예제 #1
0
    # Convert the list into a dictionary
    polAngImgs = dict(zip(polAngs, polAngImgs)) #aligned

    #**********************************************************************
    # Stokes I
    #**********************************************************************
    # Average the images to get stokes I
    stokesI = image_tools.combine_images([polAngImgs[0],
                                          polAngImgs[200],
                                          polAngImgs[400],
                                          polAngImgs[600]])
    stokesI = 2 * stokesI

    # Perform astrometry to apply to the headers of all the other images...
    stokesI, success = image_tools.astrometry(stokesI)

    # Check if astrometry solution was successful
    if not success: pdb.set_trace()

    #**********************************************************************
    # Stokes Q
    #**********************************************************************
    # Subtract the images to get stokes Q
    A = polAngImgs[0] - polAngImgs[400]
    B = polAngImgs[0] + polAngImgs[400]

    # Divide the difference images
    stokesQ = A/B

    # Update the header to include the new astrometry
    # It is only possible to "redo the astrometry" if the file on the disk
    # First make a copy of the average image
    tmpImg = avgImg.copy()
    # Replace NaNs with something finite and name the file "tmp.fits"
    tmpImg.arr = np.nan_to_num(tmpImg.arr)
    tmpImg.filename = 'tmp.fits'

    # Delete the sigma attribute
    if hasattr(tmpImg, 'sigma'):
        del tmpImg.sigma

    # Record the temporary file to disk for performing astrometry
    tmpImg.write()

    # Solve the stacked image astrometry
    avgImg1, success = image_tools.astrometry(tmpImg, override = True)

    # With successful astrometry, save result to disk
    if success:
        print('astrometry succeded')

        # Clean up temporary files
        # TODO update to by system independent
        # (use subprocess module and "del" command for Windows)
        # See AstroImage.astrometry for example

        del tmpImg

        if os.path.isfile('none'):
            os.system('rm none')
        if os.path.isfile('tmp.fits'):
    aligned_posCount = image_tools.align_images(
        [IPPA_posCountDict[1], IPPA_posCountDict[2],
        IPPA_posCountDict[3], IPPA_posCountDict[4]],
        mode = 'wcs')

    # Compute the final intensity image first
    # Combine the two stokes I estimates to get an average stokes I image
    I_13 =  alignedImgs[0] + alignedImgs[2]
    I_24 =  alignedImgs[1] + alignedImgs[3]
    Iimg = 0.5*(I_13 + I_24)

    # Solve the astrometry of this image in order to properly map mask
    # positions Aimg positions
    Iimg.filename = 'tmp.fits'
    Iimg.write()
    Iimg, success = image_tools.astrometry(Iimg, override = True)
    if success:
        print('Astrometry for initial combination solved')
        # Delete the temporary file
        if 'win' in sys.platform:
            delCmd = 'del '
            shellCmd = True
        else:
            delCmd = 'rm '
            shellCmd = False

        # Perform the actual deletion
        rmProc = subprocess.Popen(delCmd + 'tmp.fits', shell=shellCmd)
        rmProc.wait()
        rmProc.terminate()
    else:
예제 #4
0
                                          subPixel=True,
                                          padding=np.nan)

    # Convert the list into a dictionary
    polAngImgs = dict(zip(polAngs, polAngImgs))  #aligned

    #**********************************************************************
    # Stokes I
    #**********************************************************************
    # Average the images to get stokes I
    stokesI = image_tools.combine_images(
        [polAngImgs[0], polAngImgs[200], polAngImgs[400], polAngImgs[600]])
    stokesI = 2 * stokesI

    # Perform astrometry to apply to the headers of all the other images...
    stokesI, success = image_tools.astrometry(stokesI)

    # Check if astrometry solution was successful
    if not success: pdb.set_trace()

    #**********************************************************************
    # Stokes Q
    #**********************************************************************
    # Subtract the images to get stokes Q
    A = polAngImgs[0] - polAngImgs[400]
    B = polAngImgs[0] + polAngImgs[400]

    # Divide the difference images
    stokesQ = A / B

    # Update the header to include the new astrometry
예제 #5
0
    # Clear the astrometry values from the header
    tmpImg.clear_astrometry()

    # ReplaceNaNs with something finite and name the file "tmp.fits"
    tmpImg.arr = np.nan_to_num(tmpImg.arr)
    tmpImg.filename = "tmp.fits"

    # Delete the sigma attribute
    if hasattr(tmpImg, "sigma"):
        del tmpImg.sigma

    # Record the temporary file to disk for performing astrometry
    tmpImg.write()

    # Solve the stacked image astrometry
    avgImg1, success = image_tools.astrometry(tmpImg)

    # With successful astrometry, save result to disk
    if success:
        print("astrometry succeded")

        # Clean up temporary variable
        del tmpImg

        # Delete the temporary file
        # Test what kind of system is running
        if "win" in sys.platform:
            # If running in Windows,
            delCmd = "del "
            shellCmd = True
        else: