candidate = apply_ema_filter(impulse, Neff) impulse_response_fde = candidate[lag:]
def test_zero_box(self): self.assertEqual(box(self.data[2][0], self.data[2][1]), None)
def test_one_by_one(self): self.assertEqual(box(self.data[3][0], self.data[3][1]), None)
def __init__(self, message, *args, **kwargs): err = kwargs.pop('error', None) msg = message.format(*args) if err is not None: msg += u'\n\n{}'.format(box(err)) Exception.__init__(self, msg.encode('utf-8'))