예제 #1
0
파일: ddd.py 프로젝트: yhsmiley/CenterNet
    def pre_process(self, image, scale, calib=None):
        height, width = image.shape[0:2]

        inp_height, inp_width = self.opt.input_h, self.opt.input_w
        c = np.array([width / 2, height / 2], dtype=np.float32)
        if self.opt.keep_res:
            s = np.array([inp_width, inp_height], dtype=np.int32)
        else:
            s = np.array([width, height], dtype=np.int32)

        trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
        resized_image = image  #cv2.resize(image, (width, height))
        inp_image = cv2.warpAffine(resized_image,
                                   trans_input, (inp_width, inp_height),
                                   flags=cv2.INTER_LINEAR)
        inp_image = (inp_image.astype(np.float32) / 255.)
        inp_image = (inp_image - self.mean) / self.std
        images = inp_image.transpose(2, 0, 1)[np.newaxis, ...]
        calib = np.array(calib, dtype=np.float32) if calib is not None \
                else self.calib
        images = torch.from_numpy(images)
        meta = {
            'c': c,
            's': s,
            'out_height': inp_height // self.opt.down_ratio,
            'out_width': inp_width // self.opt.down_ratio,
            'calib': calib
        }
        return images, meta
예제 #2
0
    def pre_process(self, image, scale, meta=None):
        height, width = image.shape[0:2]
        new_height = int(height * scale)
        new_width = int(width * scale)
        if self.opt.fix_res:
            inp_height, inp_width = self.opt.input_h, self.opt.input_w
            c = np.array([new_width / 2., new_height / 2.], dtype=np.float32)
            s = max(height, width) * 1.0
        else:
            inp_height = (new_height | self.opt.pad) + 1
            inp_width = (new_width | self.opt.pad) + 1
            c = np.array([new_width // 2, new_height // 2], dtype=np.float32)
            s = np.array([inp_width, inp_height], dtype=np.float32)

        trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
        resized_image = cv2.resize(image, (new_width, new_height))
        inp_image = cv2.warpAffine(resized_image,
                                   trans_input, (inp_width, inp_height),
                                   flags=cv2.INTER_LINEAR)
        inp_image = ((inp_image / 255. - self.mean) / self.std).astype(
            np.float32)

        images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height,
                                                      inp_width)
        if self.opt.flip_test:
            images = np.concatenate((images, images[:, :, :, ::-1]), axis=0)
        images = torch.from_numpy(images)
        meta = {
            'c': c,
            's': s,
            'out_height': inp_height // self.opt.down_ratio,
            'out_width': inp_width // self.opt.down_ratio
        }
        return images, meta
예제 #3
0
    def __getitem__(self, index):
        img_id = self.images[index]
        file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name']
        img_path = os.path.join(self.img_dir, file_name)
        ann_ids = self.coco.getAnnIds(imgIds=[img_id])
        anns = self.coco.loadAnns(ids=ann_ids)
        num_objs = min(len(anns), self.max_objs)

        img = cv2.imread(img_path)

        height, width = img.shape[0], img.shape[1]
        c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32)
        s = max(img.shape[0], img.shape[1]) * 1.0
        rot = 0

        flipped = False
        if self.split == 'train':
            if not self.opt.not_rand_crop:
                s = s * np.random.choice(np.arange(0.6, 1.4, 0.1))
                w_border = self._get_border(128, img.shape[1])
                h_border = self._get_border(128, img.shape[0])
                c[0] = np.random.randint(low=w_border,
                                         high=img.shape[1] - w_border)
                c[1] = np.random.randint(low=h_border,
                                         high=img.shape[0] - h_border)
            else:
                sf = self.opt.scale
                cf = self.opt.shift
                c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
            if np.random.random() < self.opt.aug_rot:
                rf = self.opt.rotate
                rot = np.clip(np.random.randn() * rf, -rf * 2, rf * 2)

            if np.random.random() < self.opt.flip:
                flipped = True
                img = img[:, ::-1, :]
                c[0] = width - c[0] - 1

        trans_input = get_affine_transform(
            c, s, rot, [self.opt.input_res, self.opt.input_res])
        inp = cv2.warpAffine(img,
                             trans_input,
                             (self.opt.input_res, self.opt.input_res),
                             flags=cv2.INTER_LINEAR)
        inp = (inp.astype(np.float32) / 255.)
        if self.split == 'train' and not self.opt.no_color_aug:
            color_aug(self._data_rng, inp, self._eig_val, self._eig_vec)
        inp = (inp - self.mean) / self.std
        inp = inp.transpose(2, 0, 1)

        output_res = self.opt.output_res
        num_joints = self.num_joints
        trans_output_rot = get_affine_transform(c, s, rot,
                                                [output_res, output_res])
        trans_output = get_affine_transform(c, s, 0, [output_res, output_res])

        hm = np.zeros((self.num_classes, output_res, output_res),
                      dtype=np.float32)
        hm_hp = np.zeros((num_joints, output_res, output_res),
                         dtype=np.float32)
        dense_kps = np.zeros((num_joints, 2, output_res, output_res),
                             dtype=np.float32)
        dense_kps_mask = np.zeros((num_joints, output_res, output_res),
                                  dtype=np.float32)
        wh = np.zeros((self.max_objs, 2), dtype=np.float32)
        kps = np.zeros((self.max_objs, num_joints * 2), dtype=np.float32)
        reg = np.zeros((self.max_objs, 2), dtype=np.float32)
        ind = np.zeros((self.max_objs), dtype=np.int64)
        reg_mask = np.zeros((self.max_objs), dtype=np.uint8)
        kps_mask = np.zeros((self.max_objs, self.num_joints * 2),
                            dtype=np.uint8)
        hp_offset = np.zeros((self.max_objs * num_joints, 2), dtype=np.float32)
        hp_ind = np.zeros((self.max_objs * num_joints), dtype=np.int64)
        hp_mask = np.zeros((self.max_objs * num_joints), dtype=np.int64)

        draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else \
                        draw_umich_gaussian

        gt_det = []
        for k in range(num_objs):
            ann = anns[k]
            bbox = self._coco_box_to_bbox(ann['bbox'])
            cls_id = int(ann['category_id']) - 1
            pts = np.array(ann['keypoints'], np.float32).reshape(num_joints, 3)
            if flipped:
                bbox[[0, 2]] = width - bbox[[2, 0]] - 1
                pts[:, 0] = width - pts[:, 0] - 1
                for e in self.flip_idx:
                    pts[e[0]], pts[e[1]] = pts[e[1]].copy(), pts[e[0]].copy()
            bbox[:2] = affine_transform(bbox[:2], trans_output)
            bbox[2:] = affine_transform(bbox[2:], trans_output)
            bbox = np.clip(bbox, 0, output_res - 1)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            if (h > 0 and w > 0) or (rot != 0):
                radius = gaussian_radius((math.ceil(h), math.ceil(w)))
                radius = self.opt.hm_gauss if self.opt.mse_loss else max(
                    0, int(radius))
                ct = np.array([(bbox[0] + bbox[2]) / 2,
                               (bbox[1] + bbox[3]) / 2],
                              dtype=np.float32)
                ct_int = ct.astype(np.int32)
                wh[k] = 1. * w, 1. * h
                ind[k] = ct_int[1] * output_res + ct_int[0]
                reg[k] = ct - ct_int
                reg_mask[k] = 1
                num_kpts = pts[:, 2].sum()
                if num_kpts == 0:
                    hm[cls_id, ct_int[1], ct_int[0]] = 0.9999
                    reg_mask[k] = 0

                hp_radius = gaussian_radius((math.ceil(h), math.ceil(w)))
                hp_radius = self.opt.hm_gauss \
                            if self.opt.mse_loss else max(0, int(hp_radius))
                for j in range(num_joints):
                    if pts[j, 2] > 0:
                        pts[j, :2] = affine_transform(pts[j, :2],
                                                      trans_output_rot)
                        if pts[j, 0] >= 0 and pts[j, 0] < output_res and \
                           pts[j, 1] >= 0 and pts[j, 1] < output_res:
                            kps[k, j * 2:j * 2 + 2] = pts[j, :2] - ct_int
                            kps_mask[k, j * 2:j * 2 + 2] = 1
                            pt_int = pts[j, :2].astype(np.int32)
                            hp_offset[k * num_joints + j] = pts[j, :2] - pt_int
                            hp_ind[k * num_joints +
                                   j] = pt_int[1] * output_res + pt_int[0]
                            hp_mask[k * num_joints + j] = 1
                            if self.opt.dense_hp:
                                # must be before draw center hm gaussian
                                draw_dense_reg(dense_kps[j],
                                               hm[cls_id],
                                               ct_int,
                                               pts[j, :2] - ct_int,
                                               radius,
                                               is_offset=True)
                                draw_gaussian(dense_kps_mask[j], ct_int,
                                              radius)
                            draw_gaussian(hm_hp[j], pt_int, hp_radius)
                draw_gaussian(hm[cls_id], ct_int, radius)
                gt_det.append([
                    ct[0] - w / 2, ct[1] - h / 2, ct[0] + w / 2, ct[1] +
                    h / 2, 1
                ] + pts[:, :2].reshape(num_joints * 2).tolist() + [cls_id])
        if rot != 0:
            hm = hm * 0 + 0.9999
            reg_mask *= 0
            kps_mask *= 0
        ret = {
            'input': inp,
            'hm': hm,
            'reg_mask': reg_mask,
            'ind': ind,
            'wh': wh,
            'hps': kps,
            'hps_mask': kps_mask
        }
        if self.opt.dense_hp:
            dense_kps = dense_kps.reshape(num_joints * 2, output_res,
                                          output_res)
            dense_kps_mask = dense_kps_mask.reshape(num_joints, 1, output_res,
                                                    output_res)
            dense_kps_mask = np.concatenate([dense_kps_mask, dense_kps_mask],
                                            axis=1)
            dense_kps_mask = dense_kps_mask.reshape(num_joints * 2, output_res,
                                                    output_res)
            ret.update({
                'dense_hps': dense_kps,
                'dense_hps_mask': dense_kps_mask
            })
            del ret['hps'], ret['hps_mask']
        if self.opt.reg_offset:
            ret.update({'reg': reg})
        if self.opt.hm_hp:
            ret.update({'hm_hp': hm_hp})
        if self.opt.reg_hp_offset:
            ret.update({
                'hp_offset': hp_offset,
                'hp_ind': hp_ind,
                'hp_mask': hp_mask
            })
        if self.opt.debug > 0 or not self.split == 'train':
            gt_det = np.array(gt_det, dtype=np.float32) if len(gt_det) > 0 else \
                     np.zeros((1, 40), dtype=np.float32)
            meta = {'c': c, 's': s, 'gt_det': gt_det, 'img_id': img_id}
            ret['meta'] = meta
        return ret
예제 #4
0
    def __getitem__(self, index):
        img_id = self.images[index]
        file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name']
        img_path = os.path.join(self.img_dir, file_name)
        ann_ids = self.coco.getAnnIds(imgIds=[img_id])
        anns = self.coco.loadAnns(ids=ann_ids)
        num_objs = min(len(anns), self.max_objs)

        img = cv2.imread(img_path)

        height, width = img.shape[0], img.shape[1]
        c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32)
        if self.opt.keep_res:
            input_h = (height | self.opt.pad) + 1
            input_w = (width | self.opt.pad) + 1
            s = np.array([input_w, input_h], dtype=np.float32)
        else:
            s = max(img.shape[0], img.shape[1]) * 1.0
            input_h, input_w = self.opt.input_h, self.opt.input_w

        flipped = False
        if self.split == 'train':
            if not self.opt.not_rand_crop:
                s = s * np.random.choice(np.arange(0.6, 1.4, 0.1))
                w_border = self._get_border(128, img.shape[1])
                h_border = self._get_border(128, img.shape[0])
                c[0] = np.random.randint(low=w_border,
                                         high=img.shape[1] - w_border)
                c[1] = np.random.randint(low=h_border,
                                         high=img.shape[0] - h_border)
            else:
                sf = self.opt.scale
                cf = self.opt.shift
                c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)

            if np.random.random() < self.opt.flip:
                flipped = True
                img = img[:, ::-1, :]
                c[0] = width - c[0] - 1

        trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
        inp = cv2.warpAffine(img,
                             trans_input, (input_w, input_h),
                             flags=cv2.INTER_LINEAR)
        inp = (inp.astype(np.float32) / 255.)
        if self.split == 'train' and not self.opt.no_color_aug:
            color_aug(self._data_rng, inp, self._eig_val, self._eig_vec)
        inp = (inp - self.mean) / self.std
        inp = inp.transpose(2, 0, 1)

        output_h = input_h // self.opt.down_ratio
        output_w = input_w // self.opt.down_ratio
        num_classes = self.num_classes
        trans_output = get_affine_transform(c, s, 0, [output_w, output_h])

        hm = np.zeros((num_classes, output_h, output_w), dtype=np.float32)
        wh = np.zeros((self.max_objs, 2), dtype=np.float32)
        dense_wh = np.zeros((2, output_h, output_w), dtype=np.float32)
        reg = np.zeros((self.max_objs, 2), dtype=np.float32)
        ind = np.zeros((self.max_objs), dtype=np.int64)
        reg_mask = np.zeros((self.max_objs), dtype=np.uint8)
        cat_spec_wh = np.zeros((self.max_objs, num_classes * 2),
                               dtype=np.float32)
        cat_spec_mask = np.zeros((self.max_objs, num_classes * 2),
                                 dtype=np.uint8)

        draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else \
                        draw_umich_gaussian

        gt_det = []
        for k in range(num_objs):
            ann = anns[k]
            bbox = self._coco_box_to_bbox(ann['bbox'])
            cls_id = int(self.cat_ids[ann['category_id']])
            if flipped:
                bbox[[0, 2]] = width - bbox[[2, 0]] - 1
            bbox[:2] = affine_transform(bbox[:2], trans_output)
            bbox[2:] = affine_transform(bbox[2:], trans_output)
            bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1)
            bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            if h > 0 and w > 0:
                radius = gaussian_radius((math.ceil(h), math.ceil(w)))
                radius = max(0, int(radius))
                radius = self.opt.hm_gauss if self.opt.mse_loss else radius
                ct = np.array([(bbox[0] + bbox[2]) / 2,
                               (bbox[1] + bbox[3]) / 2],
                              dtype=np.float32)
                ct_int = ct.astype(np.int32)
                draw_gaussian(hm[cls_id], ct_int, radius)
                wh[k] = 1. * w, 1. * h
                ind[k] = ct_int[1] * output_w + ct_int[0]
                reg[k] = ct - ct_int
                reg_mask[k] = 1
                cat_spec_wh[k, cls_id * 2:cls_id * 2 + 2] = wh[k]
                cat_spec_mask[k, cls_id * 2:cls_id * 2 + 2] = 1
                if self.opt.dense_wh:
                    draw_dense_reg(dense_wh, hm.max(axis=0), ct_int, wh[k],
                                   radius)
                gt_det.append([
                    ct[0] - w / 2, ct[1] - h / 2, ct[0] + w / 2, ct[1] + h / 2,
                    1, cls_id
                ])

        ret = {
            'input': inp,
            'hm': hm,
            'reg_mask': reg_mask,
            'ind': ind,
            'wh': wh
        }
        if self.opt.dense_wh:
            hm_a = hm.max(axis=0, keepdims=True)
            dense_wh_mask = np.concatenate([hm_a, hm_a], axis=0)
            ret.update({'dense_wh': dense_wh, 'dense_wh_mask': dense_wh_mask})
            del ret['wh']
        elif self.opt.cat_spec_wh:
            ret.update({
                'cat_spec_wh': cat_spec_wh,
                'cat_spec_mask': cat_spec_mask
            })
            del ret['wh']
        if self.opt.reg_offset:
            ret.update({'reg': reg})
        if self.opt.debug > 0 or not self.split == 'train':
            gt_det = np.array(gt_det, dtype=np.float32) if len(gt_det) > 0 else \
                     np.zeros((1, 6), dtype=np.float32)
            meta = {'c': c, 's': s, 'gt_det': gt_det, 'img_id': img_id}
            ret['meta'] = meta
        return ret
예제 #5
0
  def __getitem__(self, index):
    img_id = self.images[index]
    img_info = self.coco.loadImgs(ids=[img_id])[0]
    img_path = os.path.join(self.img_dir, img_info['file_name'])
    img = cv2.imread(img_path)
    if 'calib' in img_info:
      calib = np.array(img_info['calib'], dtype=np.float32)
    else:
      calib = self.calib

    height, width = img.shape[0], img.shape[1]
    c = np.array([img.shape[1] / 2., img.shape[0] / 2.])
    if self.opt.keep_res:
      s = np.array([self.opt.input_w, self.opt.input_h], dtype=np.int32)
    else:
      s = np.array([width, height], dtype=np.int32)
    
    aug = False
    if self.split == 'train' and np.random.random() < self.opt.aug_ddd:
      aug = True
      sf = self.opt.scale
      cf = self.opt.shift
      s = s * np.clip(np.random.randn()*sf + 1, 1 - sf, 1 + sf)
      c[0] += img.shape[1] * np.clip(np.random.randn()*cf, -2*cf, 2*cf)
      c[1] += img.shape[0] * np.clip(np.random.randn()*cf, -2*cf, 2*cf)

    trans_input = get_affine_transform(
      c, s, 0, [self.opt.input_w, self.opt.input_h])
    inp = cv2.warpAffine(img, trans_input, 
                         (self.opt.input_w, self.opt.input_h),
                         flags=cv2.INTER_LINEAR)
    inp = (inp.astype(np.float32) / 255.)
    # if self.split == 'train' and not self.opt.no_color_aug:
    #   color_aug(self._data_rng, inp, self._eig_val, self._eig_vec)
    inp = (inp - self.mean) / self.std
    inp = inp.transpose(2, 0, 1)

    num_classes = self.opt.num_classes
    trans_output = get_affine_transform(
      c, s, 0, [self.opt.output_w, self.opt.output_h])

    hm = np.zeros(
      (num_classes, self.opt.output_h, self.opt.output_w), dtype=np.float32)
    wh = np.zeros((self.max_objs, 2), dtype=np.float32)
    reg = np.zeros((self.max_objs, 2), dtype=np.float32)
    dep = np.zeros((self.max_objs, 1), dtype=np.float32)
    rotbin = np.zeros((self.max_objs, 2), dtype=np.int64)
    rotres = np.zeros((self.max_objs, 2), dtype=np.float32)
    dim = np.zeros((self.max_objs, 3), dtype=np.float32)
    ind = np.zeros((self.max_objs), dtype=np.int64)
    reg_mask = np.zeros((self.max_objs), dtype=np.uint8)
    rot_mask = np.zeros((self.max_objs), dtype=np.uint8)

    ann_ids = self.coco.getAnnIds(imgIds=[img_id])
    anns = self.coco.loadAnns(ids=ann_ids)
    num_objs = min(len(anns), self.max_objs)
    draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else \
                    draw_umich_gaussian
    gt_det = []
    for k in range(num_objs):
      ann = anns[k]
      bbox = self._coco_box_to_bbox(ann['bbox'])
      cls_id = int(self.cat_ids[ann['category_id']])
      if cls_id <= -99:
        continue
      # if flipped:
      #   bbox[[0, 2]] = width - bbox[[2, 0]] - 1
      bbox[:2] = affine_transform(bbox[:2], trans_output)
      bbox[2:] = affine_transform(bbox[2:], trans_output)
      bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, self.opt.output_w - 1)
      bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, self.opt.output_h - 1)
      h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
      if h > 0 and w > 0:
        radius = gaussian_radius((h, w))
        radius = max(0, int(radius))
        ct = np.array(
          [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32)
        ct_int = ct.astype(np.int32)
        if cls_id < 0:
          ignore_id = [_ for _ in range(num_classes)] \
                      if cls_id == - 1 else  [- cls_id - 2]
          if self.opt.rect_mask:
            hm[ignore_id, int(bbox[1]): int(bbox[3]) + 1, 
              int(bbox[0]): int(bbox[2]) + 1] = 0.9999
          else:
            for cc in ignore_id:
              draw_gaussian(hm[cc], ct, radius)
            hm[ignore_id, ct_int[1], ct_int[0]] = 0.9999
          continue
        draw_gaussian(hm[cls_id], ct, radius)

        wh[k] = 1. * w, 1. * h
        gt_det.append([ct[0], ct[1], 1] + \
                      self._alpha_to_8(self._convert_alpha(ann['alpha'])) + \
                      [ann['depth']] + (np.array(ann['dim']) / 1).tolist() + [cls_id])
        if self.opt.reg_bbox:
          gt_det[-1] = gt_det[-1][:-1] + [w, h] + [gt_det[-1][-1]]
        # if (not self.opt.car_only) or cls_id == 1: # Only estimate ADD for cars !!!
        if 1:
          alpha = self._convert_alpha(ann['alpha'])
          # print('img_id cls_id alpha rot_y', img_path, cls_id, alpha, ann['rotation_y'])
          if alpha < np.pi / 6. or alpha > 5 * np.pi / 6.:
            rotbin[k, 0] = 1
            rotres[k, 0] = alpha - (-0.5 * np.pi)    
          if alpha > -np.pi / 6. or alpha < -5 * np.pi / 6.:
            rotbin[k, 1] = 1
            rotres[k, 1] = alpha - (0.5 * np.pi)
          dep[k] = ann['depth']
          dim[k] = ann['dim']
          # print('        cat dim', cls_id, dim[k])
          ind[k] = ct_int[1] * self.opt.output_w + ct_int[0]
          reg[k] = ct - ct_int
          reg_mask[k] = 1 if not aug else 0
          rot_mask[k] = 1
    # print('gt_det', gt_det)
    # print('')
    ret = {'input': inp, 'hm': hm, 'dep': dep, 'dim': dim, 'ind': ind, 
           'rotbin': rotbin, 'rotres': rotres, 'reg_mask': reg_mask,
           'rot_mask': rot_mask}
    if self.opt.reg_bbox:
      ret.update({'wh': wh})
    if self.opt.reg_offset:
      ret.update({'reg': reg})
    if self.opt.debug > 0 or not ('train' in self.split):
      gt_det = np.array(gt_det, dtype=np.float32) if len(gt_det) > 0 else \
               np.zeros((1, 18), dtype=np.float32)
      meta = {'c': c, 's': s, 'gt_det': gt_det, 'calib': calib,
              'image_path': img_path, 'img_id': img_id}
      ret['meta'] = meta
    
    return ret
예제 #6
0
파일: exdet.py 프로젝트: yhsmiley/CenterNet
  def __getitem__(self, index):
    img_id = self.images[index]
    img_info = self.coco.loadImgs(ids=[img_id])[0]
    img_path = os.path.join(self.img_dir, img_info['file_name'])
    img = cv2.imread(img_path)

    height, width = img.shape[0], img.shape[1]
    c = np.array([img.shape[1] / 2., img.shape[0] / 2.])
    s = max(img.shape[0], img.shape[1]) * 1.0
    
    flipped = False
    if self.split == 'train':
      if not self.opt.not_rand_crop:
        s = s * np.random.choice(np.arange(0.6, 1.4, 0.1))
        w_border = self._get_border(128, img.shape[1])
        h_border = self._get_border(128, img.shape[0])
        c[0] = np.random.randint(low=w_border, high=img.shape[1] - w_border)
        c[1] = np.random.randint(low=h_border, high=img.shape[0] - h_border)
      else:
        sf = self.opt.scale
        cf = self.opt.shift
        s = s * np.clip(np.random.randn()*sf + 1, 1 - sf, 1 + sf)
        c[0] += img.shape[1] * np.clip(np.random.randn()*cf, -2*cf, 2*cf)
        c[1] += img.shape[0] * np.clip(np.random.randn()*cf, -2*cf, 2*cf)
      if np.random.random() < self.opt.flip:
        flipped = True
        img = img[:, ::-1, :]

    trans_input = get_affine_transform(
      c, s, 0, [self.opt.input_res, self.opt.input_res])
    inp = cv2.warpAffine(img, trans_input, 
                         (self.opt.input_res, self.opt.input_res),
                         flags=cv2.INTER_LINEAR)
    inp = (inp.astype(np.float32) / 255.)
    if self.split == 'train' and not self.opt.no_color_aug:
      color_aug(self._data_rng, inp, self._eig_val, self._eig_vec)
    inp = (inp - self.mean) / self.std
    inp = inp.transpose(2, 0, 1)

    output_res = self.opt.output_res
    num_classes = self.opt.num_classes
    trans_output = get_affine_transform(c, s, 0, [output_res, output_res])
    num_hm = 1 if self.opt.agnostic_ex else num_classes

    hm_t = np.zeros((num_hm, output_res, output_res), dtype=np.float32)
    hm_l = np.zeros((num_hm, output_res, output_res), dtype=np.float32)
    hm_b = np.zeros((num_hm, output_res, output_res), dtype=np.float32)
    hm_r = np.zeros((num_hm, output_res, output_res), dtype=np.float32)
    hm_c = np.zeros((num_classes, output_res, output_res), dtype=np.float32)
    reg_t = np.zeros((self.max_objs, 2), dtype=np.float32)
    reg_l = np.zeros((self.max_objs, 2), dtype=np.float32)
    reg_b = np.zeros((self.max_objs, 2), dtype=np.float32)
    reg_r = np.zeros((self.max_objs, 2), dtype=np.float32)
    ind_t = np.zeros((self.max_objs), dtype=np.int64)
    ind_l = np.zeros((self.max_objs), dtype=np.int64)
    ind_b = np.zeros((self.max_objs), dtype=np.int64)
    ind_r = np.zeros((self.max_objs), dtype=np.int64)
    reg_mask = np.zeros((self.max_objs), dtype=np.uint8)
    
    ann_ids = self.coco.getAnnIds(imgIds=[img_id])
    anns = self.coco.loadAnns(ids=ann_ids)
    num_objs = min(len(anns), self.max_objs)
    draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else \
                    draw_umich_gaussian

    for k in range(num_objs):
      ann = anns[k]
      # bbox = self._coco_box_to_bbox(ann['bbox'])
      # tlbr
      pts = np.array(ann['extreme_points'], dtype=np.float32).reshape(4, 2)
      # cls_id = int(self.cat_ids[ann['category_id']] - 1) # bug
      cls_id = int(self.cat_ids[ann['category_id']])
      hm_id = 0 if self.opt.agnostic_ex else cls_id
      if flipped:
        pts[:, 0] = width - pts[:, 0] - 1
        pts[1], pts[3] = pts[3].copy(), pts[1].copy()
      for j in range(4):
        pts[j] = affine_transform(pts[j], trans_output)
      pts = np.clip(pts, 0, self.opt.output_res - 1)
      h, w = pts[2, 1] - pts[0, 1], pts[3, 0] - pts[1, 0]
      if h > 0 and w > 0:
        radius = gaussian_radius((math.ceil(h), math.ceil(w)))
        radius = max(0, int(radius))
        pt_int = pts.astype(np.int32)
        draw_gaussian(hm_t[hm_id], pt_int[0], radius)
        draw_gaussian(hm_l[hm_id], pt_int[1], radius)
        draw_gaussian(hm_b[hm_id], pt_int[2], radius)
        draw_gaussian(hm_r[hm_id], pt_int[3], radius)
        reg_t[k] = pts[0] - pt_int[0]
        reg_l[k] = pts[1] - pt_int[1]
        reg_b[k] = pts[2] - pt_int[2]
        reg_r[k] = pts[3] - pt_int[3]
        ind_t[k] = pt_int[0, 1] * output_res + pt_int[0, 0]
        ind_l[k] = pt_int[1, 1] * output_res + pt_int[1, 0]
        ind_b[k] = pt_int[2, 1] * output_res + pt_int[2, 0]
        ind_r[k] = pt_int[3, 1] * output_res + pt_int[3, 0]

        ct = [int((pts[3, 0] + pts[1, 0]) / 2), int((pts[0, 1] + pts[2, 1]) / 2)]
        draw_gaussian(hm_c[cls_id], ct, radius)
        reg_mask[k] = 1
    ret = {'input': inp, 'hm_t': hm_t, 'hm_l': hm_l, 'hm_b': hm_b, 
            'hm_r': hm_r, 'hm_c': hm_c}
    if self.opt.reg_offset:
      ret.update({'reg_mask': reg_mask,
        'reg_t': reg_t, 'reg_l': reg_l, 'reg_b': reg_b, 'reg_r': reg_r,
        'ind_t': ind_t, 'ind_l': ind_l, 'ind_b': ind_b, 'ind_r': ind_r})
    
    return ret