def solve(self): """Solve problem""" self.updateGeometry() self.updateMesh() self.ep = [self.ptype, self.t] self.D = cfc.hooke(self.ptype, self.E, self.v) cfu.info("Assembling system matrix...") nDofs = np.size(self.dofs) ex, ey = cfc.coordxtr(self.edof, self.coords, self.dofs) K = np.zeros([nDofs, nDofs]) for eltopo, elx, ely in zip(self.edof, ex, ey): Ke = cfc.planqe(elx, ely, self.ep, self.D) cfc.assem(eltopo, K, Ke) cfu.info("Solving equation system...") f = np.zeros([nDofs, 1]) bc = np.array([], 'i') bcVal = np.array([], 'i') bc, bcVal = cfu.applybc(self.bdofs, bc, bcVal, 5, 0.0, 0) cfu.applyforce(self.bdofs, f, 7, 10e5, 1) self.a, self.r = cfc.solveq(K, f, bc, bcVal) cfu.info("Computing element forces...") ed = cfc.extractEldisp(self.edof, self.a) self.vonMises = [] # For each element: for i in range(self.edof.shape[0]): # Determine element stresses and strains in the element. es, et = cfc.planqs(ex[i, :], ey[i, :], self.ep, self.D, ed[i, :]) # Calc and append effective stress to list. self.vonMises.append( sqrt( pow(es[0], 2) - es[0] * es[1] + pow(es[1], 2) + 3 * es[2]))
# ----- Solve problem nDofs = np.size(dofs) ex, ey = cfc.coordxtr(edof, coords, dofs) K = np.zeros([nDofs, nDofs]) for eltopo, elx, ely in zip(edof, ex, ey): Ke = cfc.planqe(elx, ely, ep, D) cfc.assem(eltopo, K, Ke) bc = np.array([], 'i') bcVal = np.array([], 'f') bc, bcVal = cfu.applybc(bdofs, bc, bcVal, left_support, 0.0, 0) bc, bcVal = cfu.applybc(bdofs, bc, bcVal, right_support, 0.0, 2) f = np.zeros([nDofs, 1]) cfu.applyforcetotal(bdofs, f, top_line, -10e5, 2) a, r = cfc.solveq(K, f, bc, bcVal) ed = cfc.extractEldisp(edof, a) vonMises = [] for i in range(edof.shape[0]): es, et = cfc.planqs(ex[i, :], ey[i, :], ep, D, ed[i, :]) vonMises.append( sqrt(pow(es[0], 2) - es[0] * es[1] + pow(es[1], 2) + 3 * es[2]))
def executeFem(self): q = self.inputData.q B = self.inputData.B b = self.inputData.b hvec = self.inputData.hvec Mvec = self.inputData.Mvec kmat = self.inputData.kmat rhow = self.inputData.rhow hn = self.inputData.hn coords = self.outputData.coords edof = self.outputData.edof bdofs = self.outputData.bdofs elementmarkers = self.outputData.elementmarkers ex = self.outputData.ex ey = self.outputData.ey ndof=edof.max() # --- Definera randvillkor bc = np.array([],int) bcVal = np.array([],int) bc,bcVal = cfu.applybc(bdofs, bc, bcVal, 3, 0) bc,bcVal = cfu.applybc(bdofs, bc, bcVal, 2, 0) if self.inputData.perm == True: bc,bcVal = cfu.applybc(bdofs, bc, bcVal, (599+hn), 0) # --- Definiera materialmatris ep=[(1)] D=np.zeros([2,2]) # --- Skapa tom K-matris och f-vektor K = np.zeros([ndof,ndof]) C = np.zeros([ndof,ndof]) for eltopo, elx, ely, elMarker in zip(edof, ex, ey, elementmarkers): Dn = elMarker - 100 D[0,0] = kmat[Dn,0]*60*60*24*365.25 D[1,1] = kmat[Dn,1]*60*60*24*365.25 M = Mvec[Dn] Ke = cfc.flw2te(elx, ely, ep, D) Ce = tg.flwtec(elx,ely,rhow,M) cfc.assem(eltopo, K, Ke) cfc.assem(eltopo,C,Ce) a0 = tg.strdist(coords, ndof, q, B, b, hvec) a0 = np.asmatrix(a0) self.outputData.K = K self.outputData.C = C self.outputData.a0 = a0 self.outputData.bc = bc self.outputData.bcVal = bcVal
for eltopo, elx, ely, elMarker in zip(edof, ex, ey, elementmarkers): # Calc element stiffness matrix: Conductivity matrix D is taken # from Ddict and depends on which region (which marker) the element is in. Ke = flw2i8e(elx, ely, ep, Ddict[elMarker]) assem(eltopo, K, Ke) print("Solving equation system...") f = zeros([nDofs, 1]) bc = array([], "i") bcVal = array([], "i") bc, bcVal = cfu.applybc(bdofs, bc, bcVal, 2, 30.0) bc, bcVal = cfu.applybc(bdofs, bc, bcVal, 3, 0.0) a, r = solveq(K, f, bc, bcVal) # ---- Compute element forces ----------------------------------------------- print("Computing element forces...") ed = extractEldisp(edof, a) for i in range(shape(ex)[0]): es, et, eci = flw2i8s(ex[i, :], ey[i, :], ep, Ddict[elementmarkers[i]], ed[i, :]) # Do something with es, et, eci here.
for eltopo, elx, ely, elMarker in zip(edof, ex, ey, elementmarkers): # Calc element stiffness matrix: Conductivity matrix D is taken # from Ddict and depends on which region (which marker) the element is in. Ke = cfc.flw2i8e(elx, ely, ep, Ddict[elMarker]) cfc.assem(eltopo, K, Ke) print("Solving equation system...") f = np.zeros([n_dofs, 1]) bc = np.array([], 'i') bc_val = np.array([], 'i') bc, bc_val = cfu.applybc(bdofs, bc, bc_val, 2, 30.0) bc, bc_val = cfu.applybc(bdofs, bc, bc_val, 3, 0.0) a, r = cfc.solveq(K, f, bc, bc_val) # ---- Compute element forces ----------------------------------------------- print("Computing element forces...") ed = cfc.extractEldisp(edof, a) for i in range(np.shape(ex)[0]): es, et, eci = cfc.flw2i8s( ex[i, :], ey[i, :], ep, Ddict[elementmarkers[i]], ed[i, :]) # Do something with es, et, eci here.
nDofs = size(dofs) ex, ey = coordxtr(edof, coords, dofs) K = zeros([nDofs,nDofs]) for eltopo, elx, ely in zip(edof, ex, ey): Ke = planqe(elx, ely, ep, D) assem(eltopo, K, Ke) print("Solving equation system...") f = zeros([nDofs,1]) bc = array([],'i') bcVal = array([],'i') bc, bcVal = cfu.applybc(bdofs, bc, bcVal, 5, 0.0, 0) cfu.applyforce(bdofs, f, 7, 10e5, 1) a,r = solveq(K,f,bc,bcVal) print("Computing element forces...") ed = extractEldisp(edof,a) vonMises = [] # For each element: for i in range(edof.shape[0]): # Determine element stresses and strains in the element.
nDofs = np.size(dofs) ex, ey = cfc.coordxtr(edof, coords, dofs) K = np.zeros([nDofs, nDofs]) for eltopo, elx, ely in zip(edof, ex, ey): Ke = cfc.planqe(elx, ely, ep, D) cfc.assem(eltopo, K, Ke) cfu.info("Solving equation system...") f = np.zeros([nDofs, 1]) bc = np.array([], 'i') bcVal = np.array([], 'i') bc, bcVal = cfu.applybc(bdofs, bc, bcVal, 5, 0.0, 0) cfu.applyforce(bdofs, f, 7, 10e5, 1) a, r = cfc.solveq(K, f, bc, bcVal) cfu.info("Computing element forces...") ed = cfc.extractEldisp(edof, a) vonMises = [] # For each element: for i in range(edof.shape[0]): # Determine element stresses and strains in the element.
nDofs = nDofs = np.size(dofs) ex, ey = cfc.coordxtr(edof, coords, dofs) K = np.zeros([nDofs,nDofs]) for eltopo, elx, ely in zip(edof, ex, ey): Ke = cfc.flw2i4e(elx, ely, ep, D) cfc.assem(eltopo, K, Ke) # ------ Forces and boundary conditions ------------ f = np.zeros([nDofs,1]) bc = np.array([], int) bcVal = np.array([], int) bc, bcVal = cfu.applybc(bdofs, bc, bcVal, 80, 0.0) bc, bcVal = cfu.applybc(bdofs, bc, bcVal, 90, 10.0) # ------ Solve equation system ------------ a,r = cfc.solveq(K,f,bc,bcVal) # ------ Calculate element forces ------------ ed = cfc.extractEldisp(edof,a) maxFlow = [] for i in range(edof.shape[0]): es, et, eci = cfc.flw2i4s(ex[i,:], ey[i,:], ep, D, ed[i,:]) maxFlow.append( math.sqrt( math.pow(es[0,0],2) + math.pow(es[0,1],2))
Ke = cfc.flw2i4e(elx, ely, ep, D) elif mesh.el_type == 16: Ke = cfc.flw2i8e(elx, ely, ep, D) else: print("Element type not supported") cfc.assem(el_topo, K, Ke) print("Solving equation system...") f = np.zeros([n_dofs, 1]) bc = np.array([], 'i') bc_val = np.array([], 'f') bc, bc_val = cfu.applybc(bdofs, bc, bc_val, id_outer, 30.0) bc, bc_val = cfu.applybc(bdofs, bc, bc_val, id_hole1, 300.0) bc, bc_val = cfu.applybc(bdofs, bc, bc_val, id_hole2, 400.0) a, r = cfc.solveq(K, f, bc, bc_val) # ---- Compute element forces ----------------------------------------------- print("Computing element forces...") ed = cfc.extract_eldisp(edof, a) for i in range(np.shape(ex)[0]): if mesh.el_type == 2: es, et = cfc.flw2ts(ex[i, :], ey[i, :], D, ed[i, :]) elif mesh.el_type == 3:
for eltopo, elx, ely, elMarker in zip(edof, ex, ey, elementmarkers): if elType == 2: Ke = cfc.plante(elx, ely, elprop[elMarker][0], elprop[elMarker][1]) else: Ke = cfc.planqe(elx, ely, elprop[elMarker][0], elprop[elMarker][1]) cfc.assem(eltopo, K, Ke) print("Applying bc and loads...") bc = np.array([],'i') bcVal = np.array([],'i') bc, bcVal = cfu.applybc(bdofs, bc, bcVal, markFixed, 0.0) f = np.zeros([nDofs,1]) cfu.applyforcetotal(bdofs, f, markLoad, value = -10e5, dimension=2) print("Solving system...") a,r = cfc.spsolveq(K, f, bc, bcVal) print("Extracting ed...") ed = cfc.extractEldisp(edof, a) vonMises = [] # ---- Calculate elementr stresses and strains ------------------------------
def execute(self): # ------ Transfer model variables to local variables self.inputData.updateparams() version = self.inputData.version units = self.inputData.units v = self.inputData.v ep = self.inputData.ep E = self.inputData.E mp = self.inputData.mp fp = self.inputData.fp bp = self.inputData.bp ep[1] = ep[1] * U2SI[units][0] E = E * U2SI[units][2] for i in range(len(fp[0])): fp[1][i] = fp[1][i] * U2SI[units][1] for i in range(len(bp[0])): bp[1][i] = bp[1][i] * U2SI[units][0] # Get most updated dxf dimensions and import model geometry to calfem format self.inputData.dxf.readDXF(self.inputData.dxf_filename) for dim in self.inputData.d: ("Adjusting Dimension {0} with val {1}".format( dim[0], dim[1] * U2SI[units][0])) self.inputData.dxf.adjustDimension(dim[0], dim[1] * U2SI[units][0]) self.inputData.dxf.adjustDimension( self.inputData.c['aName'], self.inputData.c['a'] * U2SI[units][0]) self.inputData.dxf.adjustDimension( self.inputData.c['bName'], self.inputData.c['b'] * U2SI[units][0]) dxf = self.inputData.dxf if self.inputData.refineMesh: geometry, curve_dict = dxf.convertToGeometry(max_el_size=mp[2]) else: geometry, curve_dict = dxf.convertToGeometry() # Generate the mesh meshGen = cfm.GmshMeshGenerator(geometry) meshGen.elSizeFactor = mp[2] # Max Area for elements meshGen.elType = mp[0] meshGen.dofsPerNode = mp[1] meshGen.returnBoundaryElements = True coords, edof, dofs, bdofs, elementmarkers, boundaryElements = meshGen.create( ) # Add the force loads and boundary conditions bc = np.array([], int) bcVal = np.array([], int) nDofs = np.size(dofs) f = np.zeros([nDofs, 1]) for i in range(len(bp[0])): bc, bcVal = cfu.applybc(bdofs, bc, bcVal, dxf.markers[bp[0][i]], bp[1][i]) for i in range(len(fp[0])): xforce = fp[1][i] * np.cos(np.radians(fp[2][i])) yforce = fp[1][i] * np.sin(np.radians(fp[2][i])) cfu.applyforce(bdofs, f, dxf.markers[fp[0][i]], xforce, dimension=1) cfu.applyforce(bdofs, f, dxf.markers[fp[0][i]], yforce, dimension=2) # ------ Calculate the solution print("") print("Solving the equation system...") # Define the elements coordinates ex, ey = cfc.coordxtr(edof, coords, dofs) # Define the D and K matrices D = (E / (1 - v**2)) * np.matrix([[1, v, 0], [v, 1, 0], [0, 0, (1 - v) / 2]]) K = np.zeros([nDofs, nDofs]) # Extract element coordinates and topology for each element for eltopo, elx, ely in zip(edof, ex, ey): Ke = cfc.plante(elx, ely, ep, D) cfc.assem(eltopo, K, Ke) # Solve the system a, r = cfc.solveq(K, f, bc, bcVal) # ------ Determine stresses and displacements print("Computing the element forces") # Extract element displacements ed = cfc.extractEldisp(edof, a) # Determine max displacement max_disp = [[0, 0], 0] # [node idx, value] for idx, node in zip(range(len(ed)), ed): for i in range(3): disp = math.sqrt(node[2 * i]**2 + node[2 * i + 1]**2) if disp > max_disp[1]: max_disp = [[idx, 2 * i], disp] # Determine Von Mises stresses vonMises = [] max_vm = [0, 0] # [node idx, value] for i in range(edof.shape[0]): es, et = cfc.plants(ex[i, :], ey[i, :], ep, D, ed[i, :]) try: vonMises.append( math.sqrt( pow(es[0, 0], 2) - es[0, 0] * es[0, 1] + pow(es[0, 1], 2) + 3 * es[0, 2])) if vonMises[-1] > max_vm[1]: max_vm = [i, vonMises[-1]] except ValueError: vonMises.append(0) print("CAUGHT MATH EXCEPTION with es = {0}".format(es)) # Note: es = [sigx sigy tauxy] # ------ Store the solution in the output model variables self.outputData.disp = ed self.outputData.stress = vonMises self.outputData.geometry = geometry self.outputData.a = a self.outputData.coords = coords self.outputData.edof = edof self.outputData.mp = mp self.outputData.meshGen = meshGen self.outputData.statistics = [ max_vm, max_disp, curve_dict, self.inputData.dxf.anchor, self.inputData.dxf.wh ] if self.inputData.paramFilename is None: print("Solution completed.")
for eltopo, elx, ely, elMarker in zip(edof, ex, ey, elementmarkers): if el_type == 2: Ke = cfc.plante(elx, ely, elprop[elMarker][0], elprop[elMarker][1]) else: Ke = cfc.planqe(elx, ely, elprop[elMarker][0], elprop[elMarker][1]) cfc.assem(eltopo, K, Ke) cfu.info("Applying bc and loads...") bc = np.array([],'i') bcVal = np.array([],'i') bc, bcVal = cfu.applybc(bdofs, bc, bcVal, mark_fixed, 0.0) f = np.zeros([nDofs,1]) cfu.applyforcetotal(bdofs, f, mark_load, value = -10e5, dimension=2) cfu.info("Solving system...") a,r = cfc.spsolveq(K, f, bc, bcVal) cfu.info("Extracting ed...") ed = cfc.extractEldisp(edof, a) von_mises = [] # ---- Calculate elementr stresses and strains ------------------------------
def addBC(self, marker, value=0.0, dimension=0): self.bc, self.bc_val = cfu.applybc(self.mesh.bdofs, self.bc, self.bc_val, marker, value, dimension)
def execute(self): # --- Överför modell variabler till lokala referenser ep = self.inputData.ep E = self.inputData.E v = self.inputData.v Elementsize = self.inputData.Elementsize # --- Anropa InputData för en geomtetribeskrivning geometry = self.inputData.geometry() # --- Nätgenerering elType = 3 # <-- Fyrnodselement flw2i4e dofsPerNode = 2 meshGen = cfm.GmshMeshGenerator(geometry) meshGen.elSizeFactor = Elementsize # <-- Anger max area för element meshGen.elType = elType meshGen.dofsPerNode = dofsPerNode meshGen.returnBoundaryElements = True coords, edof, dof, bdofs, elementmarkers, boundaryElements = meshGen.create( ) self.outputData.topo = meshGen.topo #Solver bc = np.array([], 'i') bcVal = np.array([], 'i') D = cfc.hooke(1, E, v) nDofs = np.size(dof) ex, ey = cfc.coordxtr(edof, coords, dof) #Coordinates K = np.zeros([nDofs, nDofs]) #Append Boundary Conds f = np.zeros([nDofs, 1]) bc, bcVal = cfu.applybc(bdofs, bc, bcVal, 30, 0.0, 0) cfu.applyforce(bdofs, f, 20, 100e3, 1) qs_array = [] qt_array = [] for x, y, z in zip(ex, ey, edof): Ke = cfc.planqe(x, y, ep, D) cfc.assem(z, K, Ke) asolve, r = cfc.solveq(K, f, bc, bcVal) ed = cfc.extractEldisp(edof, asolve) for x, y, z in zip(ex, ey, ed): qs, qt = cfc.planqs(x, y, ep, D, z) qs_array.append(qs) qt_array.append(qt) vonMises = [] stresses1 = [] stresses2 = [] # For each element: for i in range(edof.shape[0]): # Determine element stresses and strains in the element. es, et = cfc.planqs(ex[i, :], ey[i, :], ep, D, ed[i, :]) # Calc and append effective stress to list. vonMises.append( np.sqrt( pow(es[0], 2) - es[0] * es[1] + pow(es[1], 2) + 3 * es[2])) ## es: [sigx sigy tauxy] # sigmaij = np.array([[es(i,1),es(i,3),0],[es(i,3),es(i,2),0],[0,0,0]]) sigmaij = np.array([[es[0], es[2], 0], [es[2], es[1], 0], [0, 0, 0]]) [v, w] = np.linalg.eig(sigmaij) stresses1.append(v[0] * w[0]) stresses2.append(v[1] * w[1]) # --- Överför modell variabler till lokala referenser self.outputData.vonMises = vonMises self.outputData.edof = edof self.outputData.coords = coords self.outputData.stresses1 = stresses1 self.outputData.stresses2 = stresses2 self.outputData.geometry = geometry self.outputData.asolve = asolve self.outputData.r = r self.outputData.ed = ed self.outputData.qs = qs_array self.outputData.qt = qt_array self.outputData.dofsPerNode = dofsPerNode self.outputData.elType = elType self.outputData.calcDone = True