def main(): image = Image.open(sys.argv[1]).convert("L") num_separator = DigitSeparator(image) for i,digit in enumerate(num_separator.get_digits()): img_name = '%s-%d.jpg' % (os.path.basename(sys.argv[1]), i) with open(os.path.join(sys.argv[2],img_name), 'w') as f: digit.image.save(f, 'JPEG')
def fit(self, x, y): digits = [] labels = [] for image, param_labels in zip(x, y): separator = DigitSeparator(image) digits.extend(map(self.feature_extractor, separator.get_digits())) labels.extend(param_labels) self.vectorizer = DictVectorizer() train_array = self.vectorizer.fit_transform(digits).toarray() self.engine.fit(train_array, labels)
def fit(self, x, y): digits = [] labels = [] for image,param_labels in zip(x,y): separator = DigitSeparator(image) digits.extend(map(self.feature_extractor, separator.get_digits())) labels.extend(param_labels) self.vectorizer = DictVectorizer() train_array = self.vectorizer.fit_transform(digits).toarray() self.engine.fit(train_array, labels)
def __make_prediction(self, image): separator = DigitSeparator(image) features = map(self.feature_extractor, separator.get_digits()) digits = self.vectorizer.transform(features).toarray() labels = self.engine.predict(digits) return ''.join(map(lambda x: '%d' % x, labels))
def __make_prediction(self, image): separator = DigitSeparator(image) features = map(self.feature_extractor, separator.get_digits()) digits = self.vectorizer.transform(features).toarray() labels = self.engine.predict(digits) return ''.join(map(lambda x: '%d'%x, labels))