def setUp(self):
        # load histograms
        # @BROKEN: the file is now in the wrong format!!
        self.input_file = File("tests/data/unfolding_merged_asymmetric.root")
        self.k_value = 3
        self.unfold_method = "TUnfold"
        self.met_type = "patType1CorrectedPFMet"
        self.variables = ["MET", "WPT", "MT", "ST", "HT"]
        self.channels = ["electron", "muon", "combined"]
        self.dict = {}
        for channel in self.channels:
            self.dict[channel] = {}
            for variable in self.variables:
                self.dict[variable] = {}
                h_truth, h_measured, h_response, _ = get_unfold_histogram_tuple(
                    inputfile=self.input_file, variable=variable, channel=channel, met_type=self.met_type
                )

                unfolding_object = Unfolding(
                    h_truth, h_measured, h_response, k_value=self.k_value, method=self.unfold_method
                )

                tau_unfolding_object = Unfolding(h_truth, h_measured, h_response, tau=100, k_value=-1, method="TUnfold")

                self.dict[channel][variable] = {
                    "h_truth": h_truth,
                    "h_measured": h_measured,
                    "h_response": h_response,
                    "unfolding_object": unfolding_object,
                    "tau_unfolding_object": tau_unfolding_object,
                }
예제 #2
0
def main():
    config = XSectionConfig(13)
    #     method = 'RooUnfoldSvd'
    method = 'RooUnfoldBayes'
    file_for_data = File(config.unfolding_powheg_herwig, 'read')
    file_for_unfolding = File(config.unfolding_madgraphMLM, 'read')
    for channel in ['electron', 'muon', 'combined']:
        for variable in config.variables:
            tau_value = get_tau_value(config, channel, variable)
            h_truth, h_measured, h_response, h_fakes = get_unfold_histogram_tuple(
                inputfile=file_for_unfolding,
                variable=variable,
                channel=channel,
                met_type=config.met_type,
                centre_of_mass=config.centre_of_mass_energy,
                ttbar_xsection=config.ttbar_xsection,
                luminosity=config.luminosity,
                load_fakes=False,
                visiblePS=False,
            )
            h_data_model, h_data, _, _ = get_unfold_histogram_tuple(
                inputfile=file_for_data,
                variable=variable,
                channel=channel,
                met_type=config.met_type,
                centre_of_mass=config.centre_of_mass_energy,
                ttbar_xsection=config.ttbar_xsection,
                luminosity=config.luminosity,
                load_fakes=False,
                visiblePS=False,
            )

            unfolding = Unfolding(h_truth,
                                  h_measured,
                                  h_response,
                                  h_fakes,
                                  method=method,
                                  k_value=-1,
                                  tau=tau_value)

            unfolded_data = unfolding.unfold(h_data)
            plot_bias(h_truth, h_data_model, unfolded_data, variable, channel,
                      config.centre_of_mass_energy, method)
def create_toy_mc(input_files, sample, output_folder, n_toy, centre_of_mass, config):
    from dps.utils.file_utilities import make_folder_if_not_exists
    from dps.utils.toy_mc import generate_toy_MC_from_distribution, generate_toy_MC_from_2Ddistribution
    from dps.utils.Unfolding import get_unfold_histogram_tuple
    make_folder_if_not_exists(output_folder)
    output_file_name = get_output_file_name(output_folder, sample, n_toy, centre_of_mass)
    variable_bins = bin_edges_vis.copy()
    with root_open(output_file_name, 'recreate') as f_out:

        input_file_index = 0
        for input_file in input_files:

            input_file_hists = File(input_file)

            for channel in config.analysis_types.keys():
                if channel is 'combined':continue
                for variable in variable_bins:
                    output_dir = f_out.mkdir(str(input_file_index) + '/' + channel + '/' + variable, recurse=True)
                    cd = output_dir.cd
                    mkdir = output_dir.mkdir
                    h_truth, h_measured, h_response, _ = get_unfold_histogram_tuple(input_file_hists,
                                                                            variable,
                                                                            channel,
                                                                            centre_of_mass = centre_of_mass,
                                                                            visiblePS = True,
                                                                            load_fakes=False)

                    cd()

                    mkdir('Original')
                    cd ('Original')
                    h_truth.Write('truth')
                    h_measured.Write('measured')
                    h_response.Write('response')

                    for i in range(1, n_toy+1):
                        toy_id = 'toy_{0}'.format(i)
                        mkdir(toy_id)
                        cd(toy_id)
                        # create histograms
                        # add tuples (truth, measured, response) of histograms
                        truth = generate_toy_MC_from_distribution(h_truth)
                        measured = generate_toy_MC_from_distribution(h_measured)
                        response = generate_toy_MC_from_2Ddistribution(h_response)

                        truth.SetName('truth')
                        measured.SetName('measured')
                        response.SetName('response')

                        truth.Write()
                        measured.Write()
                        response.Write()
            input_file_index += 1
def main():
    config = XSectionConfig(13)
#     method = 'RooUnfoldSvd'
    method = 'RooUnfoldBayes'
    file_for_data = File(config.unfolding_powheg_herwig, 'read')
    file_for_unfolding = File(config.unfolding_madgraphMLM, 'read')
    for channel in ['electron', 'muon', 'combined']:
        for variable in config.variables:
            tau_value = get_tau_value(config, channel, variable)
            h_truth, h_measured, h_response, h_fakes = get_unfold_histogram_tuple(
                inputfile=file_for_unfolding,
                variable=variable,
                channel=channel,
                met_type=config.met_type,
                centre_of_mass=config.centre_of_mass_energy,
                ttbar_xsection=config.ttbar_xsection,
                luminosity=config.luminosity,
                load_fakes=False,
                visiblePS=False,
            )
            h_data_model, h_data, _, _ = get_unfold_histogram_tuple(
                inputfile=file_for_data,
                variable=variable,
                channel=channel,
                met_type=config.met_type,
                centre_of_mass=config.centre_of_mass_energy,
                ttbar_xsection=config.ttbar_xsection,
                luminosity=config.luminosity,
                load_fakes=False,
                visiblePS=False,
            )

            unfolding = Unfolding(
                h_truth, h_measured, h_response, h_fakes,
                method=method, k_value=-1, tau=tau_value)

            unfolded_data = unfolding.unfold(h_data)
            plot_bias(h_truth, h_data_model, unfolded_data, variable, channel,
                      config.centre_of_mass_energy, method)
예제 #5
0
    def __set_unfolding_histograms__( self ):
        # at the moment only one file is supported for the unfolding input
        files = set( 
            [self.truth['file'],
            self.gen_vs_reco['file'],
            self.measured['file']]
        )
        if len( files ) > 1:
            print "Currently not supported to have different files for truth, gen_vs_reco and measured"
            sys.exit()
            
        input_file = files.pop()
        visiblePS = self.phaseSpace

        t, m, r, f = get_unfold_histogram_tuple( 
            File(input_file),
            self.variable,
            self.channel,
            centre_of_mass = self.centre_of_mass_energy,
            ttbar_xsection=self.measurement_config.ttbar_xsection,
            luminosity=self.measurement_config.luminosity,
            load_fakes = True,
            visiblePS = visiblePS
        )

        self.h_truth = asrootpy ( t )
        self.h_response = asrootpy ( r )
        self.h_measured = asrootpy ( m )
        self.h_fakes = asrootpy ( f )
        self.h_refolded = None

        data_file = self.data['file']
        if data_file.endswith('.root'):
            self.h_data = get_histogram_from_file(self.data['histogram'], self.data['file'])
        elif data_file.endswith('.json') or data_file.endswith('.txt'):
            data_key = self.data['histogram']
            # assume configured bin edges
            edges = []
            edges = reco_bin_edges_vis[self.variable]

            json_input = read_tuple_from_file(data_file)

            if data_key == "": # JSON file == histogram
                self.h_data = value_error_tuplelist_to_hist(json_input, edges)
            else:
                self.h_data = value_error_tuplelist_to_hist(json_input[data_key], edges)
        else:
            print 'Unkown file extension', data_file.split('.')[-1]
    def __set_unfolding_histograms__( self ):
        # at the moment only one file is supported for the unfolding input
        files = set( [self.truth['file'],
                     self.gen_vs_reco['file'],
                     self.measured['file']]
                    )
        if len( files ) > 1:
            print "Currently not supported to have different files for truth, gen_vs_reco and measured"
            sys.exit()
            
        input_file = files.pop()

        visiblePS = False
        if self.phaseSpace == 'VisiblePS':
            visiblePS = True

        t, m, r, f = get_unfold_histogram_tuple( File(input_file),
                                              self.variable,
                                              self.channel,
                                              centre_of_mass = self.centre_of_mass_energy,
                                              ttbar_xsection=self.measurement_config.ttbar_xsection,
                                              luminosity=self.measurement_config.luminosity,
                                              load_fakes = True,
                                              visiblePS = visiblePS
                                            )
        self.h_truth = asrootpy ( t )
        self.h_response = asrootpy ( r )
        self.h_measured = asrootpy ( m )
        self.h_fakes = asrootpy ( f )

        data_file = self.data['file']
        if data_file.endswith('.root'):
            self.h_data = get_histogram_from_file(self.data['histogram'], self.data['file'])
        elif data_file.endswith('.json') or data_file.endswith('.txt'):
            data_key = self.data['histogram']
            # assume configured bin edges
            edges = []
            edges = reco_bin_edges_vis[self.variable]

            json_input = read_tuple_from_file(data_file)

            if data_key == "": # JSON file == histogram
                self.h_data = value_error_tuplelist_to_hist(json_input, edges)
            else:
                self.h_data = value_error_tuplelist_to_hist(json_input[data_key], edges)
        else:
            print 'Unkown file extension', data_file.split('.')[-1]
    def setUp(self):
        # load histograms
        # @BROKEN: the file is now in the wrong format!!
        self.input_file = File('tests/data/unfolding_merged_asymmetric.root')
        self.k_value = 3
        self.unfold_method = 'TUnfold'
        self.met_type = 'patType1CorrectedPFMet'
        self.variables = ['MET', 'WPT', 'MT', 'ST', 'HT']
        self.channels = ['electron', 'muon', 'combined']
        self.dict = {}
        for channel in self.channels:
            self.dict[channel] = {}
            for variable in self.variables:
                self.dict[variable] = {}
                h_truth, h_measured, h_response, _ = get_unfold_histogram_tuple(
                    inputfile=self.input_file,
                    variable=variable,
                    channel=channel,
                    met_type=self.met_type)

                unfolding_object = Unfolding(h_truth,
                                             h_measured,
                                             h_response,
                                             k_value=self.k_value,
                                             method=self.unfold_method)

                tau_unfolding_object = Unfolding(h_truth,
                                                 h_measured,
                                                 h_response,
                                                 tau=100,
                                                 k_value=-1,
                                                 method='TUnfold')

                self.dict[channel][variable] = {
                    'h_truth': h_truth,
                    'h_measured': h_measured,
                    'h_response': h_response,
                    'unfolding_object': unfolding_object,
                    'tau_unfolding_object': tau_unfolding_object,
                }
def main():

	config = XSectionConfig(13)

	file_for_powhegPythia  		= File(config.unfolding_central_firstHalf, 'read')
	file_for_ptReweight_up 		= File(config.unfolding_ptreweight_up_firstHalf, 'read')
	file_for_ptReweight_down 	= File(config.unfolding_ptreweight_down_firstHalf, 'read')
	file_for_amcatnlo_pythia8 			= File(config.unfolding_amcatnlo_pythia8, 'read')
	file_for_powhegHerwig 		= File(config.unfolding_powheg_herwig, 'read')
	file_for_etaReweight_up 	= File(config.unfolding_etareweight_up, 'read')
	file_for_etaReweight_down 	= File(config.unfolding_etareweight_down, 'read')
	file_for_data_template 		= 'data/normalisation/background_subtraction/13TeV/{variable}/VisiblePS/central/normalisation_{channel}.txt'

	for channel in config.analysis_types.keys():
		if channel is 'combined':continue
		for variable in config.variables:
			print variable
		# for variable in ['HT']:
			# Get the central powheg pythia distributions
			_, _, response_central, fakes_central = get_unfold_histogram_tuple(
				inputfile=file_for_powhegPythia,
				variable=variable,
				channel=channel,
				centre_of_mass=13,
				load_fakes=True,
				visiblePS=True
			)

			measured_central = asrootpy(response_central.ProjectionX('px',1))
			truth_central = asrootpy(response_central.ProjectionY())


			# Get the reweighted powheg pythia distributions
			_, _, response_pt_reweighted_up, _ = get_unfold_histogram_tuple(
				inputfile=file_for_ptReweight_up,
				variable=variable,
				channel=channel,
				centre_of_mass=13,
				load_fakes=False,
				visiblePS=True
			)

			measured_pt_reweighted_up = asrootpy(response_pt_reweighted_up.ProjectionX('px',1))
			truth_pt_reweighted_up = asrootpy(response_pt_reweighted_up.ProjectionY())

			_, _, response_pt_reweighted_down, _ = get_unfold_histogram_tuple(
				inputfile=file_for_ptReweight_down,
				variable=variable,
				channel=channel,
				centre_of_mass=13,
				load_fakes=False,
				visiblePS=True
			)

			measured_pt_reweighted_down = asrootpy(response_pt_reweighted_down.ProjectionX('px',1))
			truth_pt_reweighted_down = asrootpy(response_pt_reweighted_down.ProjectionY())

			# _, _, response_eta_reweighted_up, _ = get_unfold_histogram_tuple(
			# 	inputfile=file_for_etaReweight_up,
			# 	variable=variable,
			# 	channel=channel,
			# 	centre_of_mass=13,
			# 	load_fakes=False,
			# 	visiblePS=True
			# )

			# measured_eta_reweighted_up = asrootpy(response_eta_reweighted_up.ProjectionX('px',1))
			# truth_eta_reweighted_up = asrootpy(response_eta_reweighted_up.ProjectionY())

			# _, _, response_eta_reweighted_down, _ = get_unfold_histogram_tuple(
			# 	inputfile=file_for_etaReweight_down,
			# 	variable=variable,
			# 	channel=channel,
			# 	centre_of_mass=13,
			# 	load_fakes=False,
			# 	visiblePS=True
			# )

			# measured_eta_reweighted_down = asrootpy(response_eta_reweighted_down.ProjectionX('px',1))
			# truth_eta_reweighted_down = asrootpy(response_eta_reweighted_down.ProjectionY())

			# Get the distributions for other MC models
			_, _, response_amcatnlo_pythia8, _ = get_unfold_histogram_tuple(
				inputfile=file_for_amcatnlo_pythia8,
				variable=variable,
				channel=channel,
				centre_of_mass=13,
				load_fakes=False,
				visiblePS=True
			)

			measured_amcatnlo_pythia8 = asrootpy(response_amcatnlo_pythia8.ProjectionX('px',1))
			truth_amcatnlo_pythia8 = asrootpy(response_amcatnlo_pythia8.ProjectionY())

			_, _, response_powhegHerwig, _ = get_unfold_histogram_tuple(
				inputfile=file_for_powhegHerwig,
				variable=variable,
				channel=channel,
				centre_of_mass=13,
				load_fakes=False,
				visiblePS=True
			)

			measured_powhegHerwig = asrootpy(response_powhegHerwig.ProjectionX('px',1))
			truth_powhegHerwig = asrootpy(response_powhegHerwig.ProjectionY())

			# Get the data input (data after background subtraction, and fake removal)
			file_for_data = file_for_data_template.format( variable = variable, channel = channel )
			data = read_tuple_from_file(file_for_data)['TTJet']
			data = value_error_tuplelist_to_hist( data, reco_bin_edges_vis[variable] )
			data = removeFakes( measured_central, fakes_central, data )

			# Plot all three

			hp = Histogram_properties()
			hp.name = 'Reweighting_check_{channel}_{variable}_at_{com}TeV'.format(
				channel=channel,
				variable=variable,
				com='13',
			)

			v_latex = latex_labels.variables_latex[variable]
			unit = ''
			if variable in ['HT', 'ST', 'MET', 'WPT', 'lepton_pt']:
			    unit = ' [GeV]'
			hp.x_axis_title = v_latex + unit
			hp.x_limits = [ reco_bin_edges_vis[variable][0], reco_bin_edges_vis[variable][-1]]
			hp.ratio_y_limits = [0.1,1.9]
			hp.ratio_y_title = 'Reweighted / Central'
			hp.y_axis_title = 'Number of events'
			hp.title = 'Reweighting check for {variable}'.format(variable=v_latex)

			measured_central.Rebin(2)
			measured_pt_reweighted_up.Rebin(2)
			measured_pt_reweighted_down.Rebin(2)
			# measured_eta_reweighted_up.Rebin(2)
			# measured_eta_reweighted_down.Rebin(2)
			measured_amcatnlo_pythia8.Rebin(2)
			measured_powhegHerwig.Rebin(2)
			data.Rebin(2)

			measured_central.Scale( 1 / measured_central.Integral() )
			measured_pt_reweighted_up.Scale( 1 / measured_pt_reweighted_up.Integral() )
			measured_pt_reweighted_down.Scale( 1 / measured_pt_reweighted_down.Integral() )
			measured_amcatnlo_pythia8.Scale( 1 / measured_amcatnlo_pythia8.Integral() )
			measured_powhegHerwig.Scale( 1 / measured_powhegHerwig.Integral() )

			# measured_eta_reweighted_up.Scale( 1 / measured_eta_reweighted_up.Integral() )
			# measured_eta_reweighted_down.Scale( 1/ measured_eta_reweighted_down.Integral() )

			data.Scale( 1 / data.Integral() )

			print list(measured_central.y())
			print list(measured_amcatnlo_pythia8.y())
			print list(measured_powhegHerwig.y())
			print list(data.y())
			compare_measurements(
				# models = {'Central' : measured_central, 'PtReweighted Up' : measured_pt_reweighted_up, 'PtReweighted Down' : measured_pt_reweighted_down, 'EtaReweighted Up' : measured_eta_reweighted_up, 'EtaReweighted Down' : measured_eta_reweighted_down},
				models = OrderedDict([('Central' , measured_central), ('PtReweighted Up' , measured_pt_reweighted_up), ('PtReweighted Down' , measured_pt_reweighted_down), ('amc@nlo' , measured_amcatnlo_pythia8), ('powhegHerwig' , measured_powhegHerwig) ] ),
				measurements = {'Data' : data},
				show_measurement_errors=True,
				histogram_properties=hp,
				save_folder='plots/unfolding/reweighting_check',
				save_as=['pdf'],
                line_styles_for_models = ['solid','solid','solid','dashed','dashed'],
				show_ratio_for_pairs = OrderedDict( [ 
					('PtUpVsCentral' , [ measured_pt_reweighted_up, measured_central ] ),
					('PtDownVsCentral' , [ measured_pt_reweighted_down, measured_central ] ),
					('amcatnloVsCentral' , [ measured_amcatnlo_pythia8, measured_central ] ),
					('powhegHerwigVsCentral' , [ measured_powhegHerwig, measured_central ] ),
					('DataVsCentral' , [data, measured_central] ) 
					]),
			)
def get_unfolded_normalisation( TTJet_normalisation_results, category, channel, tau_value, visiblePS ):
    global com, luminosity, ttbar_xsection, method, variable, path_to_DF
    global unfolding_files

    files_for_systematics = {

        'TTJets_massdown'        	 :  unfolding_files['file_for_massdown'],
        'TTJets_massup'          	 :  unfolding_files['file_for_massup'],
       
        'TTJets_factorisationdown'	 :  unfolding_files['file_for_factorisationdown'],
        'TTJets_factorisationup'   	 :  unfolding_files['file_for_factorisationup'],
        'TTJets_renormalisationdown' :  unfolding_files['file_for_renormalisationdown'],
        'TTJets_renormalisationup'   :  unfolding_files['file_for_renormalisationup'],
        'TTJets_combineddown'     	 :  unfolding_files['file_for_combineddown'],
        'TTJets_combinedup'          :  unfolding_files['file_for_combinedup'],
        'TTJets_alphaSdown'			 :  unfolding_files['file_for_alphaSdown'],
        'TTJets_alphaSup'   	     :  unfolding_files['file_for_alphaSup'],

        'TTJets_matchingdown'        :  unfolding_files['file_for_matchingdown'],
        'TTJets_matchingup'          :  unfolding_files['file_for_matchingup'],

        'TTJets_isrdown'             :  unfolding_files['file_for_isrdown'],
        'TTJets_isrup'               :  unfolding_files['file_for_isrup'],
        # 'TTJets_fsrdown'             :  unfolding_files['file_for_fsrdown'],
        'TTJets_fsrup'               :  unfolding_files['file_for_fsrup'],
        'TTJets_uedown'              :  unfolding_files['file_for_uedown'],
        'TTJets_ueup'                :  unfolding_files['file_for_ueup'],

        'TTJets_topPt'               :  unfolding_files['file_for_topPtSystematic'],

        'JES_down'                   :  unfolding_files['file_for_jesdown'],
        'JES_up'                     :  unfolding_files['file_for_jesup'],

        'JER_down'                   :  unfolding_files['file_for_jerdown'],
        'JER_up'                     :  unfolding_files['file_for_jerup'],

        'BJet_up'                    :  unfolding_files['file_for_bjetup'],
        'BJet_down'                  :  unfolding_files['file_for_bjetdown'],

        'LightJet_up'                :  unfolding_files['file_for_lightjetup'],
        'LightJet_down'              :  unfolding_files['file_for_lightjetdown'],

        'TTJets_hadronisation'       :  unfolding_files['file_for_powheg_herwig'],

        'ElectronEnUp'               :  unfolding_files['file_for_ElectronEnUp'],
        'ElectronEnDown'             :  unfolding_files['file_for_ElectronEnDown'],
        'MuonEnUp'                   :  unfolding_files['file_for_MuonEnUp'],
        'MuonEnDown'                 :  unfolding_files['file_for_MuonEnDown'],
        'TauEnUp'                    :  unfolding_files['file_for_TauEnUp'],
        'TauEnDown'                  :  unfolding_files['file_for_TauEnDown'],
        'UnclusteredEnUp'            :  unfolding_files['file_for_UnclusteredEnUp'],
        'UnclusteredEnDown'          :  unfolding_files['file_for_UnclusteredEnDown'],

        'Muon_up'                    :  unfolding_files['file_for_LeptonUp'],
        'Muon_down'                  :  unfolding_files['file_for_LeptonDown'],
        'Electron_up'                :  unfolding_files['file_for_LeptonUp'],
        'Electron_down'              :  unfolding_files['file_for_LeptonDown'],

        'PileUp_up'                  :  unfolding_files['file_for_PUUp'],
        'PileUp_down'                :  unfolding_files['file_for_PUDown'],

        'Top_Pt_reweight'            :  unfolding_files['file_for_ptreweight'],

    }

    h_truth, h_measured, h_response, h_fakes = None, None, None, None

    # Uncertainties by changing the response matrix
    if category in files_for_systematics :
        print 'Doing category',category,'by changing response matrix'
        h_truth, h_measured, h_response, h_fakes = get_unfold_histogram_tuple( 
            inputfile = files_for_systematics[category],
            variable = variable,
            channel = channel,
            centre_of_mass = com,
            ttbar_xsection = ttbar_xsection,
            luminosity = luminosity,
            load_fakes = True,
            visiblePS = visiblePS,
        )
    # PDF Uncertainties
    elif category in pdf_uncertainties:
        print 'Doing category',category,'by changing response matrix'
        h_truth, h_measured, h_response, h_fakes = get_unfold_histogram_tuple( 
            inputfile = unfolding_files['files_for_pdfs'][category],
            variable = variable,
            channel = channel,
            centre_of_mass = com,
            ttbar_xsection = ttbar_xsection,
            luminosity = luminosity,
            load_fakes = True,
            visiblePS = visiblePS,
        )
    # Central and systematics where you just change input MC
    else:
        h_truth, h_measured, h_response, h_fakes = get_unfold_histogram_tuple( 
            inputfile = unfolding_files['file_for_unfolding'],
            variable = variable,
            channel = channel,
            centre_of_mass = com,
            ttbar_xsection = ttbar_xsection,
            luminosity = luminosity,
            load_fakes = True,
            visiblePS = visiblePS,
        )

    # Unfold current normalisation measurements  
    TTJet_normalisation_results, TTJet_normalisation_results_unfolded, TTJet_normalisation_results_withoutFakes, covariance_matrix = unfold_results( 
        TTJet_normalisation_results,
        category,
        channel,
        tau_value,
        h_truth,
        h_measured,
        h_response,
        h_fakes,
        method,
        visiblePS,
    )

    # Store TTJet yields after background subtraction, after background subtraction without fakes and after Unfolding
    normalisation_unfolded = {
        'TTJet_measured'                : TTJet_normalisation_results,
        'TTJet_measured_withoutFakes'   : TTJet_normalisation_results_withoutFakes,
        'TTJet_unfolded'                : TTJet_normalisation_results_unfolded,
    }

    # Return truth of different generators for comparison to data in 04
    if category == 'central':
        h_truth_massdown, _, _, _ = get_unfold_histogram_tuple( 
            inputfile = unfolding_files['file_for_massdown'],
            variable = variable,
            channel = channel,
            centre_of_mass = com,
            ttbar_xsection = ttbar_xsection,
            luminosity = luminosity,
            load_fakes = True,
            visiblePS = visiblePS,
        )
        h_truth_massup, _, _, _ = get_unfold_histogram_tuple( 
            inputfile = unfolding_files['file_for_massup'],
            variable = variable,
            channel = channel,
            centre_of_mass = com,
            ttbar_xsection = ttbar_xsection,
            luminosity = luminosity,
            load_fakes = True,
            visiblePS = visiblePS,
        )
        # h_truth_fsrdown, _, _, _ = get_unfold_histogram_tuple( 
        #     inputfile = unfolding_files['file_for_fsrdown'],
        #     variable = variable,
        #     channel = channel,
        #     centre_of_mass = com,
        #     ttbar_xsection = ttbar_xsection,
        #     luminosity = luminosity,
        #     load_fakes = True,
        #     visiblePS = visiblePS,
        # )
        h_truth_fsrup, _, _, _ = get_unfold_histogram_tuple( 
            inputfile = unfolding_files['file_for_fsrup'],
            variable = variable,
            channel = channel,
            centre_of_mass = com,
            ttbar_xsection = ttbar_xsection,
            luminosity = luminosity,
            load_fakes = True,
            visiblePS = visiblePS,
        )
        h_truth_isrdown, _, _, _ = get_unfold_histogram_tuple( 
            inputfile = unfolding_files['file_for_isrdown'],
            variable = variable,
            channel = channel,
            centre_of_mass = com,
            ttbar_xsection = ttbar_xsection,
            luminosity = luminosity,
            load_fakes = True,
            visiblePS = visiblePS,
        )
        h_truth_isrup, _, _, _ = get_unfold_histogram_tuple( 
            inputfile = unfolding_files['file_for_isrup'],
            variable = variable,
            channel = channel,
            centre_of_mass = com,
            ttbar_xsection = ttbar_xsection,
            luminosity = luminosity,
            load_fakes = True,
            visiblePS = visiblePS,
        )
        h_truth_uedown, _, _, _ = get_unfold_histogram_tuple( 
            inputfile = unfolding_files['file_for_uedown'],
            variable = variable,
            channel = channel,
            centre_of_mass = com,
            ttbar_xsection = ttbar_xsection,
            luminosity = luminosity,
            load_fakes = True,
            visiblePS = visiblePS,
        )
        h_truth_ueup, _, _, _ = get_unfold_histogram_tuple( 
            inputfile = unfolding_files['file_for_ueup'],
            variable = variable,
            channel = channel,
            centre_of_mass = com,
            ttbar_xsection = ttbar_xsection,
            luminosity = luminosity,
            load_fakes = True,
            visiblePS = visiblePS,
        )

        h_truth_powhegPythia8, _, _, _ = get_unfold_histogram_tuple( 
            inputfile = unfolding_files['file_for_powhegPythia8'],
            variable = variable,
            channel = channel,
            centre_of_mass = com,
            ttbar_xsection = ttbar_xsection,
            luminosity = luminosity,
            load_fakes = True,
            visiblePS = visiblePS,
        )
        # h_truth_amcatnlo, _, _, _ = get_unfold_histogram_tuple( 
        #     inputfile = unfolding_files['file_for_amcatnlo'],
        #     variable = variable,
        #     channel = channel,
        #     centre_of_mass = com,
        #     ttbar_xsection = ttbar_xsection,
        #     luminosity = luminosity,
        #     load_fakes = True,
        #     visiblePS = visiblePS,
        # )
        # h_truth_madgraphMLM, _, _, _ = get_unfold_histogram_tuple( 
        #     inputfile = unfolding_files['file_for_madgraphMLM'],
        #     variable = variable,
        #     channel = channel,
        #     centre_of_mass = com,
        #     ttbar_xsection = ttbar_xsection,
        #     luminosity = luminosity,
        #     load_fakes = True,
        #     visiblePS = visiblePS,
        # )
        h_truth_powheg_herwig, _, _, _ = get_unfold_histogram_tuple( 
            inputfile = unfolding_files['file_for_powheg_herwig'],
            variable = variable,
            channel = channel,
            centre_of_mass = com,
            ttbar_xsection = ttbar_xsection,
            luminosity = luminosity,
            load_fakes = True,
            visiblePS = visiblePS,
        )

    
        normalisation_unfolded['powhegPythia8'] = hist_to_value_error_tuplelist( h_truth_powhegPythia8 )
        # normalisation_unfolded['amcatnlo']      = hist_to_value_error_tuplelist( h_truth_madgraphMLM )
        # normalisation_unfolded['madgraphMLM']   = hist_to_value_error_tuplelist( h_truth_amcatnlo )
        normalisation_unfolded['powhegHerwig']  = hist_to_value_error_tuplelist( h_truth_powheg_herwig )

        normalisation_unfolded['massdown']      = hist_to_value_error_tuplelist( h_truth_massdown )
        normalisation_unfolded['massup']        = hist_to_value_error_tuplelist( h_truth_massup )
        normalisation_unfolded['isrdown']       = hist_to_value_error_tuplelist( h_truth_isrdown )
        normalisation_unfolded['isrup']         = hist_to_value_error_tuplelist( h_truth_isrup )
        # normalisation_unfolded['fsrdown']       = hist_to_value_error_tuplelist( h_truth_fsrdown )
        normalisation_unfolded['fsrup']         = hist_to_value_error_tuplelist( h_truth_fsrup )
        normalisation_unfolded['uedown']        = hist_to_value_error_tuplelist( h_truth_uedown )
        normalisation_unfolded['ueup']          = hist_to_value_error_tuplelist( h_truth_ueup )

    # Write all normalisations in unfolded binning scheme to dataframes
    file_template = '{path_to_DF}/{category}/unfolded_normalisation_{channel}_{method}.txt'
    write_02(normalisation_unfolded, file_template, path_to_DF, category, channel, method)
    return normalisation_unfolded, covariance_matrix
def main():

    config = XSectionConfig(13)

    file_for_powhegPythia = File(config.unfolding_central, "read")
    file_for_ptReweight_up = File(config.unfolding_ptreweight_up, "read")
    file_for_ptReweight_down = File(config.unfolding_ptreweight_down, "read")
    file_for_etaReweight_up = File(config.unfolding_etareweight_up, "read")
    file_for_etaReweight_down = File(config.unfolding_etareweight_down, "read")
    file_for_data_template = "data/normalisation/background_subtraction/13TeV/{variable}/VisiblePS/central/normalisation_combined_patType1CorrectedPFMet.txt"

    for channel in ["combined"]:
        for variable in config.variables:
            print variable
            # for variable in ['HT']:
            # Get the central powheg pythia distributions
            _, _, response_central, fakes_central = get_unfold_histogram_tuple(
                inputfile=file_for_powhegPythia,
                variable=variable,
                channel=channel,
                centre_of_mass=13,
                load_fakes=True,
                visiblePS=True,
            )

            measured_central = asrootpy(response_central.ProjectionX("px", 1))
            truth_central = asrootpy(response_central.ProjectionY())

            # Get the reweighted powheg pythia distributions
            _, _, response_pt_reweighted_up, _ = get_unfold_histogram_tuple(
                inputfile=file_for_ptReweight_up,
                variable=variable,
                channel=channel,
                centre_of_mass=13,
                load_fakes=False,
                visiblePS=True,
            )

            measured_pt_reweighted_up = asrootpy(response_pt_reweighted_up.ProjectionX("px", 1))
            truth_pt_reweighted_up = asrootpy(response_pt_reweighted_up.ProjectionY())

            _, _, response_pt_reweighted_down, _ = get_unfold_histogram_tuple(
                inputfile=file_for_ptReweight_down,
                variable=variable,
                channel=channel,
                centre_of_mass=13,
                load_fakes=False,
                visiblePS=True,
            )

            measured_pt_reweighted_down = asrootpy(response_pt_reweighted_down.ProjectionX("px", 1))
            truth_pt_reweighted_down = asrootpy(response_pt_reweighted_down.ProjectionY())

            _, _, response_eta_reweighted_up, _ = get_unfold_histogram_tuple(
                inputfile=file_for_etaReweight_up,
                variable=variable,
                channel=channel,
                centre_of_mass=13,
                load_fakes=False,
                visiblePS=True,
            )

            measured_eta_reweighted_up = asrootpy(response_eta_reweighted_up.ProjectionX("px", 1))
            truth_eta_reweighted_up = asrootpy(response_eta_reweighted_up.ProjectionY())

            _, _, response_eta_reweighted_down, _ = get_unfold_histogram_tuple(
                inputfile=file_for_etaReweight_down,
                variable=variable,
                channel=channel,
                centre_of_mass=13,
                load_fakes=False,
                visiblePS=True,
            )

            measured_eta_reweighted_down = asrootpy(response_eta_reweighted_down.ProjectionX("px", 1))
            truth_eta_reweighted_down = asrootpy(response_eta_reweighted_down.ProjectionY())

            # Get the data input (data after background subtraction, and fake removal)
            file_for_data = file_for_data_template.format(variable=variable)
            data = read_data_from_JSON(file_for_data)["TTJet"]
            data = value_error_tuplelist_to_hist(data, reco_bin_edges_vis[variable])
            data = removeFakes(measured_central, fakes_central, data)

            # Plot all three

            hp = Histogram_properties()
            hp.name = "Reweighting_check_{channel}_{variable}_at_{com}TeV".format(
                channel=channel, variable=variable, com="13"
            )

            v_latex = latex_labels.variables_latex[variable]
            unit = ""
            if variable in ["HT", "ST", "MET", "WPT", "lepton_pt"]:
                unit = " [GeV]"
            hp.x_axis_title = v_latex + unit
            hp.y_axis_title = "Number of events"
            hp.title = "Reweighting check for {variable}".format(variable=v_latex)

            measured_central.Rebin(2)
            measured_pt_reweighted_up.Rebin(2)
            measured_pt_reweighted_down.Rebin(2)
            measured_eta_reweighted_up.Rebin(2)
            measured_eta_reweighted_down.Rebin(2)
            data.Rebin(2)

            measured_central.Scale(1 / measured_central.Integral())
            measured_pt_reweighted_up.Scale(1 / measured_pt_reweighted_up.Integral())
            measured_pt_reweighted_down.Scale(1 / measured_pt_reweighted_down.Integral())
            measured_eta_reweighted_up.Scale(1 / measured_eta_reweighted_up.Integral())
            measured_eta_reweighted_down.Scale(1 / measured_eta_reweighted_down.Integral())

            data.Scale(1 / data.Integral())

            compare_measurements(
                models={
                    "Central": measured_central,
                    "PtReweighted Up": measured_pt_reweighted_up,
                    "PtReweighted Down": measured_pt_reweighted_down,
                    "EtaReweighted Up": measured_eta_reweighted_up,
                    "EtaReweighted Down": measured_eta_reweighted_down,
                },
                measurements={"Data": data},
                show_measurement_errors=True,
                histogram_properties=hp,
                save_folder="plots/unfolding/reweighting_check",
                save_as=["pdf"],
            )
def main():

    config = XSectionConfig(13)
    method = 'TUnfold'

    # A few different files for testing different inputs
    file_for_unfolding = File(config.unfolding_central, 'read')
    madgraph_file = File(config.unfolding_madgraphMLM, 'read')

    for channel in ['combined']:

        # for variable in config.variables:
        for variable in ['HT']:
        
            print variable

            # tau_value = get_tau_value(config, channel, variable)
            # tau_value = 0.000228338590921
            tau_value = 0.0

            # h_truth, h_measured, h_response, h_fakes = get_unfold_histogram_tuple(
            #     inputfile=file_for_unfolding,
            #     variable=variable,
            #     channel=channel,
            #     met_type=config.met_type,
            #     centre_of_mass=config.centre_of_mass_energy,
            #     ttbar_xsection=config.ttbar_xsection,
            #     luminosity=config.luminosity,
            #     load_fakes=False,
            #     visiblePS=True,
            # )

            # measured = asrootpy(h_response.ProjectionX('px',1))
            # print 'Measured from response :',list(measured.y())
            # truth = asrootpy(h_response.ProjectionY())
            # print 'Truth from response :',list(truth.y())

            h_truth_mad, h_measured_mad, h_response_mad, h_fakes_mad = get_unfold_histogram_tuple(
                inputfile=madgraph_file,
                variable=variable,
                channel=channel,
                met_type=config.met_type,
                centre_of_mass=config.centre_of_mass_energy,
                ttbar_xsection=config.ttbar_xsection,
                luminosity=config.luminosity,
                load_fakes=False,
                visiblePS=True,
            )

            measured = asrootpy(h_response_mad.ProjectionX('px',1))
            print 'Measured from response :',list(measured.y())
            truth = asrootpy(h_response_mad.ProjectionY())
            print 'Truth from response :',list(truth.y())

            # Unfold
            unfolding = Unfolding( measured,
                truth, measured, h_response_mad, None,
                method=method, k_value=-1, tau=tau_value)

            # unfolded_data = unfolding.closureTest()

            # print 'Measured :',list( h_measured.y() )
            # h_measured, _ = removeFakes( h_measured, None, h_response)

            # for binx in range(0,h_truth.GetNbinsX()+2):
            #     for biny in range(0,h_truth.GetNbinsX()+2):
            #         print binx, biny,h_response.GetBinContent(binx,biny)
                # print bin,h_truth.GetBinContent(bin)
            print 'Tau :',tau_value
            unfolded_results = unfolding.unfold()
            print 'Unfolded :',list( unfolded_results.y() )
            print unfolding.unfoldObject.GetTau()
    for channel in ['electron', 'muon']:
        taus_from_global_correlaton[channel] = {}
        taus_from_L_shape[channel] = {}

        k_values = {}
        k_values_crosscheck = {}

        for variable in variables:
            if variable is 'MT': continue
            print 'Doing variable', variable, 'in', channel, 'channel'

            h_truth, h_measured, h_response, h_fakes = get_unfold_histogram_tuple(
                inputfile=input_file,
                variable=variable,
                channel=channel,
                met_type=met_type,
                centre_of_mass=centre_of_mass,
                ttbar_xsection=ttbar_xsection,
                luminosity=luminosity,
                load_fakes=load_fakes)
            # print 'h_fakes = ', h_fakes

            h_data = None
            if test == 'data':
                h_data = get_fit_results_histogram(
                    data_path=path_to_JSON,
                    centre_of_mass=centre_of_mass,
                    channel=channel,
                    variable=variable,
                    met_type=met_type,
                    bin_edges=bin_edges_full[variable])
def main():

    config = XSectionConfig(13)
    method = 'TUnfold'

    # A few different files for testing different inputs
    file_for_unfolding = File(config.unfolding_central, 'read')
    powheg_herwig_file = File(config.unfolding_powheg_herwig, 'read')

    for channel in ['combined', 'muon', 'electron']:

        # for variable in config.variables:
        for variable in config.variables:
        # for variable in ['MET']:

            print variable

            # tau_value = get_tau_value(config, channel, variable)
            # tau_value = 0.000228338590921
            tau_value = 0.000

            h_truth, h_measured, h_response, h_fakes = get_unfold_histogram_tuple(
                inputfile=file_for_unfolding,
                variable=variable,
                channel=channel,
                centre_of_mass=config.centre_of_mass_energy,
                ttbar_xsection=config.ttbar_xsection,
                luminosity=config.luminosity,
                load_fakes=False,
                visiblePS=True,
            )

            # measured = asrootpy(h_response.ProjectionX('px',1))
            # print 'Measured from response :',list(measured.y())
            # truth = asrootpy(h_response.ProjectionY())
            # print 'Truth from response :',list(truth.y())

            h_truth_ph, h_measured_ph, h_response_ph, h_fakes_ph = get_unfold_histogram_tuple(
                inputfile=powheg_herwig_file,
                variable=variable,
                channel=channel,
                met_type=config.met_type,
                centre_of_mass=config.centre_of_mass_energy,
                ttbar_xsection=config.ttbar_xsection,
                luminosity=config.luminosity,
                load_fakes=False,
                visiblePS=True,
            )

            measured = asrootpy(h_response_ph.ProjectionX('px',1))
            # print 'Measured from response :',list(measured.y())
            measured.SetBinContent(0,0)
            truth = asrootpy(h_response_ph.ProjectionY())
            # print 'Truth from response :',list(truth.y())
            # print 'Truth underflow :',truth.GetBinContent(0),truth.GetBinContent(truth.GetNbinsX()+1)

            # Unfold
            unfolding = Unfolding( measured,
                truth, measured, h_response, None,
                method=method, k_value=-1, tau=tau_value)

            # unfolded_data = unfolding.closureTest()

            # print 'Measured :',list( h_measured.y() )
            # h_measured, _ = removeFakes( h_measured, None, h_response)

            # for binx in range(0,h_truth.GetNbinsX()+2):
            #     for biny in range(0,h_truth.GetNbinsX()+2):
            #         print binx, biny,h_response.GetBinContent(binx,biny)
                # print bin,h_truth.GetBinContent(bin)
            # print 'Tau :',tau_value
            unfolded_results = unfolding.unfold()
            # print 'Unfolded :',list( unfolded_results.y() )
            # print unfolding.unfoldObject.GetTau()

            # print 'Unfolded :',list( unfolded_results.y() )
            refolded_results = unfolding.refold()
            refolded_results.rebin(2)
            measured.rebin(2)
            print 'Refolded :',list( refolded_results.y() )
            print 'Measured :',list( measured.y() )

            # for i in range(1,refolded_results.GetNbinsX()):
            #     print i,measured.GetBinContent(i),measured.GetBinError(i),abs( measured.GetBinContent(i) - refolded_results.GetBinContent(i) )

            pValue = measured.Chi2Test(refolded_results)
            print pValue,1-pValue
예제 #14
0
def main():

    config = XSectionConfig(13)

    file_for_powhegPythia = File(config.unfolding_central_firstHalf, 'read')
    file_for_ptReweight_up = File(config.unfolding_ptreweight_up_firstHalf,
                                  'read')
    file_for_ptReweight_down = File(config.unfolding_ptreweight_down_firstHalf,
                                    'read')
    file_for_amcatnlo_pythia8 = File(config.unfolding_amcatnlo_pythia8, 'read')
    file_for_powhegHerwig = File(config.unfolding_powheg_herwig, 'read')
    file_for_etaReweight_up = File(config.unfolding_etareweight_up, 'read')
    file_for_etaReweight_down = File(config.unfolding_etareweight_down, 'read')
    file_for_data_template = 'data/normalisation/background_subtraction/13TeV/{variable}/VisiblePS/central/normalisation_{channel}.txt'

    for channel in config.analysis_types.keys():
        if channel is 'combined': continue
        for variable in config.variables:
            print variable
            # for variable in ['HT']:
            # Get the central powheg pythia distributions
            _, _, response_central, fakes_central = get_unfold_histogram_tuple(
                inputfile=file_for_powhegPythia,
                variable=variable,
                channel=channel,
                centre_of_mass=13,
                load_fakes=True,
                visiblePS=True)

            measured_central = asrootpy(response_central.ProjectionX('px', 1))
            truth_central = asrootpy(response_central.ProjectionY())

            # Get the reweighted powheg pythia distributions
            _, _, response_pt_reweighted_up, _ = get_unfold_histogram_tuple(
                inputfile=file_for_ptReweight_up,
                variable=variable,
                channel=channel,
                centre_of_mass=13,
                load_fakes=False,
                visiblePS=True)

            measured_pt_reweighted_up = asrootpy(
                response_pt_reweighted_up.ProjectionX('px', 1))
            truth_pt_reweighted_up = asrootpy(
                response_pt_reweighted_up.ProjectionY())

            _, _, response_pt_reweighted_down, _ = get_unfold_histogram_tuple(
                inputfile=file_for_ptReweight_down,
                variable=variable,
                channel=channel,
                centre_of_mass=13,
                load_fakes=False,
                visiblePS=True)

            measured_pt_reweighted_down = asrootpy(
                response_pt_reweighted_down.ProjectionX('px', 1))
            truth_pt_reweighted_down = asrootpy(
                response_pt_reweighted_down.ProjectionY())

            # _, _, response_eta_reweighted_up, _ = get_unfold_histogram_tuple(
            # 	inputfile=file_for_etaReweight_up,
            # 	variable=variable,
            # 	channel=channel,
            # 	centre_of_mass=13,
            # 	load_fakes=False,
            # 	visiblePS=True
            # )

            # measured_eta_reweighted_up = asrootpy(response_eta_reweighted_up.ProjectionX('px',1))
            # truth_eta_reweighted_up = asrootpy(response_eta_reweighted_up.ProjectionY())

            # _, _, response_eta_reweighted_down, _ = get_unfold_histogram_tuple(
            # 	inputfile=file_for_etaReweight_down,
            # 	variable=variable,
            # 	channel=channel,
            # 	centre_of_mass=13,
            # 	load_fakes=False,
            # 	visiblePS=True
            # )

            # measured_eta_reweighted_down = asrootpy(response_eta_reweighted_down.ProjectionX('px',1))
            # truth_eta_reweighted_down = asrootpy(response_eta_reweighted_down.ProjectionY())

            # Get the distributions for other MC models
            _, _, response_amcatnlo_pythia8, _ = get_unfold_histogram_tuple(
                inputfile=file_for_amcatnlo_pythia8,
                variable=variable,
                channel=channel,
                centre_of_mass=13,
                load_fakes=False,
                visiblePS=True)

            measured_amcatnlo_pythia8 = asrootpy(
                response_amcatnlo_pythia8.ProjectionX('px', 1))
            truth_amcatnlo_pythia8 = asrootpy(
                response_amcatnlo_pythia8.ProjectionY())

            _, _, response_powhegHerwig, _ = get_unfold_histogram_tuple(
                inputfile=file_for_powhegHerwig,
                variable=variable,
                channel=channel,
                centre_of_mass=13,
                load_fakes=False,
                visiblePS=True)

            measured_powhegHerwig = asrootpy(
                response_powhegHerwig.ProjectionX('px', 1))
            truth_powhegHerwig = asrootpy(response_powhegHerwig.ProjectionY())

            # Get the data input (data after background subtraction, and fake removal)
            file_for_data = file_for_data_template.format(variable=variable,
                                                          channel=channel)
            data = read_tuple_from_file(file_for_data)['TTJet']
            data = value_error_tuplelist_to_hist(data,
                                                 reco_bin_edges_vis[variable])
            data = removeFakes(measured_central, fakes_central, data)

            # Plot all three

            hp = Histogram_properties()
            hp.name = 'Reweighting_check_{channel}_{variable}_at_{com}TeV'.format(
                channel=channel,
                variable=variable,
                com='13',
            )

            v_latex = latex_labels.variables_latex[variable]
            unit = ''
            if variable in ['HT', 'ST', 'MET', 'WPT', 'lepton_pt']:
                unit = ' [GeV]'
            hp.x_axis_title = v_latex + unit
            hp.x_limits = [
                reco_bin_edges_vis[variable][0],
                reco_bin_edges_vis[variable][-1]
            ]
            hp.ratio_y_limits = [0.1, 1.9]
            hp.ratio_y_title = 'Reweighted / Central'
            hp.y_axis_title = 'Number of events'
            hp.title = 'Reweighting check for {variable}'.format(
                variable=v_latex)

            measured_central.Rebin(2)
            measured_pt_reweighted_up.Rebin(2)
            measured_pt_reweighted_down.Rebin(2)
            # measured_eta_reweighted_up.Rebin(2)
            # measured_eta_reweighted_down.Rebin(2)
            measured_amcatnlo_pythia8.Rebin(2)
            measured_powhegHerwig.Rebin(2)
            data.Rebin(2)

            measured_central.Scale(1 / measured_central.Integral())
            measured_pt_reweighted_up.Scale(
                1 / measured_pt_reweighted_up.Integral())
            measured_pt_reweighted_down.Scale(
                1 / measured_pt_reweighted_down.Integral())
            measured_amcatnlo_pythia8.Scale(
                1 / measured_amcatnlo_pythia8.Integral())
            measured_powhegHerwig.Scale(1 / measured_powhegHerwig.Integral())

            # measured_eta_reweighted_up.Scale( 1 / measured_eta_reweighted_up.Integral() )
            # measured_eta_reweighted_down.Scale( 1/ measured_eta_reweighted_down.Integral() )

            data.Scale(1 / data.Integral())

            print list(measured_central.y())
            print list(measured_amcatnlo_pythia8.y())
            print list(measured_powhegHerwig.y())
            print list(data.y())
            compare_measurements(
                # models = {'Central' : measured_central, 'PtReweighted Up' : measured_pt_reweighted_up, 'PtReweighted Down' : measured_pt_reweighted_down, 'EtaReweighted Up' : measured_eta_reweighted_up, 'EtaReweighted Down' : measured_eta_reweighted_down},
                models=OrderedDict([
                    ('Central', measured_central),
                    ('PtReweighted Up', measured_pt_reweighted_up),
                    ('PtReweighted Down', measured_pt_reweighted_down),
                    ('amc@nlo', measured_amcatnlo_pythia8),
                    ('powhegHerwig', measured_powhegHerwig)
                ]),
                measurements={'Data': data},
                show_measurement_errors=True,
                histogram_properties=hp,
                save_folder='plots/unfolding/reweighting_check',
                save_as=['pdf'],
                line_styles_for_models=[
                    'solid', 'solid', 'solid', 'dashed', 'dashed'
                ],
                show_ratio_for_pairs=OrderedDict([
                    ('PtUpVsCentral',
                     [measured_pt_reweighted_up, measured_central]),
                    ('PtDownVsCentral',
                     [measured_pt_reweighted_down, measured_central]),
                    ('amcatnloVsCentral',
                     [measured_amcatnlo_pythia8, measured_central]),
                    ('powhegHerwigVsCentral',
                     [measured_powhegHerwig, measured_central]),
                    ('DataVsCentral', [data, measured_central])
                ]),
            )
def main():
	args = parse_arguments()
	channel = args.channel
	variable = args.variable

	SetPlotStyle()
	config = XSectionConfig(13)
	method = 'TUnfold'

	files_for_response = [
		File(config.unfolding_central, 'read')
	]

	files_for_toys = [
		File(config.unfolding_central, 'read')
	]

	print variable
	tau_value = get_tau_value(config, channel, variable)
	print tau_value
	pullHistogram = None

	for file_for_response in files_for_response:

		_, _, h_response, _ = get_unfold_histogram_tuple(
		    inputfile=file_for_response,
		    variable=variable,
		    channel=channel,
		    centre_of_mass=config.centre_of_mass_energy,
		    ttbar_xsection=config.ttbar_xsection,
		    luminosity=config.luminosity,
		    load_fakes=False,
		    visiblePS=True,
		)

		if pullHistogram is None:
			pullHistogram = Hist2D( h_response.GetNbinsY(), 1, h_response.GetNbinsY()+1, 1000, -10, 10 )
			pullHistogram.SetDirectory(0)

		for file_for_toys in files_for_toys:

			_, _, h_response_for_toys, _ = get_unfold_histogram_tuple(
			    inputfile=file_for_toys,
			    variable=variable,
			    channel=channel,
			    centre_of_mass=config.centre_of_mass_energy,
			    ttbar_xsection=config.ttbar_xsection,
			    luminosity=config.luminosity,
			    load_fakes=False,
			    visiblePS=True,
			)

			for i in range(0,5000):

				if i % 100 == 0: print 'Toy number :',i

				toy_response = makeToyResponse( h_response_for_toys.Clone() )
				toy_measured = asrootpy(toy_response.ProjectionX('px',1))
				toy_truth = asrootpy(h_response_for_toys.ProjectionY())

				toy_response_unfolding = makeToyResponse( h_response.Clone() )
				toy_response_unfolding.Scale( toy_response.integral(overflow=True) / toy_response_unfolding.integral(overflow=True) )

				# Unfold toy data with independent toy response
				unfolding = Unfolding( toy_measured,
					toy_truth, toy_measured, toy_response_unfolding, None,
					method='TUnfold', tau=tau_value)

				unfolded_results = unfolding.unfold()

				cov, cor, mc_cov = unfolding.get_covariance_matrix()
				total_statistical_covariance = cov + mc_cov
				for i in range(0,total_statistical_covariance.shape[0] ):
					unfolded_results.SetBinError(i+1, np.sqrt( total_statistical_covariance[i,i] ) )


				for bin in range(1,unfolded_results.GetNbinsX() + 1 ):
					diff = unfolded_results.GetBinContent(bin) - toy_truth.GetBinContent(bin)
					pull = diff / unfolded_results.GetBinError( bin )
					pullHistogram.Fill( bin, pull )

	c = Canvas()
	pullHistogram.Draw('COLZ')
	plots = r.TObjArray()

	# for bin in range(1,pullHistogram.GetNbinsX()):
	# 	slice = pullHistogram.ProjectionY('slice',bin,bin)
	# 	slice.Draw('HIST')
	# 	c.Update()
	# 	slice.Fit('gaus')
	# 	raw_input(bin)

	pullHistogram.FitSlicesY(0,0,-1,0,'QNR',plots)
	means = None
	widths = None
	for p in plots:
		if p.GetName()[-2:] == '_1':
			means = p
		elif p.GetName()[-2:] == '_2':
			widths = p

	means.GetYaxis().SetRangeUser(-2,2)
	means.SetMarkerColor(2)
	means.SetLineColor(2)
	means.GetXaxis().SetTitle(latex_labels.variables_NonLatex[variable])
	means.Draw()

	widths.SetMarkerColor(4)
	widths.SetLineColor(4)
	widths.GetXaxis().SetTitle(latex_labels.variables_NonLatex[variable])
	widths.Draw('SAME')

	l = Legend([], leftmargin=0.45, margin=0.3, topmargin=0.7, entryheight=0.7, entrysep = 0.2)
	l.AddEntry( means, 'Pull mean', 'P')
	l.AddEntry( widths, 'Pull width', 'P')
	l.Draw()
	c.Update()

	truth_response = asrootpy( h_response.ProjectionY() )
	truth_toys = asrootpy( h_response_for_toys.ProjectionY() )
	diff_truth = truth_response - truth_toys

	outputDir = 'plots/unfolding/pulls/new/'
	outputName = '{dir}/{variable}_{channel}.pdf'.format( dir = outputDir, variable = variable, channel = channel)
	make_folder_if_not_exists(outputDir)
	c.SaveAs(outputName)
def main():
    config = XSectionConfig(13)
    method = 'TUnfold'

    file_for_response = File(config.unfolding_central_secondHalf, 'read')
    file_for_powhegPythia  = File(config.unfolding_central_firstHalf, 'read')
    file_for_ptReweight_up  = File(config.unfolding_ptreweight_up_firstHalf, 'read')
    file_for_ptReweight_down  = File(config.unfolding_ptreweight_down_firstHalf, 'read')
    file_for_amcatnlo_pythia8           = File(config.unfolding_amcatnlo_pythia8, 'read')
    file_for_powhegHerwig       = File(config.unfolding_powheg_herwig, 'read')
    file_for_etaReweight_up = File(config.unfolding_etareweight_up, 'read')
    file_for_etaReweight_down = File(config.unfolding_etareweight_down, 'read')

    samples_and_files_to_compare = {
    'Central' : file_for_powhegPythia,
    'Nominal' : file_for_response,
    'PtReweighted Up' : file_for_ptReweight_up,
    'PtReweighted Down' : file_for_ptReweight_down,
    # 'amcatnlo_pythia8' : file_for_amcatnlo_pythia8,
    # 'powhegHerwig' : file_for_powhegHerwig,
    # 'EtaReweighted Up' : file_for_etaReweight_up,
    # 'EtaReweighted Down' : file_for_etaReweight_down,
    }

    for channel in config.analysis_types.keys():
        if channel is 'combined':continue
        print 'Channel :',channel
        for variable in config.variables:
        # for variable in ['ST']:


            print 'Variable :',variable

            # Always unfold with the same response matrix and tau value
            tau_value = get_tau_value(config, channel, variable) 
            # tau_value = 0.00000001

            _, _, h_response, _ = get_unfold_histogram_tuple(
                inputfile=file_for_response,
                variable=variable,
                channel=channel,
                met_type=config.met_type,
                centre_of_mass=config.centre_of_mass_energy,
                ttbar_xsection=config.ttbar_xsection,
                luminosity=config.luminosity,
                load_fakes=False,
                visiblePS=True,
            )

            integralOfResponse = asrootpy(h_response.ProjectionY()).integral(0,-1)

            # Dictionary to hold results
            unfolded_and_truth_for_sample = {}
            unfolded_and_truth_xsection_for_sample = {}

            for sample, input_file_for_unfolding in samples_and_files_to_compare.iteritems():

                _, _, h_response_to_unfold, _ = get_unfold_histogram_tuple(
                    inputfile=input_file_for_unfolding,
                    variable=variable,
                    channel=channel,
                    met_type=config.met_type,
                    centre_of_mass=config.centre_of_mass_energy,
                    ttbar_xsection=config.ttbar_xsection,
                    luminosity=config.luminosity,
                    load_fakes=False,
                    visiblePS=True,
                )

                measured = asrootpy(h_response_to_unfold.ProjectionX('px',1))
                truth = asrootpy(h_response_to_unfold.ProjectionY())

                scale = integralOfResponse / truth.integral(0,-1)
                measured.Scale( scale )
                truth.Scale( scale )
                # Unfold, and set 'data' to 'measured' 
                unfolding = Unfolding( measured,
                    truth, measured, h_response, None,
                    method=method, tau=tau_value)
                
                unfolded_data = unfolding.unfold()



                # unfolded_and_truth_for_sample[sample] = {
                #                                             'truth' : truth_xsection,
                #                                             'unfolded' : unfolded_xsection,
                #                                             'bias' : bias
                # }

                bias = calculate_bias( truth, unfolded_data )

                unfolded_and_truth_for_sample[sample] = {
                                                            'truth' : truth,
                                                            'unfolded' : unfolded_data,
                                                            'bias' : bias
                }

                unfolded_xsection = calculate_xsection( unfolded_data, variable )
                truth_xsection = calculate_xsection( truth, variable )
                bias_xsection = calculate_bias( truth_xsection, unfolded_xsection )
                unfolded_and_truth_xsection_for_sample[sample] = {
                                                            'truth' : truth_xsection,
                                                            'unfolded' : unfolded_xsection,
                                                            'bias' : bias_xsection
                }

            plot_closure(unfolded_and_truth_for_sample, variable, channel,
                         config.centre_of_mass_energy, method, 'number_of_unfolded_events')

            plot_closure(unfolded_and_truth_xsection_for_sample, variable, channel,
                         config.centre_of_mass_energy, method, 'normalised_xsection')

            plot_bias(unfolded_and_truth_for_sample, variable, channel,
                         config.centre_of_mass_energy, method, 'number_of_unfolded_events')

            plot_bias(unfolded_and_truth_xsection_for_sample, variable, channel,
                         config.centre_of_mass_energy, method, 'normalised_xsection', plot_systematics=True)
    variables = ['MET', 'WPT', 'MT', 'ST', 'HT']

    input_file = File( input_filename_central, 'read' )
    input_file_bias = File( input_filename_bias, 'read' )

    print 'Performing', test, 'unfolding checks at', centre_of_mass, 'TeV'
    
    for channel in ['electron', 'muon']:
        for variable in variables:
            print 'Doing', variable, 'variable in', channel, 'channel'
            h_truth, h_measured, h_response, h_fakes = get_unfold_histogram_tuple( 
                                inputfile = input_file,
                                variable = variable,
                                channel = channel,
                                met_type = met_type,
                                centre_of_mass = centre_of_mass,
                                ttbar_xsection = ttbar_xsection,
                                luminosity = luminosity,
                                load_fakes = load_fakes )
            h_data = None
            h_expected = None
            
            if test == 'data':
                h_data = get_fit_results_histogram( data_path = path_to_JSON,
                               centre_of_mass = centre_of_mass,
                               channel = channel,
                               variable = variable,
                               met_type = met_type,
                               bin_edges = bin_edges_vis[variable] )
                h_expected = deepcopy( h_data )
def get_unfolded_normalisation( TTJet_fit_results, category, channel, tau_value, visiblePS ):
    global centre_of_mass, luminosity, ttbar_xsection, method
    global variable, met_type, path_to_JSON, file_for_unfolding, file_for_powheg_pythia, file_for_powheg_herwig, file_for_ptreweight, files_for_pdfs
    global file_for_powhegPythia8, file_for_madgraphMLM, file_for_amcatnlo, file_for_amcatnlo_herwig
    # global file_for_matchingdown, file_for_matchingup
    global file_for_scaledown, file_for_scaleup
    global file_for_massdown, file_for_massup
    global ttbar_generator_systematics, ttbar_theory_systematics, pdf_uncertainties
    global use_ptreweight

    files_for_systematics = {
                             ttbar_theory_systematic_prefix + 'scaledown'       	:  file_for_scaledown,
                             ttbar_theory_systematic_prefix + 'scaleup'         	:  file_for_scaleup,
                             ttbar_theory_systematic_prefix + 'massdown'        	:  file_for_massdown,
                             ttbar_theory_systematic_prefix + 'massup'          	:  file_for_massup,
                             
                             ttbar_theory_systematic_prefix + 'factorisationdown'	:  file_for_factorisationdown,
                             ttbar_theory_systematic_prefix + 'factorisationup'   	:  file_for_factorisationup,
                             ttbar_theory_systematic_prefix + 'renormalisationdown'	:  file_for_renormalisationdown,
                             ttbar_theory_systematic_prefix + 'renormalisationup'  	:  file_for_renormalisationup,
                             ttbar_theory_systematic_prefix + 'combineddown'     	:  file_for_combineddown,
                             ttbar_theory_systematic_prefix + 'combinedup'          :  file_for_combinedup,
                             ttbar_theory_systematic_prefix + 'alphaSdown'			:  file_for_alphaSdown,
                             ttbar_theory_systematic_prefix + 'alphaSup'   			:  file_for_alphaSup,

                             'JES_down'        :  file_for_jesdown,
                             'JES_up'        :  file_for_jesup,

                             'JER_down'        :  file_for_jerdown,
                             'JER_up'        :  file_for_jerup,

                             'BJet_up'        :  file_for_bjetup,
                             'BJet_down'        :  file_for_bjetdown,

                             'LightJet_up'        :  file_for_lightjetup,
                             'LightJet_down'        :  file_for_lightjetdown,

                             ttbar_theory_systematic_prefix + 'hadronisation'   :  file_for_powheg_herwig,
                             ttbar_theory_systematic_prefix + 'NLOgenerator'   :  file_for_amcatnlo,

                             'ElectronEnUp' : file_for_ElectronEnUp,
                             'ElectronEnDown' : file_for_ElectronEnDown,
                             'MuonEnUp' : file_for_MuonEnUp,
                             'MuonEnDown' : file_for_MuonEnDown,
                             'TauEnUp' : file_for_TauEnUp,
                             'TauEnDown' : file_for_TauEnDown,
                             'UnclusteredEnUp' : file_for_UnclusteredEnUp,
                             'UnclusteredEnDown' : file_for_UnclusteredEnDown,

                             'Muon_up' : file_for_LeptonUp,
                             'Muon_down' : file_for_LeptonDown,
                             'Electron_up' : file_for_LeptonUp,
                             'Electron_down' : file_for_LeptonDown,

                             'PileUp_up' : file_for_PUUp,
                             'PileUp_down' : file_for_PUDown,
                             }

    h_truth, h_measured, h_response, h_fakes = None, None, None, None
    # Systematics where you change the response matrix
    if category in files_for_systematics :
        print 'Doing category',category,'by changing response matrix'
        h_truth, h_measured, h_response, h_fakes = get_unfold_histogram_tuple( inputfile = files_for_systematics[category],
                                                                              variable = variable,
                                                                              channel = channel,
                                                                              met_type = met_type,
                                                                              centre_of_mass = centre_of_mass,
                                                                              ttbar_xsection = ttbar_xsection,
                                                                              luminosity = luminosity,
                                                                              load_fakes = True,
                                                                              visiblePS = visiblePS,
                                                                              )
    elif category in pdf_uncertainties:
        h_truth, h_measured, h_response, h_fakes = get_unfold_histogram_tuple( inputfile = files_for_pdfs[category],
                                                                              variable = variable,
                                                                              channel = channel,
                                                                              met_type = met_type,
                                                                              centre_of_mass = centre_of_mass,
                                                                              ttbar_xsection = ttbar_xsection,
                                                                              luminosity = luminosity,
                                                                              load_fakes = True,
                                                                              visiblePS = visiblePS,
                                                                              )
    # Central and systematics where you just change input MC
    else:
        h_truth, h_measured, h_response, h_fakes = get_unfold_histogram_tuple( inputfile = file_for_unfolding,
                                                                              variable = variable,
                                                                              channel = channel,
                                                                              met_type = met_type,
                                                                              centre_of_mass = centre_of_mass,
                                                                              ttbar_xsection = ttbar_xsection,
                                                                              luminosity = luminosity,
                                                                              load_fakes = True,
                                                                              visiblePS = visiblePS,
                                                                              )

#     central_results = hist_to_value_error_tuplelist( h_truth )
    TTJet_fit_results_unfolded, TTJet_fit_results_withoutFakes = unfold_results( TTJet_fit_results,
                                                category,
                                                channel,
                                                tau_value,
                                                h_truth,
                                                h_measured,
                                                h_response,
                                                h_fakes,
                                                method,
                                                visiblePS,
                                                )
    normalisation_unfolded = {
                      'TTJet_measured' : TTJet_fit_results,
                      'TTJet_measured_withoutFakes' : TTJet_fit_results_withoutFakes,
                      'TTJet_unfolded' : TTJet_fit_results_unfolded
                      }

    #
    # THESE ARE FOR GETTING THE HISTOGRAMS FOR COMPARING WITH UNFOLDED DATA
    #

    if category == 'central':
        h_truth_scaledown, _, _, _ = get_unfold_histogram_tuple( inputfile = file_for_scaledown,
                                                    variable = variable,
                                                    channel = channel,
                                                    met_type = met_type,
                                                    centre_of_mass = centre_of_mass,
                                                    ttbar_xsection = ttbar_xsection,
                                                    luminosity = luminosity,
                                                    load_fakes = True,
                                                    visiblePS = visiblePS,
                                                    )
        h_truth_scaleup, _, _, _ = get_unfold_histogram_tuple( inputfile = file_for_scaleup,
                                                    variable = variable,
                                                    channel = channel,
                                                    met_type = met_type,
                                                    centre_of_mass = centre_of_mass,
                                                    ttbar_xsection = ttbar_xsection,
                                                    luminosity = luminosity,
                                                    load_fakes = True,
                                                    visiblePS = visiblePS,
                                                    )

        h_truth_massdown, _, _, _ = get_unfold_histogram_tuple( inputfile = file_for_massdown,
                                                    variable = variable,
                                                    channel = channel,
                                                    met_type = met_type,
                                                    centre_of_mass = centre_of_mass,
                                                    ttbar_xsection = ttbar_xsection,
                                                    luminosity = luminosity,
                                                    load_fakes = True,
                                                    visiblePS = visiblePS,
                                                    )
        h_truth_massup, _, _, _ = get_unfold_histogram_tuple( inputfile = file_for_massup,
                                                    variable = variable,
                                                    channel = channel,
                                                    met_type = met_type,
                                                    centre_of_mass = centre_of_mass,
                                                    ttbar_xsection = ttbar_xsection,
                                                    luminosity = luminosity,
                                                    load_fakes = True,
                                                    visiblePS = visiblePS,
                                                    )

        h_truth_powhegPythia8, _, _, _ = get_unfold_histogram_tuple( inputfile = file_for_powhegPythia8,
                                                variable = variable,
                                                channel = channel,
                                                met_type = met_type,
                                                centre_of_mass = centre_of_mass,
                                                ttbar_xsection = ttbar_xsection,
                                                luminosity = luminosity,
                                                load_fakes = True,
                                                visiblePS = visiblePS,
                                                )

        h_truth_amcatnlo, _, _, _ = get_unfold_histogram_tuple( inputfile = file_for_amcatnlo,
                                                variable = variable,
                                                channel = channel,
                                                met_type = met_type,
                                                centre_of_mass = centre_of_mass,
                                                ttbar_xsection = ttbar_xsection,
                                                luminosity = luminosity,
                                                load_fakes = True,
                                                visiblePS = visiblePS,
                                                )

        h_truth_madgraphMLM, _, _, _ = get_unfold_histogram_tuple( inputfile = file_for_madgraphMLM,
                                                    variable = variable,
                                                    channel = channel,
                                                    met_type = met_type,
                                                    centre_of_mass = centre_of_mass,
                                                    ttbar_xsection = ttbar_xsection,
                                                    luminosity = luminosity,
                                                    load_fakes = True,
                                                    visiblePS = visiblePS,
                                                    )

        h_truth_powheg_herwig, _, _, _ = get_unfold_histogram_tuple( inputfile = file_for_powheg_herwig,
                                                    variable = variable,
                                                    channel = channel,
                                                    met_type = met_type,
                                                    centre_of_mass = centre_of_mass,
                                                    ttbar_xsection = ttbar_xsection,
                                                    luminosity = luminosity,
                                                    load_fakes = True,
                                                    visiblePS = visiblePS,
                                                    )

        # h_truth_amcatnlo_herwig, _, _, _ = get_unfold_histogram_tuple( inputfile = file_for_amcatnlo_herwig,
        #                                             variable = variable,
        #                                             channel = channel,
        #                                             met_type = met_type,
        #                                             centre_of_mass = centre_of_mass,
        #                                             ttbar_xsection = ttbar_xsection,
        #                                             luminosity = luminosity,
        #                                             load_fakes = True,
        #                                             visiblePS = visiblePS,
        #                                             )
    
        # MADGRAPH_ptreweight_results = hist_to_value_error_tuplelist( h_truth_ptreweight )
        # POWHEG_PYTHIA_results = hist_to_value_error_tuplelist( h_truth_POWHEG_PYTHIA )
        # MCATNLO_results = None
        powhegPythia8_results = hist_to_value_error_tuplelist( h_truth_powhegPythia8 )
        madgraphMLM_results = hist_to_value_error_tuplelist( h_truth_madgraphMLM )
        amcatnloPythia8_results = hist_to_value_error_tuplelist( h_truth_amcatnlo )
        powheg_herwig_results = hist_to_value_error_tuplelist( h_truth_powheg_herwig )
        # amcatnlo_herwig_results = hist_to_value_error_tuplelist( h_truth_amcatnlo_herwig )

        # matchingdown_results = hist_to_value_error_tuplelist( h_truth_matchingdown )
        # matchingup_results = hist_to_value_error_tuplelist( h_truth_matchingup )
        scaledown_results = hist_to_value_error_tuplelist( h_truth_scaledown )
        scaleup_results = hist_to_value_error_tuplelist( h_truth_scaleup )
        massdown_results = hist_to_value_error_tuplelist( h_truth_massdown )
        massup_results = hist_to_value_error_tuplelist( h_truth_massup )

        normalisation_unfolded['powhegPythia8'] =  powhegPythia8_results
        normalisation_unfolded['amcatnlo'] =  amcatnloPythia8_results
        normalisation_unfolded['madgraphMLM'] = madgraphMLM_results
        normalisation_unfolded['powhegHerwig'] =  powheg_herwig_results
        # normalisation_unfolded['amcatnloHerwig'] =  amcatnlo_herwig_results

        normalisation_unfolded['scaledown'] =  scaledown_results
        normalisation_unfolded['scaleup'] =  scaleup_results
        normalisation_unfolded['massdown'] =  massdown_results
        normalisation_unfolded['massup'] =  massup_results


    return normalisation_unfolded
def main():
    config = XSectionConfig(13)
    method = 'TUnfold'

    file_for_response = File(config.unfolding_central, 'read')
    file_for_powhegPythia  = File(config.unfolding_central, 'read')
    file_for_madgraph  = File(config.unfolding_madgraphMLM, 'read')
    file_for_amcatnlo  = File(config.unfolding_amcatnlo, 'read')
    file_for_ptReweight_up  = File(config.unfolding_ptreweight_up, 'read')
    file_for_ptReweight_down  = File(config.unfolding_ptreweight_down, 'read')
    file_for_etaReweight_up = File(config.unfolding_etareweight_up, 'read')
    file_for_etaReweight_down = File(config.unfolding_etareweight_down, 'read')

    samples_and_files_to_compare = {
    'Central' : file_for_powhegPythia,
    'PtReweighted Up' : file_for_ptReweight_up,
    'PtReweighted Down' : file_for_ptReweight_down,
    'EtaReweighted Up' : file_for_etaReweight_up,
    'EtaReweighted Down' : file_for_etaReweight_down,
    'Madgraph' : file_for_madgraph,
    'amc@NLO' : file_for_amcatnlo
    }

    for channel in ['combined']:
        for variable in config.variables:
        # for variable in ['ST']:


            print 'Variable :',variable

            # Always unfold with the same response matrix and tau value
            tau_value = get_tau_value(config, channel, variable) 
            _, _, h_response, _ = get_unfold_histogram_tuple(
                inputfile=file_for_response,
                variable=variable,
                channel=channel,
                met_type=config.met_type,
                centre_of_mass=config.centre_of_mass_energy,
                ttbar_xsection=config.ttbar_xsection,
                luminosity=config.luminosity,
                load_fakes=False,
                visiblePS=True,
            )

            integralOfResponse = asrootpy(h_response.ProjectionY()).integral(0,-1)

            # Dictionary to hold results
            unfolded_and_truth_for_sample = {}

            for sample, input_file_for_unfolding in samples_and_files_to_compare.iteritems():

                _, _, h_response_to_unfold, _ = get_unfold_histogram_tuple(
                    inputfile=input_file_for_unfolding,
                    variable=variable,
                    channel=channel,
                    met_type=config.met_type,
                    centre_of_mass=config.centre_of_mass_energy,
                    ttbar_xsection=config.ttbar_xsection,
                    luminosity=config.luminosity,
                    load_fakes=False,
                    visiblePS=True,
                )

                measured = asrootpy(h_response_to_unfold.ProjectionX('px',1))
                truth = asrootpy(h_response_to_unfold.ProjectionY())

                scale = integralOfResponse / truth.integral(0,-1)
                measured.Scale( scale )
                truth.Scale( scale )
                # Unfold, and set 'data' to 'measured' 
                unfolding = Unfolding( measured,
                    truth, measured, h_response, None,
                    method=method, k_value=-1, tau=tau_value)
                
                unfolded_data = unfolding.unfold()

                unfolded_xsection = calculate_xsection( unfolded_data, variable )
                truth_xsection = calculate_xsection( truth, variable )

                bias = calculate_bias( truth, unfolded_data )
                unfolded_and_truth_for_sample[sample] = {
                                                            'truth' : truth_xsection,
                                                            'unfolded' : unfolded_xsection,
                                                            'bias' : bias
                }

            plot_closure(unfolded_and_truth_for_sample, variable, channel,
                         config.centre_of_mass_energy, method)

            plot_bias(unfolded_and_truth_for_sample, variable, channel,
                         config.centre_of_mass_energy, method)
#     taus_from_L_shape = {}
    for variable in variables:
#         taus_from_global_correlaton[channel] = {}
#         taus_from_L_shape[channel] = {}
        for channel in ['electron', 'muon']:
            if channel == 'electron':
                used_k = measurement_config.k_values_electron[variable]
            if channel == 'muon':
                used_k = measurement_config.k_values_muon[variable]
                
            print 'Doing variable"', variable, '" in', channel, 'channel'
        
            h_truth, h_measured, h_response, _ = get_unfold_histogram_tuple( 
                                inputfile = input_file,
                                variable = variable,
                                channel = channel,
                                met_type = met_type,
                                centre_of_mass = centre_of_mass,
                                ttbar_xsection = ttbar_xsection,
                                luminosity = luminosity )
            
            h_data = None
            if use_data:
                h_data = get_data_histogram( channel, variable, met_type )
            else:
                h_data = deepcopy( h_measured )
                
            
            tau, rho, tau_values, rho_values, tau_from_k = get_tau_from_global_correlation( h_truth, h_measured, h_response, h_data )
            draw_global_correlation( tau_values, rho_values, tau, rho, channel, variable, tau_from_k )
            
            #tau, l_curve, x, y = get_tau_from_L_shape( h_truth, h_measured, h_response, h_data )